
Learning Models for RobotNavigationHagit ShatkayPh.D. DissertationDepartment of Computer S
ien
eBrown UniversityProviden
e, Rhode Island 02912CS-98-11De
ember 1998





Learning Models for Robot Navigation
byHagit ShatkayB. S
., The Hebrew University of Jerusalem, 1989M. S
., The Hebrew University of Jerusalem, 1992

A dissertation submitted in partial ful�llment of therequirements for the Degree of Do
tor of Philosophyin the Department of Computer S
ien
e at Brown University
Providen
e, Rhode IslandMay 1999







 Copyright 1997,1998,1999 by Hagit Shatkay





VitaName Hagit ShatkayBorn January 28, 1965 in Petah Tikva, IsraelEdu
ation Brown University, Providen
e, RIPh.D. in Computer S
ien
e, May 1999.The Hebrew University, Jerusalem, IsraelM.S
. in Computer S
ien
e, Cum Laude, May 1992.The Hebrew University, Jerusalem, IsraelB.S
. in Computer S
ien
e, Cum Laude, May 1989.Honors Brown University, Graduate Resear
h Fellowship, 1997.The Hebrew University, Dean of the Fa
ulty of Mathemat-i
s and S
ien
es, List of A
ademi
 Ex
ellen
e, 1988.The Hebrew University, Dean of the Fa
ulty of Mathemat-i
s and S
ien
es, A
ademi
 Ex
ellen
e Award, 1986.Tea
hing Experien
e The Israeli Open University, Course Instru
tor, 1988.The Israeli Open University, Course Dire
tor, 1991.Military Servi
e Lieutenant in the Israeli Defense For
es, 1983-1985.i



ii



Abstra
tHidden Markovmodels (hmms) and partially observable Markov de
ision pro
esses (pomdps)provide a useful tool for modeling dynami
al systems. They are parti
ularly useful for rep-resenting environments su
h as road networks and oÆ
e buildings, whi
h are typi
al forrobot navigation and planning. The work presented here des
ribes a formal framework forin
orporating readily available odometri
 information into both the models and the algo-rithm that learns them. By taking advantage of su
h information, learning hmms/pomdps
an be made better and require fewer iterations, while being robust in the fa
e of dataredu
tion. That is, the performan
e of our algorithm does not signi�
antly deteriorate asthe training sequen
es provided to it be
ome signi�
antly shorter. Formal proofs for the
onvergen
e of the algorithm to a lo
al maximum of the likelihood fun
tion are provided.Experimental results, obtained from both simulated and real robot data, demonstrate thee�e
tiveness of the approa
h.
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Chapter 1Introdu
tionDynami
al systems provide a formal mathemati
al framework for des
ribing many physi
alphenomena. Possible states of a physi
al system are represented as a set of verti
es or nodes,and the dynami
al aspe
t of states 
hanging over time, as ar
s or transitions. Sin
e physi
alphenomena are seldom either fully observable or 
ompletely predi
table, it is also desirablefor dynami
al systems to model the inherent un
ertainty in observations and transitions.The work presented here is 
on
erned with a
quiring a parti
ular family of models fordynami
al systems, namely, Hidden Markov models.1.1 HMMs and POMDP ModelsHidden Markov models (hmms) represent a variety of nondeterministi
 dynami
al systemsas abstra
t probabilisti
 state-transition systems with dis
rete states and observations. Thestates of the dynami
al system are naturally mapped to the states of the model. The ob-servable aspe
ts of ea
h state in the dynami
al system, whi
h are often noisy and impre
ise,are mapped to probability distributions or density fun
tions over observations; ea
h state inthe model has asso
iated with it a distribution, or a probability density fun
tion, over pos-sible observations. The un
ertain dynami
s of the modeled system is represented throughprobabilisti
 transitions between the model's states; ea
h state is assigned a probabilitydistribution over the possible next states.Su
h models are adequate for representing systems in whi
h external entities exer
iseno 
ontrol over the dynami
s of the system, and the sto
hasti
 behavior is 
ompletelyspe
i�ed by the states, transitions and probabilities. They are widely used in a variety ofareas su
h as natural language understanding [Cha93℄, spee
h re
ognition [Rab89, RJ93℄,1



2handwritten text analysis [CKZ94, BG95℄, and protein and DNA representation [Chu89,BCH+93, KBM+94℄.Hidden Markov models 
an be extended to model de
ision pro
esses in whi
h 
ontrolis exer
ised, by introdu
ing a
tions into the model. The extended models are known aspartially observable Markov de
ision pro
ess (pomdp) models. Like the basi
 hmm, a pomdpmodel has a set of states 
orresponding to the states of the modeled system. In addition, ea
ha
tion has asso
iated with it a set of transition probability distributions { one distributionper state. The distribution models the probabilisti
 transition resulting from exe
uting thea
tion in the state. Similarly, ea
h a
tion has a set of observation probability distributions,one distribution per state, modeling the probabilisti
 observation whi
h 
an be per
eivedupon arrival at the state after exe
uting the a
tion.pomdp models are useful for modeling pro
esses in whi
h the out
ome is un
ertain andthe state is not fully observable. Su
h pro
esses arise in almost all aspe
ts of life, from�nan
ial investments to medi
al de
ision making. A variety of other appli
ations is givenin work by Littman [Lit96℄ and Cassandra [Cas98℄.1.2 Models for Robot Navigationpomdp models have proven parti
ularly useful as a basis for robot navigation in buildings,providing a sound method for lo
alization and planning [SK95, NPB95, CKK96℄. Mostother approa
hes to modeling environments for robot navigation [ME85, Asa91, LDWC91,TBF98℄ are 
on
erned with obtaining a geometri
al des
ription of the environment, and are
entered around �nding positions and lo
ations in it, trying to determine exa
tly where inthe environment the robot is. In 
ontrast, hmms and pomdp models are 
entered aroundthe 
on
ept of state rather than that of lo
ation.A state typi
ally 
orresponds to a signi�
ant landmark in the environment 
oupled withother important robot's attributes. Su
h attributes may in
lude the robot's orientation,its arm position, or its voltage level. This more general 
on
ept, naturally 
aptures robotbehaviors and properties that do not ne
essarily involve a 
hange in lo
ation, su
h as armmovement, pi
king or dropping an obje
t, 
amera positioning et
. , thus providing a 
onsis-tent framework for planning and a
ting in the environment. By being 
on
erned with thetopology indu
ed by signi�
ant landmarks, rather than with the 
omplete geometry of thespa
e, the models also tend to be more 
ompa
t and support eÆ
ient planning.Mu
h previous work on planning using pomdp models has required that the model be



3provided, through manual spe
i�
ation. This is a tedious pro
ess and it is often diÆ
ultto obtain 
orre
t probabilities. An ultimate goal is for an agent to be able to learn su
hmodels automati
ally, both for robustness and in order to 
ope with new and 
hangingenvironments.1.3 Learning the ModelFrom a theoreti
al-
omputational standpoint, hmms and pomdp models, 
an be viewed asprobabilisti
 �nite automata (pfa) and input/output pfa, respe
tively. In the general 
ase,the 
onje
ture is that learning su
h models is hard, based on Abe and Warmuth's [AW92℄non-approximability results with respe
t to probabilisti
 �nite automata, as des
ribed inSe
tion 2.1.2. Still, in pra
ti
e, the Baum-Wel
h algorithm [Rab89℄ is frequently used tolearn hmms. Sin
e pomdp models are a simple extension of hmms, they 
an, theoreti
ally, belearned with a simple extension to the Baum-Wel
h algorithm. However, in the general 
ase,without strong prior 
onstraint on the stru
ture of the model, the Baum-Wel
h algorithmdoes not perform very well: it is slow to 
onverge, requires a great deal of data, and is oftenstu
k in lo
al minima.Typi
ally, appli
ation domains in whi
h hmm learning has proven su

essful providesome bias whi
h assists in the learning pro
ess. For instan
e, due to the temporal natureof the spee
h pro
ess, it 
an be modeled using a spe
i�
 family of hmms, namely, left-to-right hmms [Rab89℄. In these models, transitions o

ur in one dire
tion only, and there areno 
y
les other than ones 
aused by self-transitions. That is, the states 
an be indexed,su
h that the probability of transitions from state i to state j, where j < i, is 0. This
onstraint determines many of the model parameters, leaving fewer model parameters thata
tually need to be learned, thus making the learning problem signi�
antly simpler. Asimilar 
onstraint applies to handwritten text, as well as to biologi
al stru
tures su
h asproteins or DNA, due to their sequential nature. Su
h 
onstraints do not usually holdin the navigation domain, sin
e in most real environments one 
an move ba
k and forth,repeatedly visiting the same states via various distin
t routes.Previous work, su
h as Koenig and Simmons' [KS96b℄ used prior knowledge of theenvironment to bias the learning algorithm towards the 
orre
t model. Using their approa
h,a human provides a 
orre
t but in
omplete topologi
al model of the environment, and theBaum-Wel
h algorithm is used to �ll in the details. One of the 
entral goals of the workpresented here is to explore ways in whi
h better models 
an be obtained, while using both



4less time and less data, without requiring a prior des
ription of the learned environment.1.4 A New Approa
hThe approa
h taken in this work is based on utilizing a di�erent sour
e of informationwhi
h allows the Baum-Wel
h algorithm to learn good topologi
al models without the useof human-provided initial model. We propose to use readily available weak odometri
 in-formation to improve the results of the Baum-Wel
h algorithm.Most robots are equipped with wheel en
oders that enable an odometer to re
ord the
hange in the robot's position as it moves through the environment. This data is typi
allyvery noisy and ina

urate. The 
oors in the environment are rarely smooth, the wheelsof the robot are not always aligned and neither are the motors, a lot of the me
hani
s isimperfe
t, resulting in slippage and drift. All these e�e
ts a

umulate, and if we were tomark the initial position of the robot, and try to estimate its 
urrent position based on along sequen
e of odometri
 re
ordings, we would �nd that our estimate is typi
ally in
orre
t.That is, the raw re
orded odometri
 information is not an e�e
tive tool for determining theabsolute lo
ation of the robot in the environment.The idea underlying our approa
h is that this weak odometri
 information, despite itsnoise and ina

ura
y, still provides geometri
al 
ues that 
an help to distinguish betweendi�erent states as well as to identify revisitation of the same state. Hen
e, su
h informationenhan
es the ability to learn topologi
almodels. However, the use of geometri
al informationrequires 
areful treatment of geometri
al 
onstraints and dire
tional data.We demonstrate how the existing models and algorithms 
an be extended in order to takeadvantage of the noisy odometri
 data and the geometri
al 
onstraints. The geometri
alinformation is dire
tly in
orporated into the probabilisti
 topologi
al framework, produ
inga signi�
ant improvement over the standard Baum-Wel
h algorithm, without the need forhuman-provided model. Although there are still a number of intriguing problems thatneed to be addressed, our experiments prove that this is a promising dire
tion in modela
quisition for robot navigation.As a possible generalization to the problem of hmm a
quisition, outside the s
opeof roboti
s, our approa
h demonstrates the merit of using domain-spe
i�
 
onstraints toa
hieve high utilization of the data, and restri
t the learning pro
ess, dire
ting it towardsa
quiring better models. We believe that this approa
h 
an be put to use in other do-mains, su
h as medi
al de
ision making and biologi
al modeling. In the medi
al domain,



5various 
onditions and symptoms ex
lude ea
h other, and temporal 
onstraints restri
t thepossible transitions in the patient's state. In the mole
ular biology domain, one 
an ex-ploit 3-dimensional geometri
al 
onstraints over mole
ular stru
tures, whi
h are likely tobe analogous to the 
onstraints arising when modeling environments for robot navigation.We expe
t that by using these 
onstraints, the spa
e of appropriate models whi
h may �ta data set 
an be redu
ed, and the model a
quisition pro
ess 
an be made more a

urateand eÆ
ient.1.5 Thesis OutlineThe rest of the thesis is organized as follows: Chapter 2 provides a survey of previous workin the area of learning maps and automata; Chapter 3 presents the formal framework forthis work; Chapter 4 des
ribes the basi
 algorithm we have developed for using odometri
information in the 
ontext of the Baum-Wel
h algorithm; Chapter 5 dis
usses spe
ial issuesin handling dire
tional data within a probabilisti
 framework; Chapter 6 presents methodsfor 
hoosing an initial model from whi
h to start the algorithm, and introdu
es a newmethod we have developed for this purpose; Chapter 8 des
ribes ways to over
ome theproblem of 
umulative rotational errors, whi
h is another fa
et of the problems 
aused bythe presen
e of dire
tional data and angular 
hanges; In Chapter 10 we provide a way forenfor
ing 
omplete geometri
al 
onsisten
y in the topologi
al model throughout the learningpro
ess; Chapters 7, 9, and 11 present experimental results for ea
h variant of our learningalgorithm. The experiments demonstrate that our algorithm indeed 
onverges to bettermodels with fewer iterations than the standard Baum-Wel
h, and is robust in the fa
e ofdata redu
tion. In Chapter 12 we summarize the results and 
on
lude the work, as well aslist several dire
tions for future resear
h.
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Chapter 2Approa
hes to Learning Maps andModelsThe work presented in this do
ument lies in the interse
tion between the theoreti
al area oflearning 
omputational models | in parti
ular learning automata from data sequen
es |and the applied area of map a
quisition for robot navigation. In the following we providea survey of results from both of these areas. The reinfor
ement learning literature alsoaddresses some aspe
ts of learning models for Markov de
ision pro
esses [Sut90, Thr92,Kae93℄. The latter 
an be viewed as a spe
ial 
ase of learning probabilisti
 automata withfully observable states, and we brie
y review related work from this domain in Se
tion 2.1.3.2.1 Learning Automata from DataInformally speaking, an automaton 
onsists of a set of states, and a set of transitions whi
hlead from one state to another. In the 
ontext of this work, the automaton states 
orrespondto the states of the modeled environments, and the transitions, to the state 
hanges dueto a
tions performed in the environment. Ea
h transition of the automaton is tagged by asymbol from an input alphabet, �, 
orresponding to the a
tion or the input to the system,whi
h 
aused the state transition. An example of an automaton with three states and inputalphabet fa; bg is shown in Figure 2.1.Classi
al automata theory [HU79℄ distinguishes two types of spe
ial states; a singleinitial state and a set of a

epting states. If a sequen
e of a
tions starts from an initial stateand results in an a

epting state, it is said that the automaton a

epts the sequen
e. For7
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bbFigure 2.1:A 3-state automaton over the al-phabet fa; bg. Figure 2.2:An input-output automaton; theinput alphabet is fa; bg, the output alphabet isfJ;K;Lg.instan
e, in Figure 2.1, state 2 is depi
ted as a double 
ir
le, denoting an a

epting state.If state 1 is assigned to be the initial state, the sequen
es hai; hb ai and ha b ai; are alla

epted by the automaton, while the sequen
e ha bi is not.The basi
 stru
ture des
ribed above 
an be further extended to model the generationof output sequen
es [HU79℄. This is done by de�ning an output alphabet � and assigningto ea
h state a symbol in � that is emitted ea
h time the state is rea
hed. Su
h extendedautomata are 
alled input-output automata. Figure 2.2 depi
ts a 3-state automaton overthe input alphabet fa; bg and the output alphabet fJ;K; Lg. For instan
e, if the inputsequen
e is ha b ai and the initial state is 1, the generated output sequen
e is hJ K J Ki.There are various possible kinds of un
ertainty about the environment as well as theintera
tion with it, whi
h 
an be modeled through di�erent types of automata. First, statesin the environment 
an be either fully observable or partially observable. If the environmentis fully observable, one always knows its exa
t state in the environment. When states areonly partially observable or hidden, one does not know its state with 
ertainty. In addition,the results of ea
h a
tion taken in the environment 
an be either fully determined or un
er-tain. At any given state (be it observable or hidden), the exe
ution of a fully deterministi
a
tion is guaranteed to lead to a single next state. The exe
ution of an a
tion with un
er-tain results is not guaranteed to lead to a single next state and is modeled as a sto
hasti
transition fun
tion. Given a pair 
onsisting of the 
urrent state and a
tion, the transitionfun
tion assigns to ea
h state a probability of being rea
hed through the a
tion, from the
urrent state. Based on these distin
tions, we 
an partition automata into four groups:� Fully observable states, deterministi
 transitions� Fully observable states, sto
hasti
 transitions� Hidden states, deterministi
 transitions� Hidden states, sto
hasti
 transitions



9Automata with fully observable states 
an be viewed as input-output automata in whi
hstates are distin
tly labeled, the output alphabet 
onsists of state labels, and ea
h stateemits its own label when visited. Automata with hidden states do not emit their statelabels, but might emit other output symbols (hen
e the term partially observable).We 
an imagine an agent moving through an environment while re
ording its per
eivedobservations and a
tions. The problem of learning an automaton, is informally des
ribedas the problem of 
onstru
ting an automaton that a

epts the re
orded sequen
e of a
tions,and emits the re
orded sequen
e of observations, if su
h observations exist. In a settingwhere the automaton does not have a distin
t a

epting state, the learning problem issimilar, but merely requires that the learned automaton has a dire
ted path through itsstates, 
orresponding to the re
orded input (and/or output) sequen
e.A
ting in a fully observable and deterministi
 environment, 
orresponding to an au-tomaton of the �rst kind, we 
an re
ord the origin state in whi
h we start the exploration,as well as ea
h subsequently visited state. In terms of de
ision pro
ess models, this 
an beviewed as a
ting within the framework of deterministi
 Markov de
ision pro
esses [Put94℄.After visiting all the states (and exe
uting all possible a
tions - if we do have a 
hoi
e ofa
tion), we obtain a 
omplete model of the environment. That is, we deterministi
ally knowhow to get from ea
h state to all the other rea
hable states. Hen
e, learning a model ofsu
h an environment is easy.The se
ond kind of automata 
orresponds a sto
hasti
 Markov de
ision pro
essmodel [Put94℄. Learning su
h a model based on a sequen
e of re
orded visited statesand exe
uted a
tions, amounts to estimating transition probabilities under the exe
uteda
tions. It is a fairly simple task, under the assumption that the sequen
e of re
ordedstates is provided and we are not dealing with the problem of obtaining suÆ
ient data forestimation purposes, and is dis
ussed in Se
tion 2.1.3.Obtaining models of the third and the fourth kinds, 
orrespond to the problems oflearning a deterministi
 and a probabilisti
 �nite automaton, respe
tively. These problemsdo not have simple solutions in the general 
ase. The models and their respe
tive learningproblems are dis
ussed in detail in Se
tions 2.1.1 and 2.1.2.It is also possible to have a fully deterministi
 environment in whi
h an agent withimperfe
t per
eption re
ords its a
tions and observations. In this 
ase the agent may re
ordthe wrong states, a
tions or observations resulting in a noisy sequen
e from whi
h learningneeds to be done. In this 
ase, the learning pro
edure needs to take into a

ount that with



10some probability ea
h re
orded item may be wrong. The model learned is deterministi
,rather than sto
hasti
, but it might 
ontain errors with respe
t to the true model, due tothe erroneous data from whi
h it was learned. Some results under this s
enario are alsodis
ussed in Se
tion 2.1.1.2.1.1 Deterministi
 AutomataA standard deterministi
 �nite automaton 
onsists of a �nite set of states Q, a �nite inputalphabet �, a transition fun
tion Æ : Q � � ! Q, and a set F 2 Q of a

epting states.The basi
 problem of learning �nite deterministi
 automata from given data 
an be roughlydes
ribed as follows: Given two sets of positive and negative example strings, S and Trespe
tively, over alphabet �, and a �xed number of states k, 
onstru
t a minimal deter-ministi
 �nite automaton with no more than k states that a

epts S and does not a

ept T .This problem has been shown to be np-
omplete [Gol78℄. Pitt and Warmuth [PW89℄ haveshown that even if we are not learning the minimal automaton of k states, but are willingto learn an automaton with a polynomial number of states f(k) with the same language,the problem is still np-
omplete.Despite the hardness, positive results have been shown possible within various spe
ialsettings. Angluin [Ang87℄ showed that if there is an ora
le to answer membership queries(assuming a reset operator of the automaton to its initial state), and to provide 
ounterex-amples to 
onje
tures about the automaton, there is a polynomial time learning algorithmfrom positive and negative examples. Rivest and S
hapire [RS87b, RS87a℄ provide an ef-fe
tive method for learning permutation automata, using distinguishing sequen
es (
alled\tests") for disambiguating states. Their method is guaranteed to �nd an automaton thatwith high probability is the 
orre
t one. In later work, [RS89℄, the authors use homingsequen
es for the same purpose. They show that they 
an learn a 
orre
t permutation au-tomaton in polynomial time assuming there is a \tea
her" whi
h provides 
ounterexamples,while a highly probable automaton 
an be learned even without the assumption of a tea
her.All of the above work assumes deterministi
, noise-free behavior of the learned automa-ton. As mentioned earlier, there are 
ases in whi
h the training sequen
e from whi
h theautomaton is learned may be noisy. Basye, Dean and Kaelbling [BDK95℄ presented severalalgorithms that, with high probability, learn input-output deterministi
 automata whenvarious forms of noise are present in the training data. They show that when the transi-tions (a
tions) are deterministi
 but output emissions (observations) are noisy, a polynomialtime algorithm exists, that learns a 
orre
t deterministi
 model with high probability. The



11algorithm does not learn a distribution over the observations, but rather assumes that alikely observation exists for ea
h state and this observation is the one learned. Thus thelearned model is 
ompletely deterministi
 rather than probabilisti
. Similar results holdwhen the transitions are noisy and the observations are deterministi
. (Again, the automa-ton learned is a deterministi
 one and does not model the transitions as probabilisti
). Forthe 
ase where both transitions and observations are noisy, a polynomial time algorithmfor learning a probably 
orre
t deterministi
 automaton is given under strong assumptions,whi
h in
lude unique labeling of states.2.1.2 Probabilisti
 AutomataProbabilisti
 automata are ones in whi
h a probability distribution governs the transitionsbetween states on any given input. In addition, in the 
ase of input-output automata, aprobability distribution is de�ned over the output emissions as well. The basi
 learningproblem in this 
ontext is to �nd an automaton that assigns the same distribution as thetrue one to data sequen
es, from training data S generated by the true automaton. Anotherform of a learning problem is that of �nding a probabilisti
 automaton � that assigns themaximum likelihood to the training data S, that is, an automaton that maximizes Pr(Sj�).Abe and Warmuth [AW92℄ show that �nding a probabilisti
 automaton with 2 states,even when small error with respe
t to the true model is allowed with some probability (theProbably Approximately Corre
t learning model), 
annot be done in polynomial time witha polynomial number of examples, unless np = rp. They also show the equivalen
e of theproblem of learning an automaton in the pa
 sense to that of approximating the maximumlikelihood automaton. This means that approximating a solution to any of the two learningproblems stated above, for a probabilisti
 automaton, is equivalently hard. From theirwork arises a broader 
onje
ture, whi
h has not yet been proven, that the general problemof learning probabilisti
 automata with any number of states, even under the pa
 learningmodel, is hard. A similar broadly a

epted 
onje
ture stemming from the same work is thatlearning hidden Markov models (the kind of probabilisti
 automata formally introdu
ed inSe
tion 3.1) is hard even in the pa
 sense.Two ways of addressing this hardness are presented in the rest of this se
tion. One usesrestri
tions on the 
lass of probabilisti
 models learned, and the other learns an unrestri
tedhidden Markov model with good pra
ti
al results but with no pa
 guarantees on the qualityof the result.



12 Restri
ting the Learning Problem: In their above mentioned paper, Abe and War-muth suggest that an interesting open problem is to �nd sub
lasses of probabilisti
 automatathat are both pra
ti
ally useful and polynomially pa
 learnable.Work by Ron et al. [RST94, RST95, RST98℄ pursues su
h an approa
h. The authorspresent two 
lasses of probabilisti
 automata that are useful in the area of natural languageunderstanding, in parti
ular for 
ursive hand writing re
ognition, spee
h re
ognition andprinted text analysis. One su
h 
lass 
onsists of a
y
li
 probabilisti
 �nite automata, andthe other of probabilisti
 �nite suÆx automata. Both of these 
lasses 
an be learned inpolynomial time (in all the parameters) within the pa
 framework.Learning with Restri
ted Guarantees: Another approa
h, the one predominantlytaken in this work, is to learn a model for the data from the 
omplete unrestri
ted 
lass ofhidden Markov models. Only weak guarantees exist about the goodness of the model, butthe learning pro
edure may be dire
ted to obtain pra
ti
ally good results.This approa
h is based on guessing an automaton (model), and using an iterative pro-
edure to make the automaton �t the training data better. One algorithm 
ommonly usedfor this purpose is the Baum-Wel
h algorithm [BE67, BS68, BPS+70℄, whi
h is presentedin detail by Rabiner [Rab89℄. The iterative updates of the model are based on gatheringsuÆ
ient statisti
s from the data given the 
urrent automaton, and the update pro
e-dure is guaranteed to 
onverge to a model that lo
ally maximizes the likelihood fun
tionPr(datajmodel). Sin
e the maximum is lo
al, the model might not be 
lose enough to theautomaton by whi
h the data was generated, and a 
hallenging problem is to �nd ways tofor
e the algorithm into 
onverging to higher maxima, or at least to make it 
onverge faster,fa
ilitating multiple guesses of initial models, thus raising the probability of 
onverging tohigher maxima. Su
h an approa
h is the one taken in this work.Throughout this work we assume that the number of states in the model we are learningis given as input. This is not a very strong assumption, sin
e there exist methods for learningthe number of states. A natural generalization of the algorithm presented here is to applysu
h methods to dire
tly learn the number of states from the data. Obviously, without anybound on the number of states, one 
an designate a state for ea
h data point in the inputsequen
e, thus perfe
tly �tting the data. Su
h an approa
h is a trivial example of over�tting;the model indeed �ts the data well but is not general enough for modeling other dataobtained from the same modeled environment. Regularization methods are used in orderto avoid over�tting, dire
ting the learning pro
ess towards models that �t both the 
urrenttraining data as well as yet-unseen data. One su
h te
hnique is 
ross-validation [Sto74,



13Sha93, ET93℄. Its basi
 idea is to use only parts of the available data to learn models ofvarying number of states, while saving some of the data for testing purposes. On
e severalmodels are learned, the likelihood (or some other measure of goodness) that they assign tothe part of the data not used for learning is 
ompared. The number of states for the modelthat has the highest measure of goodness, is taken to be the 
orre
t number of states, andis �xed. A �nal model is then obtained by learning from the 
omplete data under the �xednumber of states. Other regularization methods su
h as the minimum des
ription lengthprin
ipal for de
iding on the number of states and other model parameters, are dis
ussedin Vapnik's book [Vap95℄. Another similar 
riterion suggested by Akaike is des
ribed in abook by Sakamoto et al. [SIK86℄. In Se
tion 6.2 we suggest another possible heuristi
 forestimating the number of states as part of an initialization algorithm.2.1.3 Models for Markov De
ision Pro
essesMu
h of the work on reinfor
ement learning [Kae93, Sut90, Thr92, BBS95, MB98℄ is 
on-
erned with a
ting optimally within the 
ontext of fully observable Markov de
ision pro-
esses. The Markov model 
onsists of states and a
tions that transition an agent from onestate to the other, where every su
h transition has asso
iated with it a reward. The goalof the agent is to optimize its reward. The transitions between states are usually sto
has-ti
, and the agent does not always know either the probability distribution governing thetransition or the reward asso
iated with ea
h state-a
tion pair. In su
h 
ases, where theparameters are unknown to the agent, it tries to obtain knowledge about them via explo-ration. The main idea behind exploration is that by taking a
tions at ea
h state, the agentobtains 
ounts of the number of times it ended up in every state. It uses the 
ounts to 
al-
ulate suÆ
ient statisti
s and estimate the transition probabilities whi
h it does not knowa priori. Given a sequen
e of states re
orded during exploration, learning the model is astraightforward statisti
al estimation problem [Bil59℄. The more involved issue is that ofde
iding on strategies to explore the environment in order to obtain the data [Mar67℄.This form of model learning is di�erent from the problem we are addressing, sin
e in thehmm and pomdp 
ase the state itself is hidden and one 
an not dire
tly obtain transition
ounts between states and 
al
ulate statisti
s. Another aspe
t of the learning in a partiallyobservable environment is that of learning the observation distribution asso
iated with ea
hstate, as des
ribed in Chapter 3. This aspe
t does not exist in the fully observable 
ase.



142.2 Learning Maps and Models for Robot NavigationThe other area whi
h 
losely relates to the work presented here is that of modeling envi-ronments for robot navigation. A distin
tion is usually made between two prin
ipal kindsof maps: geometri
 and topologi
al. Geometri
 maps des
ribe the environment as a 
olle
-tion of obje
ts or o

upied positions in spa
e, and the geometri
 relationships among them.The topologi
al framework is less 
on
erned with the geometry, and models the world as a
olle
tion of states and their 
onne
tivity, that is, whi
h states are rea
hable from ea
h ofthe other states and what a
tions lead from one state to the next.We draw an additional distin
tion, between world-
entri
1 maps that provide an \ob-je
tive" des
ription of the environment independent of the agent using the map, and robot-
entri
 models whi
h 
apture the intera
tion of a parti
ular \subje
tive" agent with theenvironment. When learning a map, the learning agent needs to take into a

ount its ownnoisy sensors and a
tuators and try to obtain an obje
tively 
orre
t map that other agents
ould use as well. Similarly, other agents using the map need to 
ompensate for their ownlimitations in order to assess their position a

ording to the map. When learning a modelthat 
aptures intera
tion the agent a
quiring the model is the one who is also using it.Hen
e, the noisy sensors and a
tuators spe
i�
 to the agent are re
e
ted in the model. Adi�erent model is likely to be needed by di�erent agents. Most of the related work des
ribedbelow, espe
ially within the geometri
al framework, is 
entered around learning obje
tivemaps of the world rather than agent-spe
i�
 models. We shall point out in this survey thework that is 
on
erned with the latter kind of models.Our work fo
uses on a
quiring purely topologi
al models, and is less 
on
erned withlearning geometri
al relationships between lo
ations or obje
ts, or obje
tive maps, althoughgeometri
al relationships do serve as an aid in our a
quisition pro
ess. The 
on
ept of astate used in this topologi
al framework is more general than the 
on
ept of a geometri
allo
ation, sin
e a state 
an in
lude information su
h as the battery level, the arm positionet
. Su
h information, whi
h is of great importan
e for planning, is non-geometri
al innature and therefore 
an not be readily 
aptured in a purely geometri
al framework. Thefollowing provide a survey of both work done within the geometri
al framework and withinthe topologi
al framework as well as 
ombinations of the two approa
hes.1I thank Sebastian Thrun for the terminology.



152.2.1 Geometri
 MapsGeometri
 maps provide a des
ription of the environment in terms of the obje
ts pla
edin it and their positions. For example, grid-based maps are an instan
e of the geometri
approa
h. In a grid-based map, the environment is modeled as a grid (an array), whereea
h position in the grid 
an be either va
ant or o

upied by some obje
t (binary valuespla
ed in the array). This approa
h 
an be further re�ned to re
e
t un
ertainty about theworld, by having grid 
ells 
ontain o

upan
y probabilities rather than just binary values.A lot of work has been done on learning su
h grid-based maps for robot navigation, throughthe use of sonar readings and their interpretation, by Movare
 and Elfes and others [ME85,Mor88, Elf89, Asa91℄.An underlying assumption when learning su
h maps is that the robot 
an tell where it ison the grid when it obtains a sonar reading indi
ating an obje
t, and therefore 
an pla
e theobje
t 
orre
tly on the grid. A similar lo
alization assumption underlies other geometri
mapping te
hniques [LDWC91, SSC91, TGF+98℄, even when an expli
it grid is not partof the model. This assumption 
an be hard to satisfy. Leonard and Cox [LDWC91℄ andSmith et al. [SSC91℄ address this issue through the use of geometri
al bea
ons to estimatethe lo
ation of the robot. A probability distribution is used to model the robot's possible
urrent lo
ation, based on observations 
olle
ted up to the 
urrent point.Re
ent work by Thrun et al. [TBF98℄, uses a similar probabilisti
 approa
h for obtaininggrid-based maps. This work is re�ned [TGF+98℄ to �rst learn the lo
ation of signi�
antlandmarks in the environment and then �ll in the details of the 
omplete geometri
al grid,based on laser range s
ans. The latter work extends the approa
h of Smith et al. , by usingobservations obtained both before and after a lo
ation has been visited, in order to derive aprobability distribution over possible lo
ations. To a
hieve this, the authors use a forward-ba
kward pro
edure similar to the one used in the Baum-Wel
h algorithm [Rab89℄, (seeChapter 4 of this work), in order to determine possible lo
ations from observed data. Theapproa
h resembles ours both in the use of the forward-ba
kward estimation pro
edure, andin its probabilisti
 basis, aiming at obtaining a maximum likelihood map of the environment.It still signi�
antly di�ers from ours both in its initial assumptions and in its �nal results.The data assumed to be provided to the learner in
ludes both the motion model and theper
eptual model of the robot. These 
onsist of transition and observation probabilitieswithin the grid. Both of these 
omponents are learnt by our algorithm, although not ina grid 
ontext but in a topologi
al, 
oarser-grained, framework. The end result of theiralgorithm is a probabilisti
 grid-based map, while ours is a probabilisti
 topologi
al model.



16 In addition to being 
on
erned only with lo
ations, rather than with the ri
her notionof state, a fundamental drawba
k of geometri
al maps is their �ne granularity and higha

ura
y. Geometri
al maps, parti
ularly grid-based ones, tend to give an a

urate anddetailed pi
ture of the environment. In 
ases where it is ne
essary for a robot to knowits exa
t lo
ation in terms of metri
 
oordinates, metri
 maps are indeed the best 
hoi
e.However, many planning tasks do not require su
h �ne granularity or a

urate measures,and are better fa
ilitated through a more abstra
t representation of the world. For example,if a robot needs to deliver a bagel from oÆ
e a to oÆ
e b, all it needs to have is a mapdepi
ting the relative lo
ation of a with respe
t to b, the passageways between the twooÆ
es, and perhaps a few other landmarks to help it orient itself if it gets lost. If it has areasonably well-operating low-level obsta
le avoidan
e me
hanism to help it bypass 
owerpots and 
hairs that it might en
ounter on its way, su
h obje
ts do not need to be part ofthe environment map. Just as a driver traveling between 
ities needs to know neither itslongitude and latitude 
oordinates on the globe, nor the lo
ation of the spe
i�
 houses alongthe way, the robot does not need to know its exa
t lo
ation within the building nor theexa
t lo
ation of various items in the environment, in order to get from one point to another.Hen
e, the e�ort of obtaining su
h detailed maps is not usually justi�ed. In addition themaps 
an be very large, whi
h makes planning | even though planning is polynomial inthe size of the map | be ineÆ
ient.2.2.2 Topologi
al Maps and ModelsAn alternative to the detailed geometri
 maps are the more abstra
t topologi
al maps.Su
h maps spe
ify the topology of important landmarks and situations (states), and routesor transitions (ar
s) between them. They are less 
on
erned with the physi
al lo
ation oflandmarks, and more with topologi
al relationships between situations. Typi
ally, they areless 
omplex and support mu
h more eÆ
ient planning than metri
 maps. Topologi
al mapsare built on lower-level abstra
tions that allow the robot to move along ar
s (perhaps bywall- or road-following), to re
ognize properties of lo
ations, and to distinguish signi�
antlo
ations as states; they are 
exible in allowing a more general notion of state, possiblyin
luding information about the non-geometri
al aspe
ts of the robot's situation.There are two typi
al strategies for deriving topologi
al maps: one is to learn the topo-logi
al map dire
tly; the other is to �rst learn a geometri
 map, then to derive a topologi
almodel from it through some pro
ess of analysis.A ni
e example of the se
ond approa
h is provided by Thrun and B�u
ken [TB96a,



17TB96b, Thr99℄, who use o

upan
y-grid te
hniques to build the initial map. This strategyis appropriate when the primary 
ues for de
omposition and abstra
tion of the map aregeometri
. However, in many 
ases, the nodes of a topologi
al map are de�ned in terms ofother sensory data (e.g. labels on a door or whether or not the robot is holding a bagel).Learning a geometri
 map �rst also relies on the odometri
 abilities of a robot; if they areweak and the spa
e is large, it is very diÆ
ult to derive a 
onsistent map.In 
ontrast, our work 
on
entrates on learning a topologi
al model dire
tly, assumingthat abstra
tion of the robot's per
eption and a
tion abilities has already been done. Su
habstra
tions were manually en
oded into the lower level of our robot navigational software,as des
ribed in Chapter 7. Work by Pier
e and Kuipers [PK97℄ dis
usses an automati
method for extra
ting abstra
t states and features from raw per
eptual information.Kuipers and Byun [KB91℄ provide a strategy for learning deterministi
 topologi
al maps.It works well in domains in whi
h most of the noise in the robot's per
eption and a
tion isabstra
ted away, learning from single visits to nodes and traversals of ar
s. An underlyingassumption for this strategy is that the 
urrent state 
an be reliably identi�ed based onlo
al information, or based on distan
e traversed from the previous well-identi�ed state.It is unable to handle situations in whi
h long sequen
es of a
tions and observations arene
essary to disambiguate the robot's state.Engelson and M
Dermott [EM92℄ learn \diktiometri
" maps (topologi
al maps withmetri
 relations between nodes) from experien
e. The un
ertainty model they use is interval-based rather than probabilisti
, and the learned representation is deterministi
. Ad ho
routines handle problems resulting from failures of the un
ertainty representation.We prefer to learn a 
ombined model of the world and the robot's intera
tion with theworld; this allows robust planning that takes into a

ount likelihood of error in sensing anda
tion. The work most 
losely related to ours is by Koenig and Simmons [KS96b, KS96a℄,who learn pomdp models (sto
hasti
 topologi
al models) of a robot hallway environment.They also re
ognize the diÆ
ulty of learning a good model without initial information;they solve the problem by using a human-provided topologi
al map, together with further
onstraints on the stru
ture of the model. A modi�ed version of the Baum-Wel
h algo-rithm learns the parameters of the model. They also developed an in
remental version ofBaum-Wel
h that 
an be used on-line. Their models 
ontain very weak metri
 information,representing hallways as 
hains of one-meter segments and allowing the learning algorithmto sele
t the most probable 
hain length. This method is e�e
tive, but results in large mod-els with size proportional to the hallways length, and strongly depends on the provision of



18a good initial model.The rest of the work des
ribes our approa
h to learning topologi
al models. We showthat by using weak odometri
 information dire
tly, we 
an avoid the use of human-provideda priori models and still learn sto
hasti
 maps eÆ
iently and e�e
tively.



Chapter 3Models and AssumptionsThis 
hapter des
ribes the basi
s of the formal framework for our work. It starts by in-trodu
ing the 
lassi
 hidden Markov model. The model is then extended to a

ommodatenoisy odometri
 information in its simplest form, ignoring information about the robot'sheading and orientation. In 
hapters 5 and 8, the model is further extended and re�ned toa

ommodate heading information and address the problems that arise as a result.We 
on
entrate here on des
ribing models and algorithms for learning hmms, ratherthan pomdps. The extension to 
omplete pomdps is through learning an hmm for ea
h ofthe possible a
tions, and is straightforward although notationally more 
umbersome. Webrie
y dis
uss it in Se
tion 3.3.3.1 HMMs { The Basi
sA hidden Markov model 
onsists of states, transitions, observations and probabilisti
 be-havior. We provide here a more formal de�nition of this basi
 model. In the next se
tionwe elaborate the de�nition to a

ount for odometri
 information.A hidden Markov model is a tuple � = hS;O;A;B; �i, where� S = fs0; : : : ; sN�1g is a �nite set of N states;� O = fo1; : : : ; oMg is a �nite set of M possible observation values;� A is a sto
hasti
 transition matrix, with Ai;j = Pr(qt+1 = sj jqt = si); 0� i; j�N � 1;qt is the state at time t; for every state si, N�1Xj=0Ai;j = 1.19



20 Ai;j holds the transition probability from state si to state sj .� B is a sto
hasti
 observation matrix, with Bj;k =Pr(vt= ok jqt= sj); 0 � j � N � 1;1 � k �M ; vt is the observation re
orded at time t; for every state sj , MXk=1Bj;k = 1.Bj;k holds the probability of observing ok while being at state sj .� � is a sto
hasti
 initial distribution ve
tor, with �i = Pr(q0 = si); 0 � i � N � 1;N�1Xi=0 �i = 1. �i holds the probability of being in state si at time 0, when starting tore
ord the observations.This model 
orresponds to a world in whi
h the a
tual state of matters at any given time t,qt 2 S, is hidden and not dire
tly observable, but some observation, vt 2 O, is dete
ted andre
orded at the state when it is visited at time t. An agent moves from one hidden stateto the next a

ording to the probability distribution en
oded in matrix A. The observedinformation in ea
h state is governed by the probability matrix B.Given a sto
hasti
 system with an unknown model, one 
an gather sequen
es of observa-tions in the system. By 
al
ulating suÆ
ient statisti
s from the observed data, estimates forthe states and the observations of the system are obtained. Using these estimates, one maybe able to re
onstru
t a plausible model of the system, as demonstrated by the followingsimple example.Example 3.1 Consider a system 
onsisting of a single biased 
oin that is being tossed. It
an be viewed as a system with a single state, in whi
h one 
an observe, either a head, H,or a tail, T , with some unknown probability.A sequen
e of observations 
an be re
orded by tossing the 
oin several times. For in-stan
e, H T T T H T T , is su
h a sequen
e. By 
ounting the number of times H was observed(2), and the number of times T was observed (5), we obtain the estimate 27 for the proba-bility of observing a head, and the estimate 57 for the probability of observing a tail. Theseprobabilities 
onstitute a plausible model of the tossed 
oin.The learning problem for hmms 
an be roughly stated as follows: Given a sequen
e ofobservations gathered from a sto
hasti
 system, re
onstru
t a plausible hidden Markov modelof the system. A more a

urate measure of \plausibility" will be given in Se
tion 4.1.



213.2 Adding Odometry to Hidden Markov ModelsThe world is 
omposed of a �nite set of states. The states do not ne
essarily 
orrespond di-re
tly to lo
ations of the robot; they may in
lude other state information, su
h as orientationor battery level. The dynami
s of the world are des
ribed by state-transition distributionsthat spe
ify the probability of making transitions from one state to the next. There is a�nite set of observations that 
an be made in ea
h state; the frequen
y of su
h observa-tions is des
ribed by a probability distribution and depends only on the 
urrent state. Inour model, observations are multi-dimensional; an observation is a ve
tor of values, ea
h
hosen from a �nite domain. It is assumed that these observation values are 
onditionallyindependent, given the state.In addition to the set of possible observations, ea
h state is assumed to be asso
iatedwith a position in a metri
 spa
e. Whenever a state transition is made, the robot re
ords anodometry ve
tor, whi
h estimates the position of the 
urrent state relative to the previousstate. For the time being we assume that the odometry ve
tor 
onsists of readings of x and y
oordinates in a global 
oordinate system, and that these readings are 
orrupted with inde-pendent normal noise (extension to dependent noise is possible, and requires 
onsiderationof the 
omplete 
ovarian
e matrix). We extend the odometry ve
tor to in
lude informa-tion about the heading of the robot, and relax the global 
oordinate system assumption inChapters 5 and 8, respe
tively.There are two important assumptions underlying our treatment of odometri
 relationsbetween states: First, that there is an inherent \true" odometri
 relation between theposition of every two states in the world; Se
ond, that when the robot moves from one stateto the next, there is a normal, 0-mean noise around the 
orre
t expe
ted odometri
 readingalong ea
h odometri
 dimension. This noise re
e
ts two kinds of odometri
 error sour
es:{ The la
k of pre
ision in the dis
retization of the real world into states (e.g. there is arather large area in whi
h the robot 
an stand whi
h 
an be regarded as \the doorwayof the AI lab").{ The la
k of pre
ision of the odometri
 measures re
orded by the robot, due to slippage,fri
tion, disalignment of the wheels, impre
ision of the measuring instruments, et
.To formally introdu
e odometri
 information into the hidden Markov model framework, wede�ne an augmented hidden Markov model as a tuple � = hS;O;A;B;R; �i, where� S = fs0; : : : ; sN�1g is a �nite set of N states;



22 � O = Qli=1Oi is a �nite set of observation ve
tors of length l; the ith element of anobservation ve
tor is 
hosen from the �nite set Oi;� A is a sto
hasti
 transition matrix, with Ai;j = Pr(qt+1 = sj jqt = si); 0� i; j�N � 1;qt is the state at time t;Ai;j holds the transition probability from state si to state sj .� B is an array of l sto
hasti
 observation matri
es, with Bi;j;o = Pr(Vt[i℄ = ojqt= sj);1 � i � l; 0 � j � N � 1; o 2 Oj ; Vt is the observation ve
tor at time t; Vt[i℄ is its ith
omponent.Bi;j;k holds the probability of observing ok along the ith 
omponent of the observationve
tor, while being at state sj .� R is a relation matrix, spe
ifying for ea
h pair of states, si and sj , the mean and vari-an
e of the D-dimensional1 odometri
 relation between them; �(Ri;j [m℄) is the meanof the mth 
omponent of the relation between si and sj and �2(Ri;j [m℄), the vari-an
e; furthermore, R is geometri
ally 
onsistent: for ea
h 
omponent m, the relation�m(a; b) def= �(Ra;b[m℄) must be a dire
ted metri
, satisfying the following propertiesfor all states a, b, and 
:� �m(a; a) = 0;� �m(a; b) = ��m(b; a) (anti-symmetry); and� �m(a; 
) = �m(a; b) + �m(b; 
) (additivity) :This representation of odometri
 relations re
e
ts the two assumptions, previouslystated, regarding the nature of the odometri
 information. The \true" odometri
relation between the position of every two states is represented as the mean. Thenoise around the 
orre
t expe
ted odometri
 relation, a

ounting for both the la
kof pre
ision in the real-world dis
retization and the ina

ura
y in measurement, isrepresented through the varian
e.� � is a sto
hasti
 initial probability ve
tor des
ribing the distribution of the initial state;for simpli
ity it is assumed here to be of the form h0; : : : ; 0; 1; 0; : : : ; 0i, implying thatthere is one designated initial state, si, in whi
h the robot is always started.1For the time being we 
onsider D to be 2, 
orresponding to (x; y) readings.



23This model extends the standard hidden Markov model, as presented in Se
tion 3.1, in twoways:� It allows for observations to be fa
tored into independent 
omponents (given thestate), and represented as ve
tors. Fa
toring the observations into 
omponents andassuming 
onditional independen
e between them allows for the 
al
ulation of theprobability of an observation ve
tor from the probability of its 
omponents. It there-fore results in fewer probabilisti
 parameters in the learnt model than if we were toview ea
h observation ve
tor as a single \atomi
" observation.� It introdu
es the odometri
 relation matrix R and 
onstraints over its 
omponents.The use of R and the 
onstraints over it have proven useful for learning the othermodel parameters, as demonstrated in Chapters 7, 9 and 11.3.3 Extending POMDP ModelsWe brie
y review the de�nition of partially observable Markov de
ision pro
ess models(pomdp models), and des
ribe their adaptation for supporting odometri
 information. Amore detailed des
ription of standard pomdps 
an be found in work done by Cassandra,Littman and Kaelbling [CKL94, CKK96, Cas98℄.Traditionally, a pomdp model 
onsists of:� S = fs0; : : : ; sN�1g is a �nite set of N states;� O = fo1; : : : ; oMg is a �nite set of M possible observation values;� a = fa1; : : : ; aKg is a �nite set of K possible a
tions;� fA1; : : : ; AKg are sto
hasti
 transition matri
es, one for ea
h possible a
tion;Ali;j = Pr(qt+1 = sj jqt = si; 
t = al); 0� i; j�N � 1; 1� l�K; qt is the state at timet; 
t is the a
tion taken at time t; for every state si and a
tion al, N�1Xj=0Ali;j = 1.� fB1; : : : ; BKg are sto
hasti
 observation matri
es, one for ea
h possible a
tion;Blj;k=Pr(vt=ok jqt=sj ; 
t�1 = al); 0 � j � N � 1; 1 � k �M; 1 � l � K; vt is theobservation re
orded at time t; 
t�1 is the a
tion taken at time t � 1, whi
h 
ausedthe transition from the previous state to state sj ; for every state sj and a
tional; MXk=1Blj;k = 1.



24 � � is a sto
hasti
 initial probability ve
tor des
ribing the distribution of the initialstate of the model; �i = Pr(q0 = si); N�1Xi=0 �i = 1.The above is a straightforward extension of the basi
 hmm des
ribed in Se
tion 3.1 to ade
ision pro
ess model that in
ludes a
tions2. This de�nition implies that a pomdp model
an be viewed as a 
olle
tion of K hmms, where K is the number of a
tions. As su
h, it
an be learned through a simple extension to any algorithm aimed at a
quiring hmms.We extend the de�nition to a

ommodate multi-dimensional observation ve
tors as follows:O = Qli=1Oi is a �nite set of observation ve
tors of length l; the ith element of an observa-tion ve
tor is 
hosen from the �nite set Oi.As in the 
ase of hmms, we introdu
e the odometri
 relation matrix. However, there is stillonly one matrix R that is 
ommon for the whole pomdp, as opposed to one matrix pera
tion. The reason is that usually a single a
tion type does not allow us to gather enoughinformation about the odometri
 relation among a group of neighboring states, in orderto dedu
e reliable mean and standard deviation. By 
onsidering all odometri
 transitions
ombined over all the exe
uted a
tions we 
an obtain better estimates regarding the odo-metri
 relations between states. Moreover, typi
ally, odometri
 measures between statesare not e�e
ted by the a
tions, and any possible e�e
t that a spe
i�
 a
tion, responsiblefor a transition, has on the odometri
 error is re
e
ted in the varian
e around the meanodometri
 relation.We have introdu
ed the basi
 formal model that we use for representing environments andthe robot intera
tion with them. The rest of the formal framework, namely, a statement ofthe learning problem and the basi
 algorithm for learning the model from data, is des
ribedin the following 
hapter.
2We do not dis
uss here the reward 
omponent of pomdp models sin
e rewards are usually asso
iatedwith tasks and goals that the planner has to a

omplish, and is not always an \obje
tive" part of theworld in whi
h the robot moves.



Chapter 4Learning HMMs with Odometri
InformationThis 
hapter introdu
es the learning problem for hmms, and dis
usses the standard learningalgorithm and the basi
s of our odometri
 extension to it. Convergen
e proofs for theresulting algorithm are also provided. The augmented hmm learned by the algorithm is ofthe most restri
ted type, as given in Chapter 3. As we elaborate the model in the following
hapters, the learning algorithms are also extended, as des
ribed in Chapters 5, 8 and 10.4.1 The Learning ProblemThe learning problem for hidden Markov models 
an be generally stated as follows: Givenan experien
e sequen
e E sampled from a model whi
h is assumed to be a hidden Markovmodel, �nd a hidden Markov model that 
ould have generated this sequen
e and is \useful"or \
lose to the original" a

ording to some 
riterion. Clearly this broad de�nition la
ks aformal notion of what it means for the learned model to be 
lose to the original model, oruseful. We provide more rigorous 
riteria in the following paragraphs.One 
ommon statisti
al approa
h is to look for a model � that maximizes the likelihoodof the data E given the model. Formally stated it maximizes: Pr(Ej�). Another approa
his to �nd a model that maximizes the posterior probability of the model given the dataPr(�jE). This model is known as the Maximum Aposteriori Probability model (MAP).Note that the latter probability is typi
ally more 
ompli
ated to dire
tly 
ompute thanthe former. Moreover, by applying Bayes rule, it is easy to see that under the assumption25



26that a priori all models are equally likely, the model that maximizes the likelihood alsomaximizes the posterior probability, hen
e the two 
riteria are equivalent. However, giventhe 
ompli
ated lands
ape of typi
al likelihood fun
tions in a multi-parameter domain,obtaining a maximum likelihood model is not feasible. All known pra
ti
al methods 
anonly guarantee a lo
al-maximum likelihood model.Another way of evaluating the quality of a learned model is by 
omparing it to the truemodel. We note that sto
hasti
 models (su
h as hmms) indu
e a probability distributionover all observation sequen
es of a given length. The Kullba
k-Leibler [KL51℄ divergen
e ofa learned distribution from a true one is a 
ommonly used measure for estimating how gooda learned model is. Obtaining a model that minimizes this measure is a possible learninggoal. The 
ulprit here is that in pra
ti
e, when we learn a model from data, we do not haveany ground truth to 
ompare the learned model with. However, we 
an evaluate learningalgorithms by measuring how well they perform on data obtained from known models. It isreasonable to expe
t that an algorithm that learns well from data that is generated from amodel we do have, will perform well on data generated from an unknown model, assumingthat the models we use indeed form a suitable representation of the true generating pro
ess.We dis
uss the Kullba
k-Leibler (kl) divergen
e in more detail in Se
tion 7.2 in the 
ontextof evaluating our experimental results.It is shown by Abe and Warmuth [AW92℄, that maximizing the likelihood and minimizingthe kl-divergen
e is a related pro
ess, sin
e a model that maximizes the likelihood of thetraining data also minimizes the kl-divergen
e of the distribution indu
ed by the modelwith respe
t to the training data distribution. Ideally speaking, if the data is a faithfulrepresentative of the true model, �nding a maximum likelihood model for the data and�nding a minimum kl-divergen
e model with respe
t to the true model should amountto the same thing. More pre
isely, as the amount of training data tends to in�nity, thetraining data distribution approa
hes the one indu
ed by the true generating pro
ess, andthe kl-divergen
e of the maximum likelihood model with respe
t to the true generatingpro
ess tends to 0.An evaluation s
heme based on the kl-divergen
e, has a similar underlying idea to thatof using 
ross-validation [Sto74, GHW79℄ for assessing how good a model is. When learninga model from given training data, we would like the model to be general enough to modeldata outside the training set, that is generated by the same pro
ess. When using 
ross-validation, parts of the available data are held out during the training pro
ess, and are onlyused for assessing the learned model, thus verifying that the model is indeed general enough



27to a

ount for data outside the training set. The kl-divergen
e 
ompares the learned modelwith the true one based on newly generated sequen
es of the true model that were not usedduring the training phase. Thus, it enables the assessment of the learned model's generality,without the need to hold-out any of the training data. In the general 
ase, when the truemodel is not available, 
ross validation may prove useful for 
omparing the goodness ofvarious learned models.To summarize, the learning problem as we address it in this work, is that of obtaininga model by attempting to (lo
ally) maximize the likelihood, while evaluating the resultsbased on the kl-divergen
e with respe
t to the true underlying distribution, when su
h adistribution is available.4.2 The Learning AlgorithmThe learning algorithm for a hidden Markov model starts from an initial model �0 and isgiven an experien
e sequen
e, E; it returns a revised model �, with the goal of maximizingthe likelihood Pr(Ej�). The experien
e sequen
e E is of length T ; ea
h element is a pairEt = hrt; Vti, where rt is the observed odometri
 relation between qt�1 and qt and Vt is theobservation ve
tor at time t.Our algorithm is a straightforward extension of the Baum-Wel
h algorithm to deal withthe odometri
 information and the fa
tored observation sets. The Baum-Wel
h algorithmis an expe
tation-maximization (em) algorithm [DLR77℄; it starts with an initial model �0and alternates between� the E-step: 
omputing the state-o

upation and state-transition probabilities,
t(i) = Pr(qt = sijE; �) and �t(i; j) = Pr(qt = si; qt+1 = sj jE; �), respe
tively, at ea
htime t in the sequen
e, given E and the 
urrent model �, and� the M-step: �nding a new model � that maximizes Pr(Ej�; 
; �).An em algorithm is guaranteed to provide monotoni
ally in
reasing 
onvergen
e of Pr(Ej�).The Baum-Wel
h has been proven to be an em algorithm [DLR77℄; it has also been prov-ably extended to real-valued observations [Lip82, Jua85℄. Our algorithm, as des
ribedthroughout the rest of this se
tion, uses the additional matrix, R, and enfor
es the �rst twogeometri
 
onsisten
y 
onstraints on the M-step, but like the standard Baum-Wel
h it isstill guaranteed to 
onverge to a lo
al maximum of the likelihood fun
tion. The proof is



28along the lines of the one presented by Juang et al. [JLS86℄ for the standard Baum-Wel
halgorithm, and is given in Se
tion 4.3.4.2.1 Computing State-O

upation ProbabilitiesFollowing Rabiner [Rab89℄, we �rst 
ompute the forward (�) and ba
kward (�) matri
es.When all measurements are dis
rete, �t(i) is the probability of observing E0 through Et andqt = si, given �; �t(i) is the probability of observing Et+1 through ET�1 given qt = si and�. Formally: �t(i) = Pr(E0; : : : ;Et; qt = sij�) ;�t(i) = Pr(Et+1; : : : ;ET�1jqt = si; �) :When some of the measurements are 
ontinuous (as is the 
ase with R), these matri
es
ontain probability density values rather than probabilities.The forward pro
edure for 
al
ulating the � matrix is initialized with�0(i) = 8<: b0i if �i = 10 otherwise ;and 
ontinued for 0 < t � T � 1 with�t(j) = N�1Xi=0 �t�1(i)Ai;jf(rtjRi;j)bjt : (4.1)f(rtjRi;j) denotes the density at point rt a

ording to the normal distribution representedby the means and varian
es in entry i; j of the relation matrix R, and bjt is the probabilityof observing ve
tor vt in state sj ; that is, bjt = Qli=0Bi;j;vt[i℄ .The ba
kward pro
edure for 
al
ulating the � matrix is initialized with�T�1(j) = 1 ;and 
ontinued for 0 � t < T � 1 with�t(i) = N�1Xj=0 �t+1(j)Ai;jf(rt+1jRi;j)bjt+1 : (4.2)Given � and �, we now 
ompute the state-o

upation and state-transition probabilities, 
and �. The state-o

upation probabilities are 
omputed as follows:
t(i) = Pr(qt = sijE; �) = f1(qt = si;Ej�)f2(Ej�)



29= �t(i)�t(i)N�1Xj=0 �t(j)�t(j) ; (4.3)where f1; f2 are density fun
tions. Similarly, the state-transition probabilities are 
omputedas: �t(i; j) = Pr(qt = si; qt+1 = sj jE; �)= �t(i)Ai;jbjt+1f(rt+1jRi;j)�t+1(j)N�1Xi=0 N�1Xj=0 �t(i)Ai;jbjt+1f(rt+1jRi;j)�t+1(j) : (4.4)We note that the numerator and the denominator in the fra
tions are both density fun
tions,but the quotient is a dis
rete probability fun
tion. These are essentially the same formulaeappearing in Rabiner's tutorial [Rab89℄, but they also take into a

ount the density of therelational observation.4.2.2 Updating Model ParametersAt this phase of the algorithm, the goal is to �nd a new model, �, that maximizes Pr(Ej�; 
).Generally, this is simply done using maximum-likelihood estimation of the probability dis-tributions in A and B by 
omputing expe
ted transition and observation frequen
ies. Itis more diÆ
ult in our model than in regular hmms, be
ause we must also 
ompute a newrelation matrix, R, under the 
onstraint that it remain geometri
ally 
onsistent. Throughthe rest of this 
hapter we use the notation y to denote a reestimated value, and y to denotethe 
urrent value.The A and B matri
es 
an be straightforwardly reestimated; Ai;j is the expe
ted numberof transitions from si to sj divided by the expe
ted number of transitions from si:Ai;j = T�2Xt=0 �t(i; j)T�2Xt=0
t(i) : (4.5)Bi;j;o is the expe
ted number of times o is observed along the ith dimension when in sjdivided by the expe
ted number of times of being in sj :Bi;j;o = T�1Xt=0I(Vt[i℄ = o)
t(j)T�1Xt=0
t(i) ; (4.6)



30where I(
) is an indi
ator fun
tion with value 1 if 
 is true and 0 otherwise.If we were not enfor
ing geometri
al 
onsisten
y, the R matrix would be reestimated by:�mi;j def= �(Ri;j [m℄) = T�2Xt=0rt[m℄�t(i; j)T�2Xt=0 �t(i; j) (4.7)�mi;j def= �2(Ri;j [m℄) = T�2Xt=0 (rt[m℄� �mi;j)2�t(i; j)T�2Xt=0�t(i; j) ; (4.8)where m 2 fx; yg.However, the geometri
al 
onstraints indu
e interdependen
ies among the optimal meanestimates as well as between optimal varian
e estimates and mean estimates. Parameter es-timation under this form of 
onstraints is almost untreated in main-stream statisti
s [Bar84℄and we found no previous existing solutions to the estimation problem we are fa
ing. Asan illustration 
onsider the following 
onstrained estimation problem of 2 normal means.Example 4.1 Suppose we are given two sample sets of points P = fp1; p2; : : : ; png andQ = fq1; q2; : : : ; qkg. We are told that they were independently drawn from two distin
tnormal distributions with means �P ; �Q and varian
es �2P ; �2Q, respe
tively. We are askedto �nd maximum likelihood estimates for the two distribution parameters. Moreover, we arealso told that the means of the two distributions are related, su
h that �Q = ��P . Thissetting is shown in Figure 4.1.If not for the latter 
onstraint, the task is simple [DeG86℄, and we have:�P = Pni=1 pin ; �Q = Pkj=1 qjk ; �2P = Pni=1(pi � �x)2n ; �2Q = Pkj=1(qj � �y)2k : (4.9)However, the 
onstraint �P = ��Q for
es us to �nd a single mean value � and set the otherone to its negated value, ��. Intuitively speaking, when 
hoosing su
h a maximum likelihoodsingle mean, the sample that is more 
on
entrated should have more e�e
t and the samplethat varies more should be more \submissive". This way the overall sample deviation fromthe means would be minimized and the likelihood of the data maximized. Thus, there existsmutual dependen
e between the estimation of the mean and the estimation of the varian
e,as opposed to the estimation given in formulae 4.9, in whi
h the optimal mean estimationdepends solely on the sampled values.
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QFigure 4.1: Examples of two sets of normally distributed points with 
onstrained means,in 1 and 2 dimensions.Sin
e the samples are independently drawn, their joint likelihood fun
tion is:f(P;Qj�P ; �Q; �2P ; �2Q) = nYi=1 e�(pi��P )22�2Pp2��P � kYj=1 e�(qj��Q)22�2Qp2��Q :The log of the joint likelihood fun
tion under the 
onstraint �Q = ��P is therefore:nXi=1 �(pi � �P )22�2P � log(p2��P )!+ kXj=1 �(qj + �P )22�2Q � log(p2��Q)! : (4.10)By taking the derivatives of expression 4.10 with respe
t to �P , �P and �Q and equatingthem to 0, while using the 
onstraint �Q = ��P , we obtain the following set of mutualequations for maximum likelihood estimators:�P = �2Q nXi=1pi � �2P kXj=1qjn�2Q + k�2P ; �Q = ��P ; �2P = nXi=1(pi � �P )2n ; �2Q = kXj=1(qj + �P )2k :By substituting the expressions for �P and �Q into the expression for �P , we obtain a 
ubi
equation whi
h is 
umbersome, hen
e is not given here, but still solvable (in this simple
ase). The solution provides a maximum likelihood estimate for the mean and varian
eunder the above 
onstraint.In the 
ase where the two samples are assumed to have the same varian
e, the varian
efa
tors in the expression for �P above 
an
el out, and the estimate for �P is simply:�P = ��Q = nXi=1pi � kXj=1qjn + k ;



32whi
h agrees with the intuitive solution to the problem. Under this assumption, the maxi-mum likelihood estimate for �2Q; �2P needs to take into a

ount the equality 
onstraint, and
an be expressed as: �2P = �2Q = nXi=1(pi � �P )2 + kXj=1(qj + �P )2n + k :We now pro
eed to the update of the relation matrix under 
onstraints. For 
larity, wedis
uss only the �rst two geometri
al 
onstraints at this stage. Enfor
ing the additivity
onstraint is dis
ussed in Chapter 10.Zero distan
es between states and themselves are trivially enfor
ed, by setting all thediagonal entries in the R matrix to 0, with a small varian
e, along the x and y dimension.Anti-symmetry is enfor
ed by using the data from sj to si as well as from si to sj whenreestimating �(Ri;j). However, we note that the varian
e has to be taken into a

ount, andwe obtain the following set of mutual equations:�mi;j = T�2Xt=0 "rt[m℄�t(i; j)(�mi;j)2 � rt[m℄�t(j; i)(�mj;i)2 #T�2Xt=0 "�t(i; j)(�mi;j)2 + �t(j; i)(�mj;i)2 # ; (4.11)(�mi;j)2 = T�2Xt=0 [�t(i; j)(rt[m℄� �mi;j)2℄T�2Xt=0�t(i; j) : (4.12)For the x and y dimensions we get a 
ompli
ated but still solvable equation of the 3rd degree.However, for the more general 
ases involving information regarding the orientation of therobot (see Chapters 5, 8), as well as when 
omplete additivity is enfor
ed (see Chapter 10)there are no su
h 
losed form reestimation formulae.Hen
e, rather than have very 
ompli
ated reestimation formulae, we use a lag-behindupdate rule; the yet-unupdated estimate of the varian
e is used for 
al
ulating a new es-timate for the mean, and the newly updated mean estimate is then used to update thevarian
e. Thus, the mean is updated using a varian
e parameter that lags behind it in the



33update pro
ess, and the reestimation formula 4.11 needs to use �mi;j rather than �mi;j :�mi;j = T�2Xt=0 "rt[m℄�t(i; j)(�mi;j)2 � rt[m℄�t(j; i)(�mj;i)2 #T�2Xt=0 "�t(i; j)(�mi;j)2 + �t(j; i)(�mj;i)2 # : (4.13)A possible alternative to our lag-behind approa
h is to update the mean as though theassumption �j;i = �i;j indeed holds. Under this assumption, the varian
e terms in equa-tion 4.11 
an
el out, and the mean update is independent of the varian
e on
e again. Thenthe varian
es are updated as stated in equation 4.12, without assuming any 
onstraints overthem. This approa
h was taken in earlier stages of this work [SK97b, SK98℄. We experimen-tally studied various update poli
ies for learning 
onstrained Gaussian parameters1. Theexperimental results under the restri
ted experimental settings suggest that the lag-behindstrategy is superior to the others and very 
lose to the a
tual maximum likelihood estima-tion method. Moreover, a similar approa
h was taken by other resear
hers when using emin highly non-linear optimization problem, termed one step late update [MK97℄. It turnsout, as we also show in Se
tion 4.3.3, that this update approa
h falls under the generalizedem family of algorithms, whi
h have similar properties to the em algorithms.The 
omplexity of the above algorithm per iteration is still O(TN2), like the standardBaum-Wel
h method. Note that the 
onstants are signi�
ant here, sin
e the 
al
ulation offormulae 4.1 and 4.2 requires the evaluation of exponential terms, whi
h is a time 
onsumingoperation. This 
ost 
an be signi�
antly redu
ed through the use of lookup-tables, althoughthis is not 
urrently implemented in our 
ode.4.2.3 Stopping CriterionAs stated in the beginning of this se
tion, and proved in Se
tion 4.3, our algorithm is anem algorithm and as su
h it is guaranteed to 
onverge to a lo
al maximum of the likelihoodfun
tion. Moreover, a lo
al maximum is rea
hed if and only if the model parameters haverea
hed a �xed point and are no longer 
hanged by the reestimation pro
edure.To pra
ti
ally determine that the algorithm has indeed 
onverged, we 
an 
ompare thevalue of the likelihood fun
tion between 
onse
utive iterations. When the 
hange in the1I am grateful to Luis Ortiz for lending his 
ode and expertise, as well as for 
ondu
ting these experimentswith me.



34likelihood value is less than a predetermined small �, we 
an assume that 
onvergen
e hasbeen rea
hed, and stop the algorithm.Alternatively, we 
an 
ompare the amount of 
hange in the model parameters themselvesbetween iterations, and when the 
hange in ea
h parameter is less than a predetermined �,de
ide that a �xed point has been rea
hed, whi
h implies the 
onvergen
e of the algorithm.Note that the odometri
 data and the odometri
 relation matrix are used as an aid to-wards obtaining the transition and observation matri
es, and therefore, a stopping 
riterionneed only take into 
onsideration the transition and observation matri
es or the likelihoodof the observation data, rather than the relation matrix or the likelihood of the odometri
data.The latter of the two stopping 
riteria 
an be viewed as more 
onservative. The reason isthat the likelihood fun
tion expression involves a produ
t of the model's parameters [Rab89℄.Sin
e these parameters are all probabilities (as we are only taking into a

ount the transitionand observation distribution matri
es), they are all numbers between 0 and 1. Therefore,when the 
hange in ea
h of them is less than �, the 
hange in the likelihood value is typi
allymu
h smaller.In our implementation of the algorithm, we use this se
ond 
riterion, and determinethat the algorithm has 
onverged when the 
hange in ea
h of the entries of the transitionmatrix, A, and the observation matrix, B, from one iteration to the next does not ex
eed aprede�ned �. (We set � = 0:001 in our implementation). By 
omparing only the 
hange inthe transition and observation matri
es, we also enable a fair 
omparison of the number ofiterations required for 
onvergen
e with and without the use of odometri
 information, asdes
ribed in Chapters 7 and 9 of this work.4.2.4 Extending the Algorithm for Learning POMDPsTo extend the algorithm given above to learn a 
omplete pomdp, ea
h item in the experien
esequen
e E 
ontains, in addition to the observation and the odometri
 relation, the a
tionthat 
aused the transition asso
iated with the odometri
 relation.For ea
h a
tion there is a separate pair of matri
es A and B. Hen
e, the forward-ba
kward pro
edure as des
ribed in Se
tion 4.2.1, and in parti
ular Equations 4.1 and 4.2,must take into a

ount at ea
h time t the transition probabilities Aij and the observationprobabilities bj that are asso
iated with the spe
i�
 a
tion taken at time t. Furthermore,the update pro
edure for the A and B matri
es, (formulae 4.5 and 4.6), for a parti
ular



35a
tion a, only takes into a

ount the estimated state transitions and observations that area result of a in the data sequen
e. The update of the relation matrix R does not need totake any a
tion information into a

ount sin
e R is a single 
ommon matrix for the wholemodel.The time 
omplexity of learning a pomdp 
ompared with that of learning an hmm isnot signi�
antly di�erent sin
e the forward-ba
kward pro
edure des
ribed in Se
tion 4.2.1,whi
h is the most 
omputationally-intensive part of the algorithm, does not require anyadditional 
omputational steps. The only di�eren
e in this pro
edure is the one mentionedabove. Only the �nal update of the A and B matri
es, needs to be performed separately forea
h a
tion, but this stage is not a 
omputational bottlene
k. Therefore, the overall timerequirements remain almost un
hanged, under the assumption that the number of possiblea
tions is typi
ally mu
h smaller than the number of states in the model. A fa
tor that islikely to make learning a pomdp more time 
onsuming, and needs to be taken into a

ount,is the larger number of model parameters introdu
ed due to the multiple a
tions. In order tofa
ilitate the learning of useful models, longer data sequen
es, and therefore proportionallymore 
omputation time, may be required.4.3 Corre
tness Proof of the Reestimation FormulaeFor the kind of iterative reestimation algorithms that we use, proving the 
orre
tness of thereestimation formulae means proving that through repeated reestimation, the likelihooddoes not de
rease, and that the algorithm 
onverges to a �xed-point model �, whi
h isa lo
al maximum of the likelihood fun
tion P (Ej�), where E is the observed experien
esequen
e. We formalize this in the following theorem:Theorem 4.1 Let �0 be the 
urrent model, E be the experien
e sequen
e, and � be thereestimated model a

ording to the reestimation formulae 4.5, 4.6, and either 4.7 and 4.8,or 4.13 and 4.12. Then Pr(Ej�0) � Pr(Ej�), and �0 = � if and only if �0 is a lo
al maximumof Pr(Ej�) as a fun
tion of �.Proof: There are several proof te
hniques for the 
orre
tness of the reestimation for-mulae for the standard Baum-Wel
h algorithm (under various kinds of observation matrixB) [BPS+70, DLR77, LRS83, Jua85, JLS86℄. Our proof uses the same approa
h as thelatter two. It is straightforward to show that maximization of the likelihood fun
tion withrespe
t to ea
h of the parameters separately is equivalent to its maximization with respe
t



36the 
omplete model. Hen
e, we break up the proof, and prove that ea
h of the reestimationformulae indeed improves the likelihood fun
tion with respe
t to the asso
iated reestimatedparameter. Sin
e the likelihood fun
tion with respe
t to the A and B matri
es is a dis
reteprobability distribution, it is bounded from above, and the 
onvergen
e of the pro
ess isguaranteed. For the relation matrix reestimation pro
edure, 
onvergen
e is also guaran-teed through a more 
ompli
ated 
ondition given by Wu [Wu83℄, and whi
h holds for theexponential family of distributions [MK97℄. Hen
e 
onvergen
e is guaranteed.4.3.1 Transitions and ObservationsTo prove the 
orre
tness of formulae (4.5) and (4.6), we use the 
entral theorem of Baumand Sell [BS68℄, whi
h states2 that for x = fxijg s.t. xij > 0; 0 � j � N � 1, andPN�1j=0 xij = 1, given a homogeneous polynomial P in the variable xij, with nonnegative
oeÆ
ients, the transformation xij = xij �P�xijN�1Xk=0xik �P�xik (4.14)satis�es P (x) � P (x), and x = x if and only if x is a lo
al maximum of P .The density expression Pr(Ej�) = PN�1i=0 �T�1(i) = PN�1i=0 �T�1(i)�T�1(i) , whi
h wewant to maximize, is indeed a homogeneous polynomial in Aij and in Bijo. Both Aij andBijo are dis
rete probability distributions, therefore are positive and satisfy PN�1j=0 Aij = 1and Po2Oi Bijo = 1 . Hen
e, a

ording to the above theorem the reestimation formula forAij , that leads to a lo
al maximization of P (EjAij) is:Aij = Aij �P (Ej�)�AijN�1Xk=0Aik �P (Ej�)�Aik : (4.15)We now need to show that the right-hand side of formula (4.15) is equal to that of (4.5).To do this we need to show that:�P (Ej�)�Aij = T�2Xt=0�t(i)bjt+1f(rt+1jRi;j)�t+1(j) : (4.16)By substituting the right hand side expression into (4.15), and using equations (4.3,4.4) weget the desired equality.2Baum and Sell's theorems are a
tually somewhat stronger and the statement given here is just one
onsequen
e.



37By indu
tion on k; 0 � k � T � 1, it is easy to show that:N�1Xi=0 ��k(i)�Aij �k(i) = k�1Xt=0�t(i)bjt+1f(rt+1jRi;j)�t+1(j) :For k = T � 1 we get (4.16), whi
h 
on
ludes the proof of formula (4.5). The proof for Bijo(formula (4.6)) is almost identi
al.4.3.2 Odometri
 RelationsWe note that the density expression, Pr(Ej�), is not a polynomial in �(Ri;j [m℄) and�2(Ri;j [m℄). Hen
e the theorem by Baum and Sell 
an not be applied here. Still, sin
e weassume that the odometri
 relations along the x and y dimensions are normally distributed,in the un
onstrained 
ase, their reestimation pro
edure is an instan
e of the exponentialfamily reestimation, dis
ussed by Dempster et al [DLR77℄. However, for the sake of 
om-pleteness and for an easier dis
ussion of the 
onstrained 
ase, we provide a 
omplete proof,using the te
hnique of maximizing Baum's auxiliary fun
tion, following Se
tion 4 of thepaper by Baum et al. [BPS+70℄. We denote by ��, where � is some relation matrix , themodel whose A and B matri
es are the same as those of �, but whose relation matrix R isrepla
ed by the matrix �.We start by making the observation that if S is the set of all state sequen
es of length T ,i.e. S = fsg where s = s0; : : : ; sT�1 is a sequen
e of states of length T , the density P (Ej�)
an be expressed as P (Ej�) =X
s2S P (E; s j�) =X

s2S P (Ejs ; �)P (s j�) :We 
an rewrite P (Ejs ; �) and P (s j�) asP (Ejs ; �) = T�1Yt=0 bstt T�1Yt=1 f(rtjRst�1;st) and P (s j�) = �s0 T�1Yt=1 Ast�1;st :Thus, P (Ej�) 
an be expressed asX
s2S �(s ) T�1Yt=1 f(rtjRst�1;st) ;where �(s ) is a produ
t of initial, transition and observation probabilities. Re
alling thatf(rtjRi;j) denotes the density of rt a

ording to the D-variate independent normal distri-bution with the parameters stored in Ri;j, we rewrite it asf(rtjRi;j) = DYm=1 fmij (rmt )p2��mij ; (4.17)



38where rmt def= rt[m℄ and fmij (rmt ) def= e�(rmt ��mij )2=2(�mij )2 . We also use the notation:fmij (rmt ) def= e�(rmt ��mij )2=2(�mij )2 and fij(rt) def= QDm=1 fmij (rmt ).Baum et al. [BPS+70℄ introdu
e an auxiliary fun
tion, Q, and prove that maximizing itis the same as in
reasing the likelihood. More formally, the R that maximizes the auxiliaryfun
tion Q(R;R) def= X
s2S P (E; s j�) log(T�1Yt=1 f(rtjRst�1;st))= X
s2S P (E; s j�) T�1Xt=1 log(f(rtjRst�1;st))also satis�es P (Ej�R) � P (Ej�R).Sin
e the R that maximizes Q(R;R) also maximizes the same expression in whi
hp2�fmij (rmt ) is substituted for fmij (rmt ), we 
an ignore the p2� fa
tor in (4.17) and rewriteQ as Q(R;R) =X

s2S P (E; s j�) T�1Xt=1 DXm=1[log(fmst�1;st(rmt ))� log(�mst�1;st)℄ : (4.18)Sin
e the normal distribution is stri
tly log-
on
ave, a slight adaptation to the proof of The-orem 4:1 in [BPS+70℄ is suÆ
ient for showing that Q above has a unique global maximumas a fun
tion of �mij and �mij , whi
h is the unique point in whi
h the partial derivatives of Qa

ording to �mij and �mij are 0. We now show that the reestimation formulae (4.7) and (4.8)indeed �nd the maximizing �mij and �mij .For a pair of states i; j and an odometry 
omponent m 2 fx; yg we 
an express the re-stri
tion of the auxiliary fun
tion Q to transitions from i to j and to the mth odometri

omponent, m, asQmij (R;R) =X
s2S P (E; s j�) Xt s.t.st�1=ist=j (log(fmst�1;st(rmt ))� log(�mst�1;st)) :Observing that �t�1(i; j) = X

s2S s.t.st�1=ist=j P (E; s j�) allows us to rewrite Qmij (R;R) asQmij (R;R) = T�2Xt=0 �t(i; j)(log(fmi;j(rmt+1))� log(�mij )) : (4.19)Sin
e �Q��mij = �Qmij��mij and �Q��mij = �Qmij��mij , showing that the partial derivatives of Qmij with respe
tto �mij and �mij are 0 whenever equations (4.7) and (4.8) are satis�ed, 
on
ludes our proof.The di�erentiation is straightforward and is provided in Appendix B.1 .



394.3.3 Constrained Odometri
 RelationsThe 
orre
tness of formulae 4.13 and 4.12, under our lag-behind update poli
y, is proved byshowing that these update rules are instan
es of generalized em. Dempster et al. [DLR77℄introdu
ed this notion, and it is explained in detail by M
La
hlan and Krishnan [MK97℄.The idea is that by merely improving the auxiliary fun
tion Q, rather than maximizing it,at ea
h iteration, we are still guaranteed to improve the likelihood fun
tion. Therefore, itis not ne
essary to �nd an update rule that maximizes Q but simply one that improves it.The proof te
hnique presented here uses dire
t enfor
ement of the anti-symmetry 
onstraintin the expression for Q. This is in 
ontrast to the use of Lagrange multipliers in earlierwork [SK97a℄.From equations (4.18) and (4.19) we have:Q(R;R) = N�1Xi=0 N�1Xj=0 DXm=1Qmij (R;R) : (4.20)By isolating all terms in whi
h i = j we 
an rewrite this expression as:Q(R;R) = N�1Xi=0 DXm=1Qmii (R;R) + N�1Xi=0 N�1Xj=(i+1) DXm=1[Qmij (R;R) + Qmji(R;R)℄ : (4.21)In order to in
rease the sum in (4.21), under the 
onstraint �mij = ��mji , with respe
t tothe parameters �mij and �mij , it is suÆ
ient to in
rease the sum of ea
h pair (Qmij (R;R) +Qmji(R;R)) with respe
t to these parameters, sin
e all other pairs do not 
ontain them.Thus, we are left with the following expression:Lmij (�mij ; �mji ; �mij ; �mji )= T�2Xt=0 264�t(i; j)0B�log(e� (rmt ��mij )22(�mij )2 )� log(�mij )1CA + �t(j; i)0B�log(e� (rmt ��mji )22(�mji )2 )� log(�mji)1CA375 :We enfor
e the anti-symmetry 
onstraint by substituting �mji by ��mij in the above expres-sion, and obtain the following expression whi
h we need to in
rease with respe
t to �mij , �mijand �mji :



40Lmij (�mij ; �mij ; �mji)= T�2Xt=0 264�t(i; j)0B�log(e� (rmt ��mij )22(�mij )2 )� log(�mij )1CA+ �t(j; i)0B�log(e� (rmt +�mij )22(�mji )2 )� log(�mji)1CA375= T�2Xt=0 "�t(i; j) �(rmt � �mij )22(�mij )2 � log(�mij )!+ �t(j; i) �(rmt + �mij )22(�mji)2 � log(�mji)!# :Let �mij ; �mij and �mji be the 
urrent values of the parameters. To in
rease Lmij we do thefollowing:1. Temporarily �x �mij ; �mji to be the 
urrent �mij ; �mji . Denote by bLmij (�mij ) the fun
tionobtained from Lmij through this instantiation of the � parameters. Formally stated:bLmij (�mij ) def= Lmij (�mij ; �mij ; �mji ) :2. Find the value b�mij that maximizes bLmij (�mij ).3. Set �mij in Lmij to the value b�mij found in step 2. Denote by bbLmij (�mij ; �mji) the fun
tionobtained from Lmij through this instantiation of �mij . Formally stated:bbLmij (�mij ; �mji) def= Lmij (b�mij ; �mij ; �mji) :4. Find values b�mij ; b�mji that maximize bbLmij .5. Set �mij ; �mji to be b�mij ; b�mji .Sin
e b�mij maximizes bLmij (�mij ) we have:Lmij (b�mij ; �mij ; �mji ) � Lmij (�mij ; �mij ; �mji ) :Sin
e b�mij ; b�mji maximize bbLmij (�mij ; �mji) we have:Lmij (b�mij ; b�mij ; b�mji ) � Lmij (b�mij ; �mij ; �mji ) :By transitivity: Lmij (b�mij ; b�mij ; b�mji ) � Lmij (�mij ; �mij ; �mji ) :Hen
e, setting �mij ; �mij ; �mji a

ording to the above pro
edure does not de
rease Lmij . If itdoes not stri
tly in
rease Lmij , then a

ording to the generalized em algorithm a maximumof the likelihood fun
tion is rea
hed.It is now left to obtain expressions for b�mij ; b�mij , and b�mji .



41To �nd b�mij , we take the derivative of bLmij (�mij ) with respe
t to �mij and equate it to 0.� bLmij��mij = T�2Xt=0 [�t(i; j)(rmt � �mij )(�mij )2 � �t(j; i)(rmt + �mij )(�mji )2 ℄ :By equating to 0 we get: �mi;j = T�2Xt=0 [rmt �t(i; j)(�mi;j)2 � rmt �t(j; i)(�mj;i)2 ℄T�2Xt=0 [�t(i; j)(�mi;j)2 + �t(j; i)(�mj;i)2 ℄ ;whi
h is identi
al the reestimation expression for �mi;j given in 4.13. It is easy to 
he
k thatthe se
ond derivative of bLmij (�mij ) with respe
t to �mij is negative, and therefore this is indeeda maximum rather than a minimum.Similarly, to obtain b�mij , we take the derivative of bbLmij (�mij ; �mji) with respe
t to �mij , andequate it to 0, and a similar pro
ess is done for �nding b�mji . The obtained expressions are:(�mi;j)2 = T�2Xt=0 [�t(i; j)(rt[m℄� �mi;j)2℄T�2Xt=0 �t(i; j) (�mj;i)2 = T�2Xt=0 [�t(j; i)(rt[m℄ + �mi;j)2℄T�2Xt=0 �t(j; i) :whi
h agree with the update formulae 4.12. Again, the se
ond derivative is negative, whi
hensures that this is indeed a maximum point. This 
on
ludes our proof. 2For the spe
ial 
ase where i = j , the value �mij is 0, whi
h shows that the update formulaindeed satis�es the �rst two of the three geometri
al 
onsisten
y 
onstraints.
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Chapter 5Dire
tional Data and Distributions5.1 MotivationThroughout our dis
ussion so far, we have 
onsidered only two 
omponents of the odometri
information gathered by the robot, namely, the x and y 
oordinates. However, an additionalmeasure that is usually re
orded is the 
hange of the robot's heading, �, as it moves fromone state to the next. If a robot is standing in one position and takes the a
tion of turningleft or right, a respe
tive 
hange of heading of approximately �90Æ is re
orded between thestate prior to the turn and the state following the turn. Obviously, there is noise around thismeasure, as is the 
ase for the x and y measures. In previous work [SK97b, SK97a℄, we didtreat the 
hange in heading as though it were simply normally distributed. However, the
hange in heading is di�erent from that in x and y, in the sense that angular measurementsare 
y
li
. That is, a 
hange in heading of 90Æ is the same as a 
hange of 450Æ or of �270Æ.If we knew in advan
e, for every two states, the approximate 
hange in heading (��)that the robot goes through when moving from one of them to the other, we 
ould stillhave modeled it as though it were approximately normal with a mean ��, and some smallvarian
e �2 [AC82℄. We 
ould adopt a 
onvention of having all angles normalized to bewithin a 
y
li
 range, e.g. [�180Æ; 180Æ℄, (similarly we may use radians or other units),and always 
hoose to take as the angular 
hange between two points min(j�j; 360Æ � j�j),and assign it the 
orre
t sign. However, we do not know in advan
e the angular 
hangebetween every two states. We have a sequen
e of angular measurements and we estimatethe probabilities of the states in whi
h they were re
orded, and take a weighted mean of themeasurements in order to estimate the angular 
hange between every two states. Thus, weare fa
ing the following problem: What is the interpretation of a \mean angle"?43
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baFigure 5.1: Robot 
hanges heading from state a to state b.As an example, 
onsider the transition from state a to state b, as depi
ted in Figure 5.1.Suppose that we adopt the 
onvention that angles are expressed as numbers between �180Æand 180Æ. Also, suppose we have two (noisy) measurements of the angular distan
e fromstate a to state b: �169Æ and 185Æ. The simple average between these two measurementsgives us an estimate of the mean heading 
hange of 8Æ. Obviously this is not the value thatre
e
ts even remotely the 
hange of heading between the two states. A similar problemarises if we use a 
onvention for expressing angles between 0Æ and 360Æ. The problem lies inthe fa
t that angles that are about 180Æ away from the mean angle greatly deviate from thismean, while angles that are about 360Æ away from the mean are a
tually very 
lose to it.To 
apture this idea, the 
on
ept of 
ir
ular distribution is required. Angular data plays asigni�
ant role in various aspe
ts of both theory and me
hani
s of roboti
s, as well as otherareas of 
omputer s
ien
e (e.g 
omputer graphi
s). Sin
e distributions over su
h data arenot widely known to resear
hers in this area, (although the problemati
 aspe
t of su
h datahas long been realized by statisti
ians), we provide here a brief introdu
tion to the basi

on
epts and te
hniques used for handling 
ir
ular data. In parti
ular we 
on
entrate onthe von Mises distribution, whi
h is a 
ir
ular version of the normal distribution. Furtherdis
ussion 
an be found in several statisti
al publi
ations [GGD53, Mar72, KJ82a, KJ82b℄.Se
tion 5.4 returns to show how the theory is applied in our model and learning algorithm.5.2 Statisti
s of Dire
tional DataDire
tional data in the 2-dimensional spa
e 
an be represented as a 
olle
tion of 2-dimensionalve
tors, fhx1; y1i; : : :hxn; ynig, on the unit 
ir
le, as shown in Figure 5.2. The 2-dimensionalpoints 
an also be represented as the 
orresponding angles between the radii from the 
enterof the unit 
ir
le and the x axis, (�1; : : : ; �n), respe
tively. The relationship between thetwo representations is:xi = 
os(�i); yi = sin(�i); (1 � i � n) :The ve
tor mean of the n points, hx; yi, is 
al
ulated as:
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-1 1Figure 5.2: Dire
tional data represented as angles and as ve
tors on the unit 
ir
le.x = Pni=1 xin = Pni=1 
os(�i)n ; y = Pni=1 yin = Pni=1 sin(�i)n : (5.1)Using polar 
oordinates, we 
an express the mean ve
tor in terms of angle, �, and length,a, where (ex
ept for the 
ase x = y = 0):� = ar
tan(yx); a = (x2 + y2) 12 : (5.2)The angle � is the mean angle, while the length a is a measure (between 0 and 1) of how
on
entrated the sample angles are around �. The 
loser a is to 1, the more 
on
entratedthe sample is around the mean, whi
h 
orresponds to a smaller sample varian
e.Distributions that generate dire
tional data are 
alled dire
tional or 
ir
ular distribu-tions. A fun
tion f is a density fun
tion of a 
ontinuous 
ir
ular distribution if and onlyif: f(x) � 0; Z 2�0 f(x)dx = 1 :A simple example of a 
ir
ular distribution is the uniform 
ir
ular distribution, whosedensity fun
tion is f(�) = 12� (where � is measured in radians). One way of derivinga 
ir
ular version of an unlimited linear distribution is through \wrapping" it around the
ir
umferen
e of the unit 
ir
le. If x is a random variable on the line with probability densityfun
tion f(x), the wrapped random variable xw = [x mod 2�℄ is distributed a

ording toa wrapped distribution with the probability density fun
tion: fw(�) = P1�1 f(� + 2�k).



46Applying this derivation to the normal distribution results in a 
ir
ular version of the normaldistribution, but estimating its parameters from sample data 
an be problemati
 [GGD53,Mar72℄.An easier-to-estimate 
ir
ular version of the normal distribution was derived by vonMises [GGD53, Mar72℄, in a way analogous to the way Gauss derived the linear normaldistribution | whose maximum-likelihood parameter estimates are the sample mean andvarian
e. This 
ir
ular distribution is the one we are using to model the robot heading inthis work, and is des
ribed below.5.3 The von Mises DistributionA 
ir
ular random variable, �, 0 � � � 2�, is said to have the von Mises distribution withparameters � and �, where 0 � � � 2� and � > 0, if its probability density fun
tion is:f�;�(�) = 12�I0(�)e� 
os(���) ;where I0(�) is the modi�ed Bessel fun
tion of the �rst kind and order 0:I0(�) = 1Xr=0 1r!2 (12�)2r :Similar to the linear normal distribution, this is a unimodal distribution, symmetri
alaround �. The mode is at � = � while the antimode is at � = � + �. We observe that theratio of the density at the mode to the density at the antimode is e2�, whi
h indi
ates thatthe larger � is, the more 
on
entrated the density is about the mode. Figure 5.3 shows an\unwrapped" plot of the von Mises distribution for various values of � where � = 0.We now des
ribe how to estimate the parameters � and � given a set of heading samples,angles �1; : : :�n, from a von Mises distribution. We are looking for maximum likelihoodestimates for � and �. The likelihood fun
tion for the data generated by a von Misesdistribution with parameters � and � 
an be expressed as:L�;� = nYi=1 f�;�(�i) = e(�Pni=1 
os(���i))(2�)nI0(�)n :Hen
e the log likelihood islog(L�;�) = � nXi=1 
os(�� �i)� log((2�)nI0(�)n) :
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�Figure 5.3: The von Mises distribution with mode 0 and various � values.To �nd the maximum likelihood estimate for � we take � log(L�;�)�� , equate it to 0, and obtainthe estimate � for �: � = ar
tan(yx) ; (5.3)where y, x are as de�ned in equation 5.1.The maximum likelihood estimate for � is obtained by taking � log(L�;�)�� and equating itto 0. We note that dI0(�)d� = I1(�), where I1(�) is the modi�ed Bessel fun
tion of the �rstkind and order 1: I1(�) = 1Xr=0 1r!(r+ 1)!(12�)2r+1 :Hen
e the maximum likelihood estimate for � is the � that solves the equation:I1(�)I0(�) = 1n nXi=1 
os(�i � �) : (5.4)If we do not know � and are only interested in estimating � with respe
t to the estimated�, � (as de�ned in 5.3), we 
an use the identity:1n nXi=1 
os(�i � �) = 1nvuut( nXi=1 
os(�i))2 + ( nXi=1 sin(�i))2 ; (5.5)and the de�nition of a, as given in Equation 5.2, to dedu
e that the maximum likelihoodestimate for � is the � that satis�es: I1(�)I0(�) = a :



48However, if we do have a given � and we want to �nd a maximum likelihood estimate forthe 
on
entration � of the sample data around that spe
i�ed �, the identity 5.5 
annot beused (see also Upton [Upt73℄). We need to use as a maximum likelihood estimate for �, the� that satis�es:I1(�)I0(�) = max[ 1n nXi=1 
os(�i��); 0℄ = max24 1nvuut( nXi=1 
os(�i))2 + ( nXi=1 sin(�i))2 � ( nXi=1 sin(� � �i)); 035 :The above estimation formulae agree with the intuition that the sample is more 
on
entrated(� is larger) about the sample mean, �, than about the true distribution mean, �.5.4 Handling Angular Odometri
 ReadingsIt is now left to explain how we use the von Mises distribution to model the heading readingsobtained by the robot as part of its odometri
 information. Through the rest of this se
tionwe explain how the parameters of the von Mises distribution are in
orporated into thehidden Markov model and how the learning algorithm des
ribed in Chapter 4 is adapted tolearn these parameters.To model the heading di�eren
e between ea
h pair of states, the relation matrix R,des
ribed in Se
tion 3.2, be
omes 3-dimensional rather than 2-dimensional, 
onsisting of the
omponents hx; y; �i rather than just hx; yi. The 
omponent Ri;j[�℄ represents the heading
hange when moving from state si to sj , and is assumed to 
onsist of the two parameters ofthe von Mises distribution governing this 
hange. The notation ��i;j def= �(Ri;j [�℄) representsthe mean of the distribution for this heading 
hange, while ��i;j def= �(Ri;j[�℄) represents the
on
entration parameter around the mean. The three 
onstraints stated in Se
tion 3.2 forthe 
omponents of R, hold for the � 
omponent as well.Similarly, every observed relation item, rt, in the experien
e sequen
e E, has a heading-
hange 
omponent, �, whi
h re
ords the 
hange in heading of the robot between the stateat time t, qt, and the state qt+1.The reestimation formula for the von Mises mean and 
on
entration parameters of theheading 
hange between states si and sj is the solution to the equations:��i;j = ar
tan0BBBBB� T�2Xt=0 [sin(rt[�℄)(�t(i; j)�i;j � �t(j; i)�j;i)℄T�2Xt=0 [
os(rt[�℄)(�t(i; j)�i;j + �t(j; i)�j;i)℄1CCCCCA



49I1[��i;j ℄I0[��i;j ℄ = max"PT�2t=0 [�t(i; j) 
os(rt[�℄� ��i;j)℄PT�2t=0 �t(i; j) ; 0# : (5.6)Note here that the larger �ij is, the more 
on
entrated the sample is around the mean, andthe more weight we give to the estimated 
ounts �t(i; j) of observing this mean. Also notethat the denominator 
ontains a sum rather than a di�eren
e, sin
e 
os is an even fun
tionand 
os(�rt[�℄) = 
os(rt[�℄).Rather than try to solve these hard mutual equations, we take advantage of generalizedem as we did in Se
tion 4.3.2, and use the \lag-behind" update. We update the mean usingthe 
urrent estimates of the 
on
entration parameters, �i;j ; �j;i, as follows:��i;j = ar
tan0BBBBB� T�2Xt=0 [sin(rt[�℄)(�t(i; j)�i;j � �t(j; i)�j;i)℄T�2Xt=0 [
os(rt[�℄)(�t(i; j)�i;j + �t(j; i)�j;i)℄1CCCCCA ;and then 
al
ulate the new 
on
entration parameters based on the newly updated mean,as the solution to equation 5.6. Finding ��i;j that satis�es this equation is done through theuse of a lookup table, listing values of the quotient I1[x℄I0[x℄ .The above reestimation formulae agree with the maximum likelihood estimator formulaegiven in equations (5.3, 5.4). The 
onvergen
e of the estimation pro
ess is guaranteed dueto the von Mises being a member of the exponential family [Mar72℄, and the monotoneimprovement of the likelihood through their use 
an be proved along the lines of the proofprovided in Se
tion 4.3.3.
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Chapter 6Choosing an Initial ModelIt is typi
al in instan
es of the Baum-Wel
h algorithm to simply initialize the model atrandom, perhaps trying multiple initial models to �nd di�erent lo
al likelihood maxima.Con
retely, to 
hoose an N -state model uniformly at random, we �rst 
hoose N dis
reteprobability distributions over N events, from the set of all possible N -dimensional proba-bility distributions, uniformly at random1, in order to 
onstru
t the transition-distributionmatrix A; similarly, we 
hoose N distributions over observations for the observation matrixB; �nally we populate the relation matrix with random means, while enfor
ing 
onsisten
y
onstraints.It is important to note that when 
ontinuous distributions are estimated, arbitrary ini-tialization of means and varian
es 
an 
ause numeri
al instability throughout the algorithm.For instan
e, if an odometri
 relation between state i and state j is initially assigned a dis-tribution with an arbitrary mean that is far from any of the a
tual odometri
 readings, withonly a small varian
e around it, the density mass assigned to any odometri
 data a

ord-ing to this distribution is very small, and 
an ex
eed the ma
hine's pre
ision, 
ausing anunder
ow to o

ur. It is espe
ially severe in a multi-dimensional odometri
 readings set-ting, like the one we are dealing with, sin
e when numbers are multiplied by one another,even plausible density values rapidly de
rease. Moreover, very small probability values ex-
lude plausible state transitions between states i and j from being 
onsidered sin
e theyare assigned a density mass whi
h is arbitrarily 
lose to 0.We may try to 
hoose an initial large varian
e for the odometri
 distribution, thus1See Cassandra's Ph.D. thesis [Cas98℄ for details on 
hoosing distributions at random.51



52avoiding the under
ow problem. Su
h an approa
h results in highly ina

urate mean rees-timation; if the odometry from state i to state j is initially estimated at a value with highvarian
e, many transitions that do not go from i to j still get a reasonably high densityunder the distribution from i to j. When the mean is reestimated, all these transitionswould parti
ipate in the 
al
ulation. Thus the model redu
es to having arbitrary meansthat roughly a

ommodate all the data points due to the large varian
e around them.This problem has long been realized by Rabiner et al. [RJL+85℄, and they make twosuggestions for a solution:� When events have very low density mass, add some small 
onstant to it.� Start from a good initial model.The �rst suggestion is 
lose in pra
ti
e to the Bayesian approa
h, with a uniform prior overall events. This approa
h is adopted in our implementation, as we add a small 
onstantto the estimated transition and o

upation probabilities � and 
, to avoid 0 probabilities.However, as Rabiner et al. point out, it is not suÆ
ient, sin
e without good estimates formost of the parameters, all the data has low probability whi
h is 
ompensated for by theadded 
onstants, resulting in a very 
at model. The overall e�e
t is similar to that of havinga large varian
e around arbitrary means.The se
ond suggestion is not easily met, sin
e we rarely have enough prior knowledgeto provide a good initial model, and as stated earlier, our goal is to automate as mu
h aspossible the learning pro
ess, avoiding the hard work of manually obtaining a good initialmodel.We have 
ome up with three initialization strategies. One is to use random initial distri-butions for the transition and observation matrix, and random relation means from withinthe range of odometri
 readings, assigning large initial varian
e. All three geometri
al 
on-straints are enfor
ed on the relation means through dependen
y propagation. For instan
e,on
e we pi
k the mean �xij at random, the mean �xji is set to ��xij rather than 
hosenat random itself. This method still often leads to numeri
al instability of the algorithm,and results in very 
at models, both in the sense of being 
lose to uniform transition andobservation distributions and in terms of ina

urate odometri
 mean estimates with highvarian
e around them.The two other initialization strategies are biased by the odometri
 data. One of themwas brie
y des
ribed in earlier publi
ations [SK97b, SK97a℄, and is based on 
lustering



53states a

ording to their odometri
 lo
ations in a global 
oordinate system. This methodis not robust in the fa
e of 
umulative rotational errors, whi
h are dis
ussed in Chapter 8.We also developed another initialization algorithm, based on 
lustering odometri
 rela-tions rather than positions, and on tagging ea
h odometri
 relation by its estimated originand destination states. The algorithm is only 
on
erned with odometri
 relations betweenstates, and therefore is not sensitive to 
umulative rotational errors. It also has the poten-tial advantage that it may assist in determining the number of states in the model when allwe have is a rough overestimate for this number.In the following we present both algorithms. They both take as input the sequen
es Eof observations re
orded at states and odometri
 relations re
orded between states, as wellas the number of states N .6.1 K-Means-Based InitializationGiven a sequen
e of observations and odometri
 readings E, we begin by assigning globalmetri
 
oordinates to ea
h element in the sequen
e. This is done by a

umulating theobserved odometri
 relations between 
onse
utive pairs of odometri
 readings, as demon-strated in the following example.Example 6.1 Suppose we have the following 8 
onse
utive odometri
 readings:h2 94 92i; h1994 0 88i; h3 �93 86i; h�1999 �1 94i; h�4 102 91i;h1998 �5 90i; h�2 �106 91i; h�2003 7 87i :These 
an be viewed as the 
hange in heading from one state to the next measured within aglobal 
oordinate system.By a

umulating these measures, assuming that the initial position is h0 0 0i we get thefollowing sequen
e of global position assignments:h0 0 0i; h2 94 92i; h1996 94 180i; h1999 1 �94i; h0 0 0i; (6.1)h�4 102 91i; h1994 97 �179i; h1992 �9 �88i; h�11 �2 �1i :The angles here are taken to be in the interval [�180Æ; 180Æ℄. The set of global 
oordinates,as demonstrated above, ignoring any other observation information, is fed into a k-means
lustering algorithm (see, for instan
e, the dis
ussion on simple isodata in Duda and Hart'sbook [DH73℄) , yielding a partition of the data into N 
lusters.



54 The k-means algorithm is an iterative pro
edure that starts by arbitrarily 
hoosing k
luster seeds, where a seed is just a point of the same dimension as the data. The numberof 
lusters that we are looking for, k, 
orresponds in our 
ase to the number of states in themodel, N . Ea
h data point is assigned to the 
luster whose seed is 
losest to it. Then themean of ea
h 
luster is 
al
ulated from its points, and these means are used as the 
lusterseeds for the next iteration. The algorithm halts when a �xed-point is rea
hed, and thereis no more transition of elements between the 
lusters.To use this algorithm, we need to de�ne a pro
edure for 
al
ulating the means as wellas a distan
e metri
 between elements, in order to �nd the elements 
losest to ea
h mean.Sin
e our odometri
 lo
ations are of the form hx; y; �i where � is an angle, we use themean angle as de�ned in Se
tion 5.2, and de�ne the mean of a set of odometri
 lo
ationsfhxi; yi; �iig as: h�x; �y; ��i = �Pi xin ; Pi yin ; ar
tan�Pi sin(�i)Pi 
os(�i)�� :A simple way to over
ome the 
y
li
ity of the heading 
omponent when 
al
ulating thedistan
e between an odometri
 lo
ation hx; y; �i and a 
luster mean h�x; �y ; ��i is to take theEu
lidean distan
e between the ve
tors hx; y; sin(�); 
os(�)i and h�x; �y; sin(��); 
os(��)i.However, sin
e x; y; �x; �y are expressed in 
entimeters, and sine and 
osine are alwaysnumbers between �1 and 1, the latter's e�e
t on the distan
e is negligible, even when thea
tual heading di�eren
e between the mean and the point is very large. To over
ome thisphenomenon, we 
hoose a 
onstant, C, to s
ale the sine and 
osine 
omponents of theEu
lidean distan
e to the same order of magnitude as the x and y 
omponents. In our 
ase,where x and y are measured in 
entimeters, the s
aling 
onstant C = 200 proved to be agood 
hoi
e throughout all our experiments. It is however possible to 
al
ulate C from theorder of magnitude of the typi
al 
hanges in x and y rather than provide it as a 
onstantto the program.Example 6.1 (Cont.)If the k-means algorithm works well, and the number of states isknown to be 4, we would expe
t to obtain the following 
lustering assignment to the se-quen
e 6.1 (perhaps with a di�erent 
hoi
e of distin
t 
luster numbers):h0; 1; 2; 3; 0; 1; 2; 3; 0i :On
e 
lustering is done, ea
h distin
t 
luster 
orresponds to a state. The experien
e se-quen
e 
an be mapped dire
tly onto a state sequen
e, su
h as the one shown in the exampleabove. The state sequen
e, in turn, is used as though it were the a
tual state transition



55sequen
e through whi
h the experien
e sequen
e, E, was generated. We then 
ompute o

u-pation and transition probabilities, (
 and � values, respe
tively), with the 
 values being 0or 1, due to the deterministi
 nature of the 
lusters (it might be bene�
ial to use sto
hasti

lusters, using an algorithm su
h as Auto
lass [CKS+90℄ as an alternative to k-means).The A, B, and R matri
es are all estimated from 
 and � as des
ribed in Se
tion 4.2.2.Finally, an ad ho
 pro
ess is used to adjust R to satisfy the additivity 
onstraint. Themain drawba
k of this algorithm is that in the presen
e of 
umulative rotational error (tobe dis
ussed in Chapter 8), the odometri
 lo
ation assignment within a global 
oordinatesystem 
an be highly ina

urate, resulting in 
lustering together unrelated state positionsand in separation of positions that are physi
ally 
lose together.6.2 Tag-Based InitializationWe have developed an alternative initialization algorithm whi
h assigns states to the re
ordedobservations, based dire
tly on the re
orded relations between states { rather than on stateslo
ation within a global 
oordinate system. This algorithm is mu
h more robust to 
hangesin the 
oordinate system and 
an a

ommodate rotational errors. For the sake of 
larity,the des
ription given here still assumes that the relation between states is re
orded withrespe
t to a global 
oordinate system. In Chapter 8 we show how this assumption is relaxed.Given a sequen
e of observations and odometri
 readings E, we begin by 
lustering theodometri
 readings into bu
kets. The number of bu
kets is bounded from above by thepossible number of distin
t state transitions that are a

ounted for in the sequen
e, whi
his min(N2; T � 1), where T is the length of the observation sequen
e (hen
e 
ontainingT �1 odometri
 re
ords of state transitions). The idea in the bu
keting pro
ess is that ea
hbu
ket will 
ontain all the odometri
 readings that are 
lose to ea
h other along all threedimension.To a
hieve this, we start by �xing a small standard deviation value (again, a predeter-mined 
onstant), along the x, y, and � dimensions. Denote these standard deviation values�x; �y; �� respe
tively, where typi
ally �x = �y . The pro
ess is initialized by assigning the�rst odometri
 reading to bu
ket 0 and setting the mean of this bu
ket to be the value ofthis reading. The rest of the pro
ess 
onsists of examining the next odometri
 reading. If itis within 1:5 standard deviations along ea
h of the three dimensions from the mean of someexisting non-empty bu
ket, add it to the bu
ket and update the bu
ket mean a

ordingly.If not, assign it to an empty bu
ket and set the mean of this bu
ket to be this reading. Note
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<-1, 98, 91.5>

µ1:

1

µ2:

<1996, -2.5, 89>

2

µ3:

<0.5, -99.5, 88.5>

3

µ4:

<-2001, 3, 90.5>

4

< -4, 102, 91 >
< 2, 94, 92 > <1994, 0, 88 >

< 1998, -5, 90 > < -2, -106, 91 >
< 3, -93, 86 > < -1999, -1, 94 > 

< -2003, 7, 87 >Figure 6.1: The bu
ket assignment of the example sequen
e.that the number of bu
kets is suÆ
ient to a

ount for all state transitions or elements of thesequen
e (the largest of the two). Therefore, under the assumption that the relations areindeed normally distributed, with a reasonable 
hoi
e of standard deviations for populatingthe bu
kets, there is always a bu
ket found for pla
ing ea
h of the readings.This algorithm guarantees that all the odometri
 readings in ea
h bu
ket are within arange of 1:5h�x; �y; ��i from the bu
ket mean. Sin
e the a
tual sample standard deviationof ea
h bu
ket is guaranteed to be no larger than the predetermined standard deviationused during the bu
keting pro
ess, intuitively ea
h bu
ket is tightly 
on
entrated aroundits mean. Obviously, this does not guarantee that all readings that are within this predeter-mined range from ea
h other are indeed pla
ed in the same bu
ket (although this is whatwe ideally hope to a
hieve when applying the algorithm.) We note that other 
lusteringalgorithms 
ould be used at the bu
keting stage. (See, for instan
e, Duda and Hart's bookfor a variety of su
h algorithms.)Sin
e here ea
h bu
ket holds only readings 
lose to its mean, it is reasonable to use astandard deviation even for the heading information and treat it in this 
ontext as thoughit were normal, as long as we keep the representation 
onsistent.Example 6.2 Suppose we want to learn a 4-state model from a sequen
e whose odometri

omponent is as given in the previous example:h2 94 92i; h1994 0 88i; h3 �93 86i; h�19991 94i; h�4 102 91i; h1998 �5 90i; h�2 �106 91i; h�2003 7 87i :As a �rst stage we pla
e these readings into bu
kets. Suppose the standard deviation
onstant is 20. Then the pla
ement into bu
kets is as shown in Figure 6.1. The mean valueasso
iated with ea
h bu
ket is shown as well.On
e bu
keting is done, ea
h odometri
 reading has a bu
ket to whi
h it has been assigned,



57and the next phase of the algorithm starts. It 
onsists of state-tagging ea
h odometri
reading. Ea
h odometri
 reading, rt, is assigned a pair of states, si; sj , 
orresponding tothe origin state (from whi
h the transition took pla
e) and the destination state (to whi
hthe transition led), respe
tively. In 
onjun
tion with this pro
ess the mean entries, �ij , ofthe relation matrix R are populated.Example 6.3 Returning to the sequen
e used in example 6.2, the pro
ess is demonstratedin Figure 6.2. We assume that the re
ording starts at state 0, and that the odometri
 
hange
-179.5>
  95.5,
<1995,

  98,
  91.5>
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S: 0,1,2,3S: 0, 1, 2Figure 6.2: Populating the odometri
 relation matrix and 
reating a state tagging se-quen
e.through self transitions is 0, with some small standard deviation (we use 20 here as well).



58This is shown on part A of the �gure.Sin
e the �rst element in the sequen
e, h2 94 92i is more than two standard deviationsaway from the mean �[0℄[0℄ and no other entry in the relation row of state 0 is populated wepi
k 1 as the next state and populate the mean �[0℄[1℄ to be the same as the mean of bu
ket 1,to whi
h h2 94 92i belongs. To maintain geometri
al 
onsisten
y the mean �[1℄[0℄ is set to be��[0℄[1℄, as shown in part B of the �gure. We now have 2 non-diagonal entries populated inthe matrix and the state sequen
e is h0; 1i. The entry [0℄[1℄ in the matrix be
omes asso
iatedwith bu
ket 1, and this information is kept for helping with tagging future odometri
 readingswhi
h were assigned the same bu
ket.The next odometri
 reading, h1994 0 88i, is also several standard deviations from anypopulated mean in row 1 (where 1 is the 
urrent believed state) of the relation matrix. Hen
e,we pi
k a new state 2, and set the mean �[1℄[2℄ to be �2 | the mean of the bu
ket 2 |to whi
h the odometri
 reading belongs. For symmetry preservation, �[2℄[1℄ is set to be��[1℄[2℄. We re
ord that entry [1℄[2℄ in the matrix be
omes asso
iated with bu
ket 2. Forpreserving additivity we also set �[0℄[2℄ to be the sum of �[0℄[1℄ and �[1℄[2℄. �[2℄[0℄ is setto ��[0℄[2℄. Similarly, �[2℄[3℄ is updated to be the mean of bu
ket 3, 
ausing the setting of�[3℄[2℄, �[1℄[3℄, �[0℄[3℄, �[3℄[1℄, and �[3℄[0℄. Bu
ket 3 is asso
iated with �[2℄[3℄.At this stage the odometri
 table is fully populated, as shown in part D of Figure 6.2.Sin
e the mean 
al
ulation is based on a

umulation, the standard deviations grow as well,as the square root of the a

umulated varian
es, although this is not shown in the �gure.The state sequen
e at this point is: h0; 1; 2; 3i. The next reading, h�1999 �1 94i, iswithin one standard deviation from �[3℄[0℄ and therefore the next state is 0. Entry [3℄[0℄is asso
iated with bu
ket 4, (the bu
ket to whi
h the reading was assigned), and the statesequen
e be
omes: h0; 1; 2; 3; 0i.The next reading, being from bu
ket 1 is asso
iated with the relation from state 0 thatis tagged by bu
ket 1, namely, state 1. By repeating this for the last two readings the �nalstate transition sequen
e be
omes h0; 1; 2; 3; 0; 1; 2; 3; 0i.Figure 6.3 provides a pseudo-
ode version of this algorithm. The input to the algorithm isthe odometri
 reading sequen
e, Eo, of length T�1, together with the bu
keting information.For 0 � i � T � 1 , Bu
kets[i℄ 
ontains the number of the bu
ket to whi
h the ith odometri
reading in the sequen
e is assigned. The algorithm produ
es a sequen
e S of the statesbelieved to have been traversed when the data sequen
e E was produ
ed, as well as aninitial estimate for the mean of ea
h entry in the relation matrix R.
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Populate-and-Tag(E0; T; Bu
kets)1 for i 0 to n2 do3 �[i℄[i℄ 04 Dev[i℄[i℄ �5 for j  0 to n; j 6= i6 do7 �[i℄[j℄ EMPTY89 S[0℄ 010 Current tag  011 for i 0 to T � 112 do Find j s.t. �[ Current tag ℄[j℄:Bu
ket = Bu
kets[i℄13 if not found14 then Find j s.t. �[ Current tag ℄[j℄ is within 1.5 standard deviations from Eo[i℄:15 if not found16 then Find j s.t. �[ Current tag ℄[j℄ is still unde�ned17 if found18 then �[ Current tag ℄[j℄ Bu
kets[i℄:mean:19 �[ Current tag ℄[j℄:Bu
ket Bu
kets[i℄20 Propagate update to maintain symmetry and additivity.2122 else Find j s.t. j 6= Current tag23 and �[ Current tag ℄[j℄ is 
losest to Eo[i℄:242526 Current tag = j:27 S[i + 1℄ = j:2829 return S Figure 6.3: The state tagging algorithm.



60 It is possible that by the end of the tagging algorithm, some rows or 
olumns of therelation matrix are still unpopulated. This happens when there is too little data to learnfrom or when the number of states provided to the algorithm is too large with respe
t to thea
tual model. In su
h 
ases we 
an either \trim" the model, using the number of populatedrows as the number of states, or pi
k random odometri
 readings to populate the rest ofthe table, improving these estimates later. Note that the �rst approa
h suggests a methodfor learning the number of states in the model when this is not given, starting from a grossover-estimate of the number, and trun
ating it to the number of populated rows in theodometri
 table after initialization is performed.On
e the state-transition sequen
e is obtained, the rest of the algorithm is the sameas before, deriving state-transition 
ounts from the state-transition sequen
e, assigning theobservations to the states under the assumption that the state sequen
e is 
orre
t, andobtaining the state-transition and observation statisti
s.The 
omplexity of this algorithm is worst-
ase bounded by the 
omplexity of a singleBaum-Wel
h iteration, namely TN2. To roughly estimate its run time, we observe thatthe algorithm has to �nd for ea
h of the T � 1 odometri
 readings in the sequen
e Eo, anassignment of a destination state from within N possible assignment and update the rest ofthe odometri
 relationships that are a�e
ted by this assignment. If with ea
h assignmentwe would have had to update N2 entries, we would have had a 
omplexity of TN2. Notethat the relation matrix 
an only be fully populated on
e, hen
e altogether the 
omplexityfor the tagging stage is TN +N2.The preliminary bu
keting stage requires an assignment of a bu
ket to ea
h of theT � 1 odometri
 readings. We take as the maximal number of bu
kets min(N2; T � 1),that is, at most every reading has its own bu
ket. In this 
ase, however, no two readingsre
e
t the same state-transition. The maximal number of possible distin
t state transitionsover N states is N2. Therefore, in any 
ase, the 
omplexity of bu
keting is bounded bymin(TN2; T 2).Thus, the initialization phase does not in
ur mu
h overhead on the algorithm, and isequivalent to performing a single additional iteration of the Baum-Wel
h pro
edure. Judgingby the improvement in the results due to the initialization, it is well justi�ed.



Chapter 7Experiments within a GlobalFrameworkThe goal of the work des
ribed so far is to use odometry to improve the learning of topolog-i
al models, while using fewer iterations and less data. We tested our algorithm in a simplerobot-navigation world. Our experiments 
onsist of running the algorithm both on dataobtained from a simulated model and on data gathered by our mobile robot, Ramona. Theamount of data gathered by Ramona is used here as a proof of 
on
ept but is not suÆ
ientfor statisti
al analysis. For the latter, we use data obtained from the simulated model.Signi�
ant assumptions underlying all the experiments des
ribed in this 
hapter are thatthe 
orridors in the environment are all perpendi
ular to ea
h other, and that the agent |both in the real robot 
ase and in the simulated 
ase | is aware of this1. Hen
e, after ea
hturn the agent assumes that its new heading is almost perpendi
ular to its previous heading.This assumption is used when the agent is gathering its data sequen
e, E. The assumptionis satis�ed in most oÆ
e buildings, but is violated in a lot of other environments. We relaxthe perpendi
ularity assumption starting in Chapter 8.7.1 Robot DomainThe robot used in our experiments, Ramona, is a modi�ed RWI B21 robot. It has a
ylindri
al syn
hro-drive base, 24 ultrasoni
 sensors and 24 infrared sensors, situated evenlyaround its 
ir
umferen
e. The infrared sensors are used mostly for short-range obsta
le1Thanks to Sebastian Thrun for expli
itly expressing this assumption61



62avoidan
e. The ultrasoni
 sensors are longer ranged, and are used for obtaining (noisy)observations of the environment. In the experiments des
ribed here, the robot follows apres
ribed path through the 
orridors in the oÆ
e environment of our department.Low-level software2 provides a level of abstra
tion that allows the robot to move throughhallways from interse
tion to interse
tion and to turn ninety degrees to the left or right.The software uses sonar data to distinguish doors, openings, and interse
tions along thepath, and to stop the robot's 
urrent a
tion whenever su
h a landmark is dete
ted. Ea
hstop | either due to the natural termination of an a
tion or due to a landmark dete
tion| is 
onsidered by the robot to be a \state".At ea
h stop, ultrasoni
 data interpretation allows the robot to per
eive, in ea
h of thethree 
ardinal dire
tions, (front, left and right), whether there is an open spa
e, a door, awall, or something unknown.The robot also has en
oders on its wheels that allow it to estimate its pose (positionand orientation) with respe
t to its pose at the previous interse
tion. After re
ording boththe sonar-based observations and the odometri
 information, the robot goes on to exe
utethe following pres
ribed a
tion. The next a
tion 
ommand is issued manually by a humanbeing. Of 
ourse, both the a
tion and per
eption routines are subje
t to error. The pathRamona followed 
onsists of 4 
onne
ted 
orridors in our building, whi
h in
lude 17 states,as shown in Figure 7.1.In our simulation, we manually generated an hmm representing a pres
ribed path of therobot through the 
omplete oÆ
e environment of our department, 
onsisting of 44 states,and the asso
iated transition, observation, and odometri
 distributions. The transitionprobabilities re
e
t a
tion failure rate of about 5� 10%. That is, the probability of movingfrom the 
urrent state to the 
orre
t next state in the environment, under the predetermineda
tion is between 0:85 and 0:95. The probability of self transition is typi
ally between 0:05and 0:15. Some small probability (typi
ally smaller than 0:02) is sometimes assigned toother transitions. Our experien
e with the real robot proves that this is a reasonabletransition model, sin
e typi
ally the robot moves to the next state 
orre
tly, and the onlyerror that o

urs with some signi�
ant frequen
y is when it does not move at all, dueto sonar interpretation indi
ating a barrier when there is a
tually none. On
e the a
tion
ommand is repeated the robot usually performs the a
tion 
orre
tly, moving to the expe
tednext state. The observation distribution typi
ally assign probabilities of 0:85� 0:95 to thetrue observation that should be per
eived by the robot at ea
h state, and probabilities of2The low-level software was written by James Kurien.
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16Figure 7.1:True model of the 
orridors Ra-mona traversed. Arrows represent the pre-s
ribed path dire
tion. Figure 7.2:True model of a pres
ribed paththrough the simulated hallway environment.0:05� 0:15 to other observations that might be per
eived. For example, if a door shoulda
tually be per
eived, a door is typi
ally assigned a probability of 0:85 � 0:9, a wall isassigned a probability of 0:09 � 0:1 and an open spa
e is assigned a probability of about0:01 to be per
eived. The standard deviation around odometri
 readings is about 5% of themean.Figure 7.2 shows the hmm 
orresponding to the simulated hallway environment. Ob-servations and orientation are omitted for 
larity. Nodes 
orrespond to states in the en-vironment, while edges 
orrespond to the 
orridors, drawn a

ording to the dire
tion inwhi
h they were traversed. Further interpretation of the �gures is provided in the followingse
tion.7.2 Evaluation MethodThere are a number of di�erent ways of evaluating the results of a model-learning algorithm.None is 
ompletely satisfa
tory, but they all give some insight into the utility of the results.In this domain, there are transitions and observations that usually take pla
e, and aretherefore more likely than the others. Furthermore, the relational information gives usa rough estimate of the metri
 lo
ations of the states. To get a qualitative sense of theplausibility of a learned model, we 
an extra
t an essential map from the learned model,
onsisting of the states, the most likely transitions and the metri
 measures asso
iated with
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orridorsRamona traversed. Tag-based initialization. Figure 7.4:Learned model of the 
orridorsRamona traversed. K-means initialization.
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orresponds to the essentialmap underlying the true world.Figures 7.1 and 7.2 are su
h essential versions of the true models, while Figure 7.3, 7.4,7.5 and 7.6 are essential versions of representative learned ones, (obtained using the twobiased initialization methods). Bla
k dots represent the physi
al lo
ations of states. Mul-tiple states (depi
ted as numbers in the plot) asso
iated with a single lo
ation typi
ally
orrespond to di�erent orientations of the robot at that lo
ation. The larger bla
k 
ir
le



65represents the initial state. Solid arrows represent the most likely non-self transitions be-tween the states. Dashed arrows represent the other transitions when their probability is0:2 or higher. Typi
ally, due to the predetermined path we have taken, the 
onne
tivity ofthe modeled environment is low, and therefore the transitions represented by dashed arrowsare almost as likely as the most likely ones. Note that the length of the arrows, within ea
hplot, is signi�
ant and represents the length of the 
orridors, drawn to s
ale.It is important to note that the �gures do not give the 
omplete pi
ture of the models.First, they la
k observation distribution and orientation information. Se
ond, in the �gureswe 
an only position ea
h state on
e, and geometri
al in
onsisten
ies are not visible. Forinstan
e, state 16 in Figure 7.4 is pla
ed a

ording to its geometri
 relationship to state5, whi
h pla
es it to the left of the initial state, 9. However, its geometri
 relationshipwith respe
t to state 9 is simply perpendi
ular, that is, a

ording to our odometri
 modelone merely needs to turn right to rea
h from state 16 to state 9, whi
h agrees well withthe true model. We also omitted states 18 and 41 in �gure 7.6 sin
e their relation to therest of the model was not learned 
orre
tly; they are unrea
hable from all other states andhave a uniform transition distribution into all the other states, and therefore have no wellde�ned position in the model. We stress the fa
t that the �gures serve more as a visualaid than as a plot of the true model. We are looking for a good topologi
al model ratherthan a geometri
al model. The �gures provide a geometri
al embedding of the topologi
almodel. However, even when the geometry, as des
ribed by the relation matrix, is di�erent,the topology, as des
ribed by the transition and observation matri
es, 
an still be valid.Traditionally, in simulation experiments, the learned model is quantitatively 
omparedto the a
tual model that generated the data. Ea
h of the models indu
es a probabilitydistribution on strings of observations; the asymmetri
 Kullba
k-Leibler divergen
e [KL51℄between the two distributions is a measure of how good the learned model is with respe
tto the true model. Given a true probability distribution P = fp1; :::; png and a learned oneQ = fq1; :::; qng, the kl divergen
e of Q with respe
t to P is:D(P jjQ) def= nXi=1 pi log2 piqi :We report our results in terms of a sampled version of the kl divergen
e, as des
ribedby Juang and Rabiner [JR85℄. It is based on generating sequen
es of suÆ
ient length (5sequen
es of 1000 observations in our 
ase) a

ording to the distribution indu
ed by thetrue model, and 
omparing their log-likelihood a

ording to the learned model with thetrue model log-likelihood. The total di�eren
e in log-likelihood is then divided by the totalnumber of observations, a

umulated over all the sequen
es, giving a number that roughly
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Figure 7.7:A data sequen
e gathered by Ra-mona. Figure 7.8:A data sequen
e generated by oursimulator.measures the di�eren
e in log-likelihood per observation. Formally stated, let M1 be thetrue model and M2 a learned one. By generating K sequen
es S1; : : : ; SK, ea
h of lengthT , from the true model, M1, the sampled kl-divergen
e, Ds is:Ds(M1jjM2) = KXi=1[log(Pr(SijM1))� log(Pr(SijM2))℄KT :We ignore the odometri
 information when applying the kl measure, thus allowing 
om-parison between purely topologi
al models that are learned with and without odometry.7.3 ResultsWe let Ramona go around the path depi
ted in Figure 7.1 and 
olle
t a sequen
e of about300 observations. Figure 7.7 plots the sequen
e of metri
 
oordinates, proje
ted on hx; yi,obtained by a

umulating 
onse
utive odometri
 readings (as des
ribed in Se
tion 6.1). Weapplied the learning algorithm to the data 30 times. 10 of these runs were started froma k-means-based initial model, 10 started from a tag-based initial model, and 10 startedfrom a random initial model. In addition we also ran the standard Baum-Wel
h algorithm,ignoring the odometri
 information, 10 times. (Note that there is non-determinism evenwhen using biased initial models, sin
e the k-means 
lustering starts from random seeds,and low random noise is added to the data in all algorithms to avoid numeri
al instabilities,thus multiple runs give multiple results).
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orridorsRamona traversed. Random initialization. Figure 7.10:The topology of a model learnedwithout the use of odometry.Figures 7.3 and 7.4 show the essential representations of typi
al learned models startingfrom tag-based and k-means-based models, respe
tively. The geometry of the learned modelstrongly 
orresponds to that of the true environment, and most of the states positions werelearned 
orre
tly. Although the �gure does not show it, the learned observation distributionsat ea
h state usually mat
h well with the true observations. Starting from a tag-basedinitialization, the geometry obtained is better in this 
ase than when starting from a k-means-based model. Typi
ally, when the number of states is relatively small, the tag-basedinitialization performs very well, and outperforms k-means-based initialization. Enfor
inggeometri
al 
onsisten
y during the tag-based initialization pro
ess involves a

umulatingvarian
es in the relation matrix. When the number of states is large, the varian
es in theinitial relation matrix grow large as well, and the tagging pro
ess is not as a

urate anymore. Figure 7.9 depi
ts a typi
al model learned when starting from an arbitrary randommodel. The geometri
al relationships learned under this setting are not as a

urate as whenusing either one of the biased initialization methods.To demonstrate the e�e
t of odometry on the quality of the learned topologi
al model,we 
ontrast the plotted models learned using odometry with a representative topologi
almodel learned without the use of odometri
 information. Figure 7.10 shows the topologyof a typi
al model learned without the use of odometri
 information. In this 
ase, the ar
srepresent only topologi
al relationships, and their length is not meaningful. The initial stateis shown as a bold 
ir
le. It is 
lear that the topology does not mat
h the 
hara
teristi
ring topology of the true environment.



68 For obtaining statisti
ally suÆ
ient information, we generated 5 data sequen
es, ea
h oflength 1000, using Monte Carlo sampling from the hidden Markov model whose proje
tionis shown in Figure 7.2. One of these sequen
es is depi
ted in Figure 7.8. The �guredemonstrates that the noise model used in the simulation is indeed 
ompatible with thenoise pattern asso
iated with real robot data.We used four di�erent settings of the learning algorithm:� starting from a biased, tag-based, initial model and using odometri
 information;� starting from a biased, k-means-based, initial model and using odometri
 information;� starting from an initial model pi
ked uniformly at random, while using odometri
information;� starting from a random initial model without using odometri
 information (standardBaum-Wel
h).For ea
h sequen
e and ea
h of the four algorithmi
 settings we ran the algorithm 10 times.In all the experiments, N was set to be 44, whi
h is the \
orre
t" number of states; forgeneralization, it will be ne
essary to use 
ross-validation or regularization methods to sele
tmodel 
omplexity. Se
tion 6.2 also suggests one possible heuristi
 for obtaining an estimateof the number of states.Figures 7.5 and 7.6 show essential versions of a learned model (obtained from the se-quen
e of Figure 7.8) for a representative run using ea
h of the biased initialization methods.Due to the perpendi
ularity assumption applied when 
olle
ting the data, the K-means al-gorithm performs well enough in this 
ontext. We note that some of the states whoselo
ations overlap in the true model (e.g. 12,13) be
ome separated in the learned model(e.g. states 16,17,28 at the top left 
orner of Figure 7.5). This is even more noti
eable forstates 17,18 in the original model whi
h 
orrespond to states 21,31,35, and 20 in Figure 7.5.Similarly, separated states (e.g. 34,35,36,37,38,39,40) that are geometri
ally 
lose togetherin the true model are 
lustered together and overlap in the learned model (e.g. 10,12,43 ofFigure 7.5), due to noise in the odometry readings and observations, 
ombined with thelimitations of the initialization te
hniques. However, there is an obvious 
orresponden
ebetween groups of states in the learned and true models, and most of the transitions (aswell as the observations, whi
h are not shown) were learned 
orre
tly.Table 7.1 lists the kl divergen
e between the true and learned model, as well as thenumber of runs until 
onvergen
e was rea
hed, for ea
h of the 5 sequen
es under ea
h



69Seq. Tag-based k-means Random No Odo# kl Iter.# kl Iter. # kl Iter. # kl Iter. #1 1.027 23.7 1.023 30.0 0.954 23.4 6.351 124.12 1.006 41.3 0.994 31.4 0.953 25.8 4.863 126.03 0.984 16.9 1.029 21.9 1.035 26.6 5.927 113.04 1.124 15.8 1.021 25.9 1.017 23.6 6.261 107.45 1.029 8.8 1.142 27.2 1.035 32.4 4.802 122.9Table 7.1: Average results of four learning settings with �ve training sequen
es.of the 4 learning settings, averaged over 10 runs per sequen
e. We stress that ea
h kldivergen
e measure is 
al
ulated based on new data sequen
es that are generated from thetrue model, as des
ribed in Se
tion 7.2. The 5 sequen
es from whi
h the models were learneddo not parti
ipate in the testing pro
ess. From the table it is 
lear that the kl divergen
ewith respe
t to the true model for models learned using odometry, starting from either abiased or a random initial model, is about 5 times smaller than for models learned withoutodometry data. The standard deviation around the KL-divergen
e means was about 1.5 forthe no-odometry setting and about 0.1 (often lower) for the odometri
 settings. To 
he
kthe signi�
an
e of our results we used the simple two-sample t-test. The models learnedusing odometri
 information have statisti
ally signi�
antly (p � 0:9995) lower average kldivergen
e than the others.The models learned using random initialization seem slightly better in terms of the klmeasure than the ones learned with biased initialization and this di�eren
e is statisti
allysigni�
ant. A 
lose look at the obtained models reveals that the models based on biasedinitialization are more peaked (that is, have more probabilities very 
lose to 0 and to 1)than the ones based on random initialization3 . Sin
e the true model is slightly less peakedthan the ones learned using biased initialization, it o

asionally generates, when we exe
utethe kl routine, sequen
es that are quite unlikely a

ording to its own distribution andhighly unlikely a

ording to the learned model distribution. This results in a larger kl-divergen
e for the models learned from biased initialization with respe
t to the true model.To avoid this di�eren
e in peakedness it might be desirable, during the learning stage, touse the Bayesian approa
h, biasing the learning pro
ess towards models that do not haveas sharp a distribution over transitions and observations. This will ensure that the modelswould a

ommodate even the least likely events in the true environment. It is also possibleto post-pro
ess learned models, adding a �xed small 
onstant to near-0 probabilities and3The relative 
atness of odometri
 models learned from a random starting point was dis
ussed in Chap-ter 6.



70subtra
ting a small 
onstant from near-1 probabilities.The number of iterations required for 
onvergen
e when learning using odometri
 infor-mation is roughly 1=4 of that required when ignoring su
h information. Again, the t-testveri�es the signi�
an
e (p > 0:9995) of this result. The standard deviation around themean iteration number is about 10 for models learned from biased initial points (lower thanthat when the number of iterations is low and higher than that when the number of itera-tions is high). In the 
ase of random initialization the standard deviation is also typi
allyaround 10. When no odometri
 information is used the standard deviation is about 30. Thenumber of iterations is statisti
ally signi�
antly lower (p > 0:95) when using the tag-basedinitialization than when using any other initialization strategy.It is important to point out that the number of iterations, although mu
h lower, doesnot automati
ally imply that the algorithm works faster or runs in less time. The majorbottlene
k is the fa
t that we need to 
al
ulate within the forward-ba
kward 
al
ulations,as des
ribed in Se
tion 4.2.1, the values of the normal and the von-Mises densities. Theserequire the 
al
ulation of exponent terms rather than simple multipli
ations, slowing downthe runs 
onsiderably, under the 
urrent na��ve implementation. However, we 
an solve thisby augmenting the program with look-up tables for obtaining the relevant values ratherthan 
al
ulating them. In addition, we 
an take advantage of the symmetry in the relationstable to 
ut down on the amount of 
al
ulation required. It is also possible to use the fa
tthat many odometri
 relations remain un
hanged (parti
ularly in the later iterations of thealgorithm) from one iteration to the next, and therefore values 
an be 
a
hed and sharedbetween iterations rather than be re
al
ulated at ea
h iteration.The initial 
lustering strongly biases the out
ome of learning; it is important to un-derstand whether this bias is useful. When the entire model is initialized at random, theresulting models are usually 
lose, in terms of the kl-divergen
e, to the true model. This isdue to two fa
tors; �rst, by being typi
ally 
atter than the other models, they give reason-able likelihood to any data sequen
e, and se
ond, by starting from an odometri
 model thatis typi
ally bad with respe
t to the data, the algorithm ends up not learning mu
h of thegeometri
 setting of the environment. Therefore it 
an learn topologies that may a

ountfor the probabilisti
 distribution of the data but do not agree with the true topology. Thisis demonstrated in more detail in Se
tion 11.3.When starting from a tag-based initial model, the number of iterations is typi
allylower than when using any other setting. The models obtained when starting either from a



71Seq. Tag-based k-means Random No Odolength Mean Std. Mean Std. Mean Std. Mean Std.KL Dev. KL Dev. KL Dev. KL Dev.1000 0.984 0.049 1.029 0.111 1.035 0.063 5.927 1.956900 1.173 0.351 1.176 0.162 1.027 0.077 7.852 1.446800 1.108 0.094 1.220 0.102 1.068 0.045 9.624 1.755700 1.185 0.160 1.329 0.111 1.116 0.104 10.504 2.774600 1.346 0.249 2.575 1.922 1.250 0.237 14.576 3.498500 1.205 0.066 2.049 0.717 1.270 0.137 19.649 4.975400 1.279 0.050 2.558 1.827 1.285 0.214 26.341 4.357300 1.737 0.428 2.447 0.369 1.599 0.508 33.252 4.444200 14.047 11.635 2.781 0.406 3.946 2.704 52.780 4.147100 63.438 1.482 20.606 10.807 12.770 11.987 78.982 6.394Table 7.2: Average results of three learning settings with 10 in
rementally longer se-quen
es.k-means based or from a tag-based initialization are about equivalent in quality, both topo-logi
ally and geometri
ally. However, sin
e the tag-based algorithm is almost deterministi
the results obtained by using it are more 
onsistent, and are less prone to 
hange due tovarying initial 
onditions. Typi
ally, when the initialization is good, most of the work is al-ready done and the em algorithm qui
kly �lls in the details. However, if the initial k-means
lustering is bad, it is often 
lose to a poor lo
al maximum and the algorithm is unable toadjust it well. It may be best to run the algorithm multiple times, taking the model withthe highest likelihood as the �nal result.To examine the in
uen
e of the amount of data on the quality of the learned models,we took one of the 5 sequen
es (Seq. #3) and used its pre�xes of length 100 to 1000 (the
omplete sequen
e), in in
rements of 100, as individual sequen
es. We ran ea
h of the fouralgorithmi
 settings over ea
h of the 10 pre�x sequen
es, 10 times repeatedly. We then usedthe kl-divergen
e as des
ribed above to evaluate ea
h of the resulting models with respe
tto the true model. For ea
h pre�x length we averaged the kl-divergen
e over the 10 runs.Table 7.2 summarizes the results of this experiment. It lists the mean kl-divergen
eover the 10 runs for ea
h of the pre�xes, as well as the standard deviation around this mean.The plot in Figure 7.11 depi
ts the kl-divergen
e as a fun
tion of the sequen
e length forea
h of the three settings. Both the table and the plot demonstrate that, in terms of thekl-divergen
e, our algorithm, whi
h uses odometri
 information, is robust in the fa
e ofdata redu
tion. In 
ontrast, learning without the use of odometry is mu
h more sensitiveto redu
tion in the amount of data.Again, we applied the two-sample t-test to verify the statisti
al signi�
an
e of these
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e as a fun
tion of the sequen
e length.results. For example, the kl-divergen
e being greater for models learned from a sequen
eof length 800 than from a sequen
e of length 1000, without the use of odometry, is highlystatisti
ally signi�
ant (p > 0:999). In 
ontrast, the kl-divergen
e is usually not highlystatisti
ally signi�
antly greater when the odometry is used, for either biased or randommodels. The kl-divergen
e of the learned biased model 
u
tuates somewhat sin
e shortersequen
es tend to have less a

umulated error on their readings, thus 
lustering may performbetter, resulting in better learned models despite the fewer data points available (see forinstan
e the 
hange from 600 to 500 observations).We note that the data sequen
e is twi
e as \wide" when odometry is used than whenit is not; that is, there is more information in ea
h element of the sequen
e when odometrydata is re
orded. However, the e�ort of re
ording this additional odometri
 information isnegligible, and is well rewarded by the fa
t that fewer observations and less exploration arerequired for obtaining a data sequen
e suÆ
ient for adequate learning.



Chapter 8State-Relative Coordinate SystemsThroughout the dis
ussion so far, we have assumed that there is a single global 
oordinatesystem within whi
h the robot operates. Moreover, we assumed that the robot 
olle
tsits data within a perpendi
ular 
orridor framework and that it is taking advantage of thisperpendi
ularity and the single framework while re
ording odometri
 information. Thisassumption 
an be troublesome in pra
ti
e. This 
hapter dis
usses the potential prob-lems, and presents our way for relaxing the assumption and addressing the problems. Ademonstration of the e�e
tiveness of our solution is presented in Chapter 9.8.1 MotivationWe tend to think about an environment as 
onsisting of landmarks �xed in a global 
oor-dinate system and 
orridors or transitions 
onne
ting these landmarks. However, this viewof the environment may be problemati
 when robots are involved.Con
eptually, a robot has two levels in whi
h it operates; the abstra
t level, in whi
h it
enters itself through 
orridors, follows walls and avoids obsta
les, and the physi
al level inwhi
h motors turn the wheels as the robot moves. In the physi
al level many ina

ura
ies
an manifest themselves: wheels 
an be unaligned with ea
h other resulting in a drift to theright or to the left, one motor 
an be slightly faster than another resulting in similar drifts,an obsta
le under one of the wheels 
an 
ause the robot to rotate around itself slightly, oruneven 
oors may 
ause the robot to slip in a 
ertain dire
tion. In addition, the measuringinstrumentation for odometri
 information may not be a

urate in and of itself. At theabstra
t level, 
orre
tive a
tions are 
onstantly exe
uted to over
ome the physi
al drift anddrag. For example, if the left wheel is misaligned and drags the robot leftwards, a 
orre
tive73
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- recorded position
- actual position

ε−εFigure 8.1: A robot moving along the solid arrow, while 
orre
ting for drift in the dire
tionof the dashed arrow. The dotted arrow marks its re
orded 
hange in position.a
tion of moving to the right is 
onstantly taken in the higher level to keep the robot awayfrom the left wall and 
entered in the 
orridor.The phenomena des
ribed above have a signi�
ant e�e
t on the odometry re
orded bythe robot, if it is interpreted with respe
t to one global framework. For example, 
onsiderthe robot depi
ted in Figure 8.1. It drifts to the left ��Æ when moving from one state to thenext, and 
orre
ts for it by moving �Æ to the right in order to maintain itself 
entered in the
orridor. Let us assume that states are 5 meters apart along the 
enter of the 
orridor, andthat the 
enter of the 
orridor is aligned with the y axis of the global 
oordinate system.The robot steps ba
k and forth in the 
orridor from one state to the next. Whenever therobot rea
hes a state, its odometry reading 
hanges by hx; y; �i along the hX; Y; heading idimensions, respe
tively. As the robot pro
eeds, the deviation with respe
t to the x axisbe
omes more and more severe. Thus, after going through several transitions, the odometri

hanges re
orded between every pair of states, if taken with respe
t to a global 
oordinatesystem, be
ome larger and larger (espe
ially along the X dimension). Similar problems ofin
onsistent odometri
 
hanges re
orded between pairs of states 
an arise along any of theodometri
 dimensions. It is espe
ially severe when su
h in
onsisten
ies arise with respe
t tothe heading, sin
e this 
an lead to mistakenly swit
hing movement along the X and the Yaxes, as well as 
onfusion between forwards and ba
kwards movement (when the deviationin the heading is around 90Æ or 180Æ respe
tively). Figure 8.2 demonstrates Ramona's viewof a path through the perfe
tly perpendi
ular department 
orridors, depi
ted in Figure 7.1,based on its odometri
 re
ording, with respe
t to a global 
oordinate system.A solution to su
h a situation is to model the odometri
 relations of moving from statesi to state sj using a 
hanging 
oordinate system whi
h is relative to state si, as opposed toa global 
oordinate system an
hored at the initial state. This way, the learned relationship
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Figure 8.2: A path in a perpendi
ular environment plotted based on odometri
 readingstaken by Ramona.between ea
h pair of states, hsi; sji, is reliable despite the fa
t that it is based on multi-ple transitions re
orded from si to sj . Within the global 
oordinate system the relationsre
orded may vary greatly between one transition from si to the next. We formalize thisidea and provide the update rules for the odometri
 information based on this approa
h inthe rest of this 
hapter.8.2 Learning Odometri
 Relations with Relative CoordinatesAs before, our experien
e sequen
e, E, 
onsists of T pairs hrt; Vti of re
orded odometri
 rela-tions and observation ve
tors. The odometri
 relations are re
orded as before, with respe
tto the robot's global 
oordinate system. However, when learning the relation matrix fromthe odometri
 readings, we interpret the entry Ri;j in the relation matrix R as en
odingthe information with respe
t to a 
oordinate system whose origin is an
hored at the statesi; the y axis is aligned with the robot's 
urrent heading and the x axis is perpendi
ular toit. This is depi
ted in �gure 8.3. The robot is in state si fa
ing in the dire
tion pointedto by the y axis, and its relationship to the state sj is des
ribed in terms of the 
oordinatesystem shown in the �gure.To support this interpretation of the relation matrix we need to revisit the formulationof the geometri
al-
onsisten
y 
onstraints stated in Se
tion 3.2, as well as the initializationpro
edure and the update formulae used when learning the model.
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xFigure 8.3: The robot is in state Si fa
ing in the dire
tion of the y axis; the relationbetween Si and Sj is measured a

ording to Si's 
oordinate framework.8.2.1 Geometri
al Consisten
y in a Relative FrameworkThe 
onsisten
y 
onstraints have to re
e
t the 
oordinate system with respe
t to whi
h theodometry is represented. Note that the 
hange in heading from one state to the next isindependent of any spe
i�
 
oordinate system. Hen
e, only the 
onstraints over the x andy 
omponents of the odometri
 relation need to be rede�ned.Given a pair of states a and b, we denote by �hx;yi(a; b) the ve
tor h�(Ra;b[x℄); �(Ra;b[y℄)i.Let us de�ne Tab to be the transformation that maps an hxa; yai pair represented withrespe
t to the 
oordinate system of state a, to the same pair represented with respe
t tothe 
oordinate system of state b, hxb; ybi (note that Tab = T �1ba , and ��(a; b) = ���(b; a)).More expli
itly, as before, let ��(a; b) be the mean 
hange in heading from state a tostate b. Then the transformation Tab is de�ned as follows:* xbyb + = Tab* xaya + = * xa 
os(��(a; b))� ya sin(��(a; b))xa sin(��(a; b)) + ya 
os(��(a; b)) + :Tab 
an also be expressed using the matrix notation:Tab = 24 
os(��(a; b)) � sin(��(a; b))sin(��(a; b)) 
os(��(a; b)) 35 :



77We 
an now rede�ne the 
onsisten
y 
onstraints given in Se
tion 3.2, for the x and y
omponents of the odometri
 relation:� �hx;yi(a; a) = h0; 0i;� �hx;yi(a; b) = �Tba[�hx;yi(b; a)℄ (anti-symmetry);� �hx;yi(a; 
) = �hx;yi(a; b) + Tba[�hx;yi(b; 
)℄ (additivity) :8.2.2 InitializationRe
all that the tag-based initialization algorithm, des
ribed in Se
tion 6.2, maintains ge-ometri
al 
onsisten
y while populating the relation matrix. When the matrix representsrelations in a relative 
oordinate system, the above 
onstraints need to be taken into a
-
ount when maintaining the 
onsisten
y of the data. Expli
itly, when �ij is set to hx; y; �i,�ji is set to h�(x 
os(�)� y sin(�)); �(x sin(�) + y 
os(�)); ��i :Similarly, if �ik is already set to hx1; y1; �1i and �kj is being set to hx2; y2; �2i then �ijneeds to be set tohx1 + (x2 
os(�1) + y2 sin(�1)); y1 � (x2 sin(�1)� y2 
os(�1)); �1 + �2ii :8.2.3 ReestimationThe reestimation formulae for all the parameters ex
ept for the x and y 
omponents of therelation matrix R, remain as before. However, the reestimation formulae for the x and yparameters are 
hanged to re
e
t the relative 
oordinate systems used. We follow a similarpro
ess to the one used when deriving the reestimation formulae in Se
tion 4.3.3. Again,we are looking to improve expression 4.21 whi
h we repeat here for the sake of 
larity:Q(R;R) = N�1Xi=0 DXm=1Qmii (R;R) + N�1Xi=0 N�1Xj=(i+1) DXm=1[Qmij (R;R) + Qmji(R;R)℄ ;only this time the symmetry 
onstraints are:�xji = � 
os(��ij)�xij + sin(��ij)�yij ; (8.1)�yji = � sin(��ij)�xij � 
os(��ij)�yij : (8.2)By substituting these expressions for �xji and �yji, taking the derivatives of equation 4.21with respe
t to �xij and �yij , equating them to 0, and using the \lag-behind" poli
y with



78respe
t to the update of standard deviations, as des
ribed in Se
tion 4.2.2, we obtain thefollowing pair of equations:av1 � u 
os(�)v2 � w sin(�)v3� �xi;j � lv1 + k(
os(�))2v2 + k(sin(�))2v3 �+ �yi;jk 
os(�) sin(�)� 1v2 � 1v3� = 0 ; (8.3)bv4 + u sin(�)v2 � w 
os(�)v3+ �xi;jk 
os(�) sin(�)� 1v2 � 1v3�� �yi;j � lv4 + k(sin(�))2v2 + k(
os(�))2v3 � = 0 ; (8.4)wherea =Xt �tijrxt ; b =Xt �tijryt ; u =Xt �tjirxt ; w =Xt �tjiryt ; l =Xt �tij ; k =Xt �tji; v1 = (�xij)2;v2 = (�xji)2; v3 = (�yji)2; v4 = (�yij)2; and � = ��ij :The expressions for �xij and �yij that solve this set of equations 
onstitute the updateformulae in the x and y dimensions. As before, these update formulae are guaranteed toimprove Q, and are therefore an instan
e of the generalized em algorithm.Note that in earlier work [SK98℄ we used an update heuristi
 of assuming that allvarian
es are the same when updating the means, obtaining the following reestimationformulae:�xi;j = T�2Xt=0 (�t(i; j)rt[x℄)� T�2Xt=0 (�t(j; i) h
os(��i;j); sin(��i;j)i 24 rt[x℄rt[y℄ 35T�2Xt=0 [�t(i; j) + �t(j; i)℄ ;�yi;j = T�2Xt=0 (�t(i; j)rt[y℄)� T�2Xt=0 (�t(j; i) h� sin(��i;j); 
os(��i;j)i24 rt[x℄rt[y℄ 35T�2Xt=0 [�t(i; j) + �t(j; i)℄ :These reestimation rules are easily obtained from the more general ones by setting v1; v2; v3; v4to all be the same.This 
hapter has introdu
ed an approa
h for learning models from data that is 
orruptedby 
umulative rotational error. To demonstrate the e�e
tiveness of this approa
h we ranexperiments on data that was 
olle
ted without applying the perpendi
ularity assumption,thus indeed su�ers from the phenomena des
ribed in the beginning of this 
hapter. Theexperiments and their results are presented in the next 
hapter.



Chapter 9Experiments Using RelativeCoordinatesSimilar to the experiments presented in Chapter 7, we test our algorithm in a simple robot-navigation world. Again, we use both real robot data and data obtained from the samesimulated model as before, as shown in Figure 9.2, with two distin
tions:� The data is generated without the perpendi
ularity assumption. This means that thex and y 
oordinates are not realigned after ea
h turn with the global x and y axes,but rather, re
orded as is. This is true for both robot data and simulated data.� The algorithm used for learning the model from the data is as des
ribed in Se
tion 8.2.9.1 Experimental SettingAs before, we provide qualitative results from applying the algorithm to the data obtainedfrom the robot. For statisti
ally evaluating our results we used the sampled Kullba
k-Leiblerdivergen
e of the distribution indu
ed by the learned model with respe
t to that indu
ed bythe true model. The sampled sequen
es a

ording to whi
h the kl-divergen
e is 
al
ulatedare generated and 
ompared as before, ignoring the odometri
 data.Figure 9.1 depi
ts the dire
ted path through whi
h Ramona moved. This is the sametrue environment as the one des
ribed in Chapter 7. Figure 9.3 shows the proje
tion of theodometri
 readings that Ramona re
orded along the x and y dimensions, while traversingthis environment. For obtaining statisti
ally suÆ
ient information, we generated 5 datasequen
es, ea
h of length 800, using Monte Carlo sampling from the hidden Markov model79
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16Figure 9.1:True model of the 
orridors Ra-mona traversed. Arrows represent the pre-s
ribed path dire
tion. Figure 9.2:True model of a pres
ribed paththrough the simulated hallway environment.whose proje
tion is shown in Figure 9.2. One of these sequen
es is depi
ted in Figure 9.4.The �gures of both real and simulated data demonstrate that in addition to the noise alongthe x and y measurements, a 
umulative rotational error is present on
e the perpendi
ularityassumption is dropped.We use the same four settings of the learning algorithm as before:� starting from a biased, tag-based, initial model and using odometri
 information;� starting from a biased, k-means based, initial model and using odometri
 information;� starting from a random initial model and using odometri
 information;� starting from a random initial model without using odometri
 information (standardBaum-Wel
h).For ea
h sequen
e and ea
h of the four algorithmi
 settings we ran the algorithm repeatedly10 times. In all the experiments based on simulated data, N was set to be 44, while in theexperiments using real robot data the number of states was set to 17. In both 
ases thisnumber of states is the \
orre
t" one.
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Figure 9.3:A data sequen
e 
olle
ted by Ra-mona in a perpendi
ular hallway environment. Figure 9.4:A data sequen
e generated by oursimulator, without perpendi
ularity assump-tion.9.2 ResultsFigure 9.5 depi
ts a typi
al model learned from data obtained by the robot, using odometry,starting from a tag-based initial model. The models learned using k-means initializationand uninformed initialization do not typi
ally re
e
t the 
lear re
tangular geometry of thetrue environment, and hen
e are not satisfa
tory geometri
ally. Note that the k-meansinitialization, as des
ribed in Se
tion 6.1, was expe
ted not to perform well in the presen
eof 
umulative rotational error.As before, the geometri
al plot used in Figure 9.5 prevents us from observing the ge-ometri
al in
onsisten
ies in the learned model. For example, State 16, when drawn withrespe
t to state 15 is at the same x and y 
oordinates as state 15, but the heading is perpen-di
ular to it, that is, the robot needs to turn to the right in order to move from state 15 tostate 16. However, if we were to draw state 16 with respe
t to state 1, it should have beenpla
ed very 
lose to where state 0 is, thus 
orresponding mu
h better to the re
tangulargeometry of the true environment. Sin
e state 1 was drawn with respe
t to state 0 and state16 with respe
t to state 15, while la
king geometri
al 
onsisten
y throughout the model,the geometry is somewhat distorted.We 
ontrast this model with the one shown in Figure 9.6 whi
h is the topologi
al layout ofa model learned without the use of odometri
 information, from the same data sequen
e. Itis obvious from the �gure that the 
hara
teristi
 loop topology of the traversed environmentwas not learnt when odometri
 information was not used.
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1 11 8 3 7 0 13 2 41012569141516Figure 9.5:Learned model of the 
orridorsRamona traversed. Initialization is Tag-based. Figure 9.6:Model learned without the use ofodometri
 information, from the same data se-quen
e.Figures 9.7 and 9.8 depi
t the geometri
al layout of typi
al models learned from thesimulated data, starting from a tag-based initial model. These models are not geometri
allygood, although some of the re
tangular 
hara
teristi
s of the environment are visible. Themodels learned using k-means initialization and uninformed initialization are, obviously,geometri
ally worse. The tag-based initialization performs mu
h better when the numberof states is small. This 
an be explained by the fa
t that when it populates the initialrelation matrix and tags odometri
 readings, it 
he
ks the proximity of readings to thetable entries, using standard deviations that are a

umulated when 
onsisten
y is enfor
ed.The larger the number of states, the bigger the deviation be
omes, and the less a

uratethe tagging pro
ess is. It is an interesting possible resear
h dire
tion to try and learn wellsmall portions of the environment and then 
ombine them into a 
omplete map of theenvironment.Table 9.1 lists the kl divergen
e between the true and learned models, and the numberof iterations the algorithm took to 
onverge, for ea
h of the 5 sequen
es under ea
h of the4 learning settings, averaged over 10 runs per sequen
e. The kl divergen
e with respe
tto the true model for models learned using odometry, starting from either a biased or arandom initial model, is about 8-9 times smaller than for models learned without odometri
data. Note that in these experiments learning was done from training sequen
es of 800observations rather than 1000. Therefore the kl measure for the non-odometri
 
ase ishigher than that given in Table 7.1. The standard deviation around the means is about0.1 for kl distan
es learned with odometry, and about 2.5 for models learned without
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Figure 9.7:Learned model of the simulatedenvironment. Initialization is Tag-based. Figure 9.8:Learned model of the simulatedenvironment. Initialization is Tag-based.Seq. Tag-based k-means Random No Odo# kl Iter.# kl Iter. # kl Iter. # kl Iter. #1 1.540 9.90 0.983 19.80 1.110 27.00 6.919 113.302 1.029 15.10 0.984 24.70 1.065 32.60 9.926 113.103 1.301 26.40 1.236 22.70 1.119 27.10 10.030 102.004 1.028 33.50 1.100 36.00 1.020 36.00 9.539 104.205 1.029 28.30 1.107 25.30 1.060 31.90 12.431 112.50Table 9.1: Average results of the four learning settings with �ve training sequen
es.odometry. To 
he
k the signi�
an
e of our results we again applied the two-sample t-test.The models learned using odometri
 information have statisti
ally signi�
antly (p� 0:9995)lower average kl divergen
e than the others. We 
an 
on
lude that despite the 
umulativerotational error in the odometri
 data, the topologi
al models learned using it are mu
hbetter than those learned without any odometri
 information.We noti
e that models learned with random initialization and the ones based on k-meanshave a slightly lower kl-divergen
e than the models whose learning used the tag-basedinitialization. The explanation to this is again the fa
t that the tag-based initialization,whi
h is more rigorous than the others, results in more peaked models, typi
ally assigningvery low probabilities to the less likely sequen
es of the original model, even when thelearned distributions are similar to the true ones. Thus, the divergen
e between the learnedand the true model is larger when this initialization is used than when the other methods,whi
h result in 
atter models, are used.



84 Seq. Tag-based k-means Random1 1.280 0.854 1.0812 0.876 0.904 1.0253 1.173 1.056 1.0584 0.837 0.968 0.9545 0.880 0.949 0.956Table 9.2: Average results of three learning settings with �ve training sequen
es. Distri-butions are 
attened.To illustrate this point, we applied a simple \
attening" pro
edure to the models, addinga small 
onstant, (0:001) to all the small probabilities (< 0:0001) and subtra
ting a propor-tional portion from the larger probabilities. This pro
edure was applied to models that werelearned using all three initialization pro
edure, and not just the ones that were learned fromtag-based initialization. We 
ompared the resulting less peaked models to the true model,and the results are summarized in Table 9.2. The values of the kl-divergen
e for the 
attermodels are indeed smaller than those of Table 9.1. The model learned from sequen
e 1 isstill mu
h worse when using tag-based initialization, sin
e the initial model whi
h is badin this 
ase, strongly biases the learning algorithm towards a peaked model that is quitedi�erent from the true one. Sequen
e 3 also seems to be asso
iated with worse models whenstarting from tag-based initialization, although the di�eren
e here is not highly statisti
allysigni�
ant, due to large standard deviations. For sequen
es 2; 4, and 5, on
e the learnedmodels are 
attened the kl-divergen
e of the models learned starting from tag-based ini-tialization is smaller than that of the 
attened models learned using the other initializationmethod. The di�eren
es in these 
ases are highly statisti
ally signi�
ant.The number of iterations required for 
onvergen
e when learning using odometri
 in-formation is roughly 3-5 times smaller than that required when ignoring su
h information.Again, the t-test veri�es the signi�
an
e (p > 0:9995) of this result. The typi
al standarddeviation around the mean number of iterations is about 10 when odometry is used andabout 35 when odometry is not used. Again, among the methods that use odometri
 infor-mation, the tag-based initialization method results in the smallest iterations number, whilethe random initialization results in the largest one. This ordering is statisti
ally signi�
ant(p > 0:95).To examine the in
uen
e of the amount of data on the quality of the learned models,we took one of the 5 sequen
es (Seq. #1) and used its pre�xes of length 100 to 800 (the
omplete sequen
e), in in
rements of 100, as individual sequen
es. We ran ea
h of the four



85Seq. Tag-based k-means Random No Odolength Mean Std. Mean Std. Mean Std. Mean Std.KL Dev. KL Dev. KL Dev. KL Dev.800 1.029 0.046 1.107 0.058 1.060 0.105 12.431 2.869700 1.147 0.044 1.102 0.039 1.129 0.080 15.102 3.578600 1.361 0.080 1.276 0.171 1.129 0.142 16.832 2.854500 1.377 0.131 1.267 0.110 1.271 0.118 22.721 4.560400 1.324 0.102 1.216 0.067 1.267 0.085 28.570 4.755300 1.475 0.229 1.930 0.698 2.046 1.024 37.111 6.690200 1.630 0.806 6.493 3.751 3.025 1.776 55.387 3.548100 16.780 8.572 38.722 7.464 11.396 14.796 85.945 4.054Table 9.3: Average results of four learning settings with 8 in
rementally longer sequen
es.
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NoOdoFigure 9.9: Average kl-divergen
e as a fun
tion of the sequen
e length.algorithmi
 settings over ea
h of the 8 pre�x sequen
es, 10 times repeatedly. We then usedthe kl-divergen
e as des
ribed above to evaluate ea
h of the resulting models with respe
tto the true model. For ea
h pre�x length we averaged the kl-divergen
e over the 10 runs.Table 9.3 summarizes the results of this experiment. It lists the mean kl-divergen
eover the 10 runs for ea
h of the pre�xes, as well as the standard deviation around this mean.The plot in Figure 9.9 depi
ts the kl-divergen
e as a fun
tion of the sequen
e length forea
h of the four settings. Both the table and the plot demonstrate the robustness of thealgorithm in the fa
e of data redu
tion. In 
ontrast, learning without the use of odometryis mu
h more sensitive to redu
tion in the amount of data.The 
on
lusion from these experiments is that using odometri
 information, even in thepresen
e of 
umulative rotational error 
an be, when treated 
orre
tly, highly bene�
ial forlearning topologi
al models. The results also demonstrate the usefulness of the tag-based



86algorithm for redu
ing the number of iterations required for 
onvergen
e, as well as forobtaining good geometri
al models when the number of states is small. However, theyalso demonstrate a weekness of the initialization algorithm in handling large models. Thislimitation mostly seem to e�e
t the quality of the geometri
al aspe
ts of the learned model.It would be interesting to see if there is a way to address this limitation dire
tly, and alsoto �nd ways for learning well small portions of the environment and later 
ombining theminto a 
omplete model.



Chapter 10Enfor
ing AdditivityIn Chapter 3, we augmented the standard hmm with an odometri
 relation matrix, statingthat the relation matrix should satisfy the three geometri
al-
onsisten
y 
onditions, for allstates a, b, and 
:� �m(a; a) = 0;� �m(a; b) = ��m(b; a) (anti-symmetry) ; and� �m(a; 
) = �m(a; b) + �m(b; 
) (additivity) :In Chapter 8 we have adapted the statement of these 
onditions to a

ommodate relative
oordinate systems. However, our dis
ussion and experiments up to this point have onlydealt with the �rst two 
onstraints. Although the results are typi
ally topologi
ally satis-fa
tory, it is of interest to know if better results 
an be obtained by 
ompletely satisfyinggeometri
al 
onsisten
y. Intuitively, there are 
ases in whi
h enfor
ing additivity is 
ru
ialin order to identify that a state that is rea
hed through two distin
t routes is still thevery same state. There are several ways we have explored to enfor
e the full geometri
al
onsisten
y.As a �rst step, we tried to use the iterative pro
edure des
ribed in the previous 
hapters,augmenting ea
h iteration (whi
h provides a symmetri
al but non-additive model), with apro
edure for deriving an additive model from the symmetri
 one. Our �rst attempt at doingthis was through the use of a spring-system model, solving a set of equilibrium equations.The idea is to model ea
h pair of states as though they are 
onne
ted by a spring, where thelength of the spring 
orresponds to the mean of the odometri
 relation between the states (asobtained from the symmetri
 estimation pro
edure), and the spring 
onstant 
orresponds87



88to the expe
ted number of times we have transitioned between these two states. By solvingthe equilibrium equations we obtain the state 
oordinates that minimize the energy in thesystem, and due to the geometri
al nature of the model, we obtain a geometri
ally 
onsistentmodel.This approa
h was also taken in other work on geometri
al 
onsisten
y in the 
ontext ofmetri
 maps. See, for instan
e, work by Lu and Milios on alignment of laser s
ans [LM97℄ orby Golfarelli et al. [GMR98℄. However, embedding this approa
h in the em setting provedunsatisfa
tory. At the end of ea
h iteration, solving the equations and 
hanging the relationestimates based on the obtained solution did not preserve monotoni
 improvement of thelikelihood fun
tion, and did not guarantee 
onvergen
e to any kind of solution at any stage.The approa
h we take here is that of dire
tly enfor
ing the additivity 
onstraints throughthe reestimation pro
edure. We start by explaining the approa
h in the 
ase of a global
oordinate system for the x and y dimensions only. We then extend the solution to the
ase of relative 
oordinate systems. Finally we des
ribe the way in whi
h we maintaingeometri
al 
onsisten
y over headings, where the dire
t approa
h is problemati
 due to thespe
ial nature of the von Mises distribution.10.1 Additivity within a Global FrameworkThe main observation underlying our approa
h is that the additivity 
onstraint is a resultof the fa
t that states 
an be embedded in a geometri
al spa
e. That is, assuming we haveN states, s0; : : : ; sN�1, there are points on some global X and Y and � axes, x0; : : : ; xN�1,y0; : : : ; yN�1, �0; : : : ; �N�1 respe
tively, su
h that ea
h state si is asso
iated with the 
oor-dinates hxi; yi; �ii.Assuming that the use of one global 
oordinate system is feasible, the mean odometri
relation from state si to state sj 
an be expressed as: hxj � xi; yj � yi; �j � �ii. If 
umula-tive rotational error is to be taken into a

ount, the global mean relations xj � xi; yj � yineed to be rotated to be expressed with respe
t to the heading �i at state si, as shown inSe
tion 10.2.When learning the model, rather than look for N2 odometri
 relation values along theX , Y and � dimensions that maximize the log-likelihood fun
tion with respe
t to odometri
relations while satisfying additivity, we 
an reparameterize the problem. Spe
i�
ally, we 
anexpress ea
h odometri
 relation as a fun
tion of two of the N state positions, and optimizean un
onstrained log-likelihood fun
tion with respe
t to the N state positions. Then we
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an 
al
ulate the relations from the state positions, and obtain a geometri
ally 
onsistentoptimal estimate.Re
all that in Se
tions 4.3.2 and 4.3.3 we introdu
ed the fun
tion Q that we need tooptimize (or at least improve) in every iteration of reestimating the parameters, as follows:Q(R;R) = N�1Xi=0 N�1Xj=0 DXm=1Qmij (R;R) ; (10.1)where Qmij (R;R) = T�2Xt=0 �t(i; j)(log(fmi;j(rmt+1))� log(�mij )) ;and m 2 fx; y; �g. Due to the independen
e assumption and the form of the likelihoodfun
tion P (Ej�) we 
an separate the optimization pro
edure into optimizing with respe
tto ea
h of x, y and � independently. In this se
tion we dis
uss the reestimation of the statepositions along the x dimension only. For the y dimension the estimation is identi
al, while� is treated separately in Se
tion 10.3. We therefore 
on
ern ourselves only with optimizing:Qx(R;R) def= N�1Xi=0 N�1Xj=0 Qxij(R;R)= N�1Xi=0 N�1Xj=0 T�2Xt=0 �t(i; j)(log(e�(rxt+1��xij)2=2(�xij)2)� log(�xij)) :In order to satisfy geometri
al 
onsisten
y of the means �xij for all i and j, we need to �nd N1-dimensional points, x0; : : : ; xN�1, su
h that �xij = xj � xi. These points should maximize(or improve { for generalized em) the expression:Qx(R;R) = N�1Xi=0 N�1Xj=0 T�2Xt=0 �t(i; j)[log(e�(rxt+1�(xj�xi))2=2(�xij)2)� log(�xij)℄ (10.2)with respe
t to x0; : : : ; xN�1. As in Se
tion 4.2.2 we �x the standard deviation terms totheir 
urrent values, �xij , when reestimating the values xi and xj and then reestimate �xijbased on the reestimated xj , rather than simultaneously reestimating both terms. This isagain an instan
e of the generalized em algorithm.Sin
e all we are interested in is �nding the best relationships between xi and xj , we 
an�x one of the xi's at 0, and only �nd optimal estimates for the other N�1 state positions.Hen
e, we �x x0 = 0. By taking the derivative of equation 10.2 with respe
t to ea
h of theother xj ; (1 � j � N�1) and setting it to 0 we obtain a set of N�1 equations of theform:



90 N�1Xi=0i 6=j xi T�2Xt=0  �t(i; j)(�xij)2 + �t(j; i)(�xji)2 !! � xj 0BB�N�1Xi=0i 6=j T�2Xt=0  �t(i; j)(�xij)2 + �t(j; i)(�xji)2 !1CCA (10.3)+ N�1Xi=0i 6=j T�2Xt=0 rxt  �t(i; j)(�xij)2 � �t(j; i)(�xji)2 ! = 0 :The solution to these equations is an estimate for x1; : : : ; xN�1 that maximizes Qx, where�xij are �xed at their 
urrent values. To show that this is indeed a maximum and not aminimum, we invoke the following theorems1De�nition 10.1 A matrix A =(aij) is said to be diagonally dominant if jaiij >Pj 6=i jaijj.De�nition 10.2 Given a matrix A =(aij), the matrix M [A℄ =(mij) is a matrix whoseentries are: mii = jaiij; mij = �jaij j; for j 6= i :Theorem 10.1 [Fie86℄ Let A =(aij) be a real square matrix. The following 
onditionsare equivalent:� A is diagonally dominant.� All the o�-diagonal elements of M [A℄ are non-positive (mij � 0, for j 6= i), and everyreal eigenvalue of M [A℄ is positive.Theorem 10.2 [Apo69℄ Let f be a s
alar �eld with 
ontinuous se
ond-order partial deriva-tives Dij(f) in an n-ball B(a), and let H(a) denote the Hessian matrix at a stationary pointa. Then if all the eigenvalues of H(a) are negative, f has a relative maximum at a.We now examine the Hessian matrix H(Qx), whi
h is the matrix of the se
ond derivativesof Qx (after setting x0 to 0). It is an (N�1)� (N�1) matrix of the following form:H(Qx) = 266666666666666664�N�1Xi=0i6=1 T�2Xt=0 (�t(i; 1)(�xi;1)2 + �t(1; i)(�x1;i)2 ); T�2Xt=0 (�t(2; 1)(�x2;1)2 + �t(1; 2)(�x1;2)2 ; : : : ; T�2Xt=0 (�t(N � 1; 1)(�xN�1;1)2 + �t(1;N � 1)(�x1;N�1)2 )T�2Xt=0 (�t(2; 1)(�x2;1)2 + �t(1; 2)(�x1;2)2 ); �N�1Xi=0i6=2 T�2Xt=0 (�t(i; 2)(�xi;2)2 + �t(2; i)(�x2;i)2 ); : : : ; T�2Xt=0 (�t(N � 1; 2)(�xN�1;2)2 + �t(2;N � 1)(�x2;N�1)2 ):::T�2Xt=0 (�t(N � 1; 1)(�xN�1;1)2 + �t(1;N � 1)(�x1;N�1)2 ); : : : ; � N�1Xi=0i6=(N�1)T�2Xt=0 (�t(i;N � 1)(�xi;N�1)2 + �t(N � 1; i)(�xN�1;i)2 )377777777777777775 :1Thanks to Vasiliki Chatzi for pointing in the dire
tion of diagonally dominant matri
es.



91Under the assumption that all �t's are stri
tly positive, we note that H(Qx) is diagonallydominant, sin
e all its diagonal elements are stri
tly larger in magnitude than the sum ofthe other elements in their respe
tive rows. Hen
e, by theorem 10.1 all the eigenvalues ofthe matrix M [H(Qx)℄ are positive. Note that M [H(Qx)℄ = �H(Qx), and that from thede�nition of eigenvalues, k is an eigenvalue of �H(Qx) if and only if �k is an eigenvalue ofH(Qx). Therefore all the eigenvalues of the Hessian H(Qx) itself are negative and thereforeby theorem 10.2, Qx is indeed maximized when the lo
ations for the states are 
hosen assolutions to the above equations.An estimate for ea
h mean relation �xij is simply obtained as�xij = xj � xi ; (10.4)and all the geometri
al 
onstraints are met. The pro
edure for y is identi
al. The pro
essfor reestimating the varian
e remains as des
ribed in Se
tion 4.2.2.10.2 Additivity within a Relative FrameworkIn Se
tion 8.2 we expressed the geometri
al 
onsisten
y 
onstraints in the 
ontext of relative
oordinate systems. In this s
enario, ea
h state has asso
iated with it a 
oordinate systemwhose origin is at the state, its y axis is aligned with the heading asso
iated with the state,and its x axis is perpendi
ular to it (see, for instan
e, Figure 8.3).To enfor
e the geometri
al 
onsisten
y 
onstraints dire
tly, we observe again that it issuÆ
ient to asso
iate points hx0; y0; �0i; : : : ; hxN�1; yN�1; �N�1i with the states s0; : : : ; sN�1,respe
tively, only that this time the relationships between states along the x and y dimen-sions are interdependent through the 
hange in headings between the states.We denote by (�xij)0 = x0j � x0i and (�yij)0 = y0j � y0i the mean odometri
 relation fromstate si to state sj with respe
t to the global 
oordinate system whose origin is at state s0,along the global x and y axes, respe
tively. If state si has mean heading ��0;i with respe
tto the heading at state s0, then with respe
t to state si,(�xij)i = 
os(��0;i)(�xij)0 � sin(��0;i)(�yij)0 = 
os(��0;i)(x0j � x0i )� sin(��0;i)(y0j � y0i ) :Similarly,(�yij)i = sin(��0;i)(x0j � x0i ) + 
os(��0;i)(y0j � y0i ) :



92We note that the re
orded relations rxt ; ryt are also expressed with respe
t to the heading attime t. Thus, we are left with the following expression for maximization:Qx;y(R;R) = N�1Xi=0 N�1Xj=0 T�2Xt=0 �t(i; j) �(rxt+1 � �xij)22(�xij)2 � log(�xij) � (ryt+1 � �yij)22(�yij)2 � log(�yij)!= N�1Xi=0 N�1Xj=0 T�2Xt=0 �t(i; j) �(rxt+1 � (
os(��0;i)(x0j � x0i )� sin(��0;i)(y0j � y0i )))22(�xij)2� log(�xij) � (ryt+1 � (sin(��0;i)(x0j � x0i ) + 
os(��0;i)(y0j � y0i )))22(�yij)2 � log(�yij)! : (10.5)Di�erentiating equation 10.5 a

ording to ea
h x0j and ea
h y0j where j 6= 0 , and equatingea
h partial derivative to 0, results in a set of 2N�2 linear equations in 2N�2 unknowns.(The derivatives and the equations are given in Appendix B.2.) The solution, obtained aspart of ea
h em iteration, is a set of 
oordinates x1; : : : ; xN�1, y1; : : : ; yN�1; for the statess1; : : : ; sN�1 , respe
tively. As before, s0 is set to be at h0; 0i.The mean state relationships, �xij ; �yij are re
overed through the equations:(�xij)i = 
os(��0;i)(x0j � x0i )� sin(��0;i)(y0j � y0i ) ; (10.6)(�yij)i = sin(��0;i)(x0j � x0i ) + 
os(��0;i)(y0j � y0i ) : (10.7)Note that the underlying assumption used here is that an estimate for the mean angle ��0;iis already 
al
ulated. Obtaining geometri
ally 
onsistent heading angles is dis
ussed in thefollowing se
tion.10.3 Additive Heading EstimationThe method demonstrated so far suggested that �nding optimal state 
oordinates and de-du
ing the relationships between them rather than dire
tly �nding optimal relationships isa good way to address the additivity 
onstraint. Unfortunately, this approa
h is hard to fol-low in the 
ase of heading 
hange estimation, due to the von Mises distribution assumptionof the heading measures.Re
all that the von Mises density fun
tion has the form:f�;�(�) = 12�I0(�)e� 
os(���) ;where I0(�) is the modi�ed Bessel fun
tion of the �rst kind and order 0, I0(�) = 1Xr=0 1r!2 (12�)2r:Hen
e, by substituting �ij by �j � �i and applying a pro
edure similar to the one dis
ussed



93in Se
tion 10.1 we obtain a set of N�1 trigonometri
 equations with terms of the form
os(�j) sin(�i) whi
h do not lend themselves to simple solution.One possible way to address the hardness of solving these equations, suggested byMi
hael Sever [GSD98℄, is through the dire
t optimization of the auxiliary fun
tion, Q,using an iterative method su
h as gradient des
ent. This is an interesting approa
h topursue as future resear
h. However, we preferred to look for a stri
ter method that is notiterative, given that the em algorithm itself is already an iterative method. It seems prefer-able, if possible, to have a (small) �xed bound on the amount of work performed withinea
h em iteration.Hen
e, rather than solve the equations or try to iteratively optimize the auxiliary fun
-tion, we use the anti-symmetri
 reestimation pro
edure presented in Se
tion 5.4, and followit by a perpendi
ular proje
tion operator, whi
h maps the headings ve
tor of length (N�1)2,h��iji; 1 � i; j � N�1, i 6= j, whi
h does not satisfy additivity, onto a ve
tor of headingswithin an additive linear ve
tor spa
e. (Note that all entries in whi
h i = j are �xed to 0already, and therefore we do not need to proje
t them.)The proje
tion operator P maps ea
h 
urrent mean estimate, ��0j , to a real numberP(��0j). Ea
h ��ij where i 6= 0 is mapped to P(��0j) � P(��0i). An orthogonal proje
tionoperator P is 
onstru
ted as des
ribed by Saad [Saa95℄, by taking P = V V T where Vis a matrix whose 
olumns are an orthonormal basis of the linear spa
e of ve
tors thatsatisfy additivity. Obtaining su
h an orthonormal basis is done through the Gram-S
hmidtpro
edure.Our experien
e shows that this form of proje
tion is still not satisfa
tory within oursetting, sin
e it simply looks for the additive ve
tor 
losest to the non-additive one, ignoringthe fa
t that some of the entries in the non-additive ve
tor are based on a lot of observations,while others are based on hardly any data at all. Intuitively, we would like to keep theestimates that are well a

ounted for inta
t, and adapt the less a

ounted for estimates inorder to meet the additivity 
onstraint. More pre
isely, we would like to proje
t the non-additive heading estimates ve
tor onto a subspa
e of the additive ve
tor spa
e, in whi
h theve
tors have the same values as the non-additive ve
tor in all entries that are well-a

ountedfor. Unfortunately, this set of ve
tors is not a linear ve
tor spa
e (for instan
e, it does notsatisfy 
losure under s
alar multipli
ation), and the proje
tion operator as de�ned above
an not be applied dire
tly. However, this set of ve
tors does form an aÆne ve
tor spa
e,and we 
an proje
t onto it using a spe
ial te
hnique from linear algebra. We des
ribe the
omplete pro
edure below.



9410.3.1 Sele
ting Fixed EntriesWe start by pi
king the maximum number, n, of heading estimates that we would like topreserve. A typi
al 
hoi
e we have made is for n to be the number of states in the model.Using the heap data stru
ture over all expe
ted 
ounts of transitions between states, wesele
t a list of the n ordered pairs of states (si; sj) that have the largest expe
ted transition
ounts, Pt(�ij), from si to sj . The list is kept sorted a

ording to the number of theexpe
ted 
ounts. Note that we 
an't just �x these values and pro
eed to the proje
tionstage, sin
e:1. There may be in
onsisten
ies between these topmost values themselves;2. By �xing 
ertain relationships, other relationships are also enfor
ed through the geo-metri
al 
onsisten
y requirement.Therefore �xing the entries that should not be proje
ted requires examining and propagatingdependen
ies within the heading relationship ve
tor. To allow for easy expression of theinterdependen
ies, we 
hoose to take ��0;1; : : : ; ��0;N�1 as independent variables, and expressthe rest of the relationships ��i;j as ��0;j � ��0;i.Building the �xed-values ve
tor pro
eeds as follows. We pi
k the most a

ounted forrelationship ��i1;j1 , and assume its estimated value is �1. Fixing it implies that the ve
torentry for ��j1;i1 is set to ��1. Note that on
e the entry is �xed it does not 
hange any more.That is, if later in the list of sorted state pairs there is a 
ontradi
ting assignment to ��j1;i1 ,we dis
ard this item in the sorted list without using it to �x any of the values, and movedown to the next item in the list. However, we do not add any more items to the list; thuswe may, in pra
ti
e, use less than the n most a

ounted for values.We also note that �xing ��j1;i1 impli
itly for
es the relationship between ��0;i1 and ��0;j1to be ��0;i1 = ��0;j1 + �1.On
e all the impli
it relationships are determined, the next most a

ounted for item onthe list is examined. As said before, if it is in
onsistent with the already �xed values, itis dis
arded. Else, it is used for �xing all the impli
it dependents. We pro
eed until all nitems in the sorted list are treated.At the end of this phase we have entries that are 
ompletely determined, with a numeri
alvalue assigned to them, as well as entries that are inter-related su
h as ��0;i1 above whi
hdepends on ��0;j1 through the equation: ��0;i1 = ��0;j1 + �1. Sin
e, obviously, ��0;i1 and��0;j1 depend on one another, we adopt the 
onvention that the item with the higher index



95depends on the the item with the lower index, and the item with the lower index is viewedas a free variable. The following example demonstrates the pro
ess.Example 10.1 Suppose our model has 3 states. Hen
e our estimated symmetri
 ve
tor ofheading relationships, ex
luding self-transitions values whi
h are always 0, has 6 entries.h��0;1; ��0;2; ��1;0; ��1;2; ��2;0; ��2;1i = h90; 110;�90; 5;�110;�5i :We note that ��0;1 + ��1;2 is 
urrently not equal to ��0;2. Now, suppose that our expe
tedsupporting 
ounts of transitions between every pair of states are as follows:0 1 20 0.01 0.01 0.011 0.02 0.01 3.972 0.01 2.94 0.03Suppose we are only going to preserve the relationships for the 2 most a

ounted for statetransitions. Hen
e our sorted list 
ontains is ��1;2; ��2;1. By �xing ��1;2 to 5 we �x ��2;1 to�5, and ��0;2 = ��0;1 + 5. (Through symmetry we have ��1;0 = ���0;1 and ��2;0 = ���0;1 � 5.)The se
ond most-supported value is ��2;1, but sin
e it was already �xed by the previous step| we are done. The geometri
ally 
onsistent partially-�xed ve
tor is now:h��0;1; ��0;1 + 5; ���0;1; 5; ���0;1 � 5; �5i :The �nal step left is to proje
t the in
onsistent values 
urrently assigned to the un�xedentries h90; 110;�90;�110i onto a spa
e of the form hx; x+5;�x;�x�5i.We emphasize again, that ve
tors of the form hx; x+5;�x;�x�5i do not 
onstitutea linear ve
tor spa
e. In 
ontrast, ve
tors of the form hx; x;�x;�xi do 
onstitute a lin-ear spa
e. An aÆne transformation maps between these two spa
es; adding/subtra
tingthe ve
tor h0; 5;�0;�5i is the appropriate transformation. Hen
e, ve
tors of the formhx; x+5;�x;�x�5i 
onstitute an aÆne spa
e of ve
tors. The following se
tion explainshow to proje
t onto su
h a spa
e.10.3.2 Proje
tion onto an AÆne Spa
e 2Perpendi
ular proje
tion onto a linear spa
e was des
ribed earlier in this 
hapter. An aÆnespa
e A is de�ned as follows:2This se
tion is almost 
ompletely based on material I learned through 
onversations with John Hughes,to whom I am most grateful.
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Figure 10.1: Proje
ting v onto an aÆne spa
eDe�nition 10.3 A � Rn is an n-dimensional aÆne spa
e if for all ve
tors va 2 A, the setof ve
tors: A� va def= fua � vajua 2 Ag is a linear spa
e.Hen
e, we 
an pi
k a ve
tor va1 2 A and de�ne the translation Ta : A ! V , where V is alinear spa
e, V = A � va1 . This translation is trivially extended for any ve
tor v0 2 Rn,by de�ning Ta(v0) = v0 � va1 . In order to proje
t a ve
tor v 2 Rn onto A, we apply thetranslation Ta to v and proje
t Ta(v) onto V , whi
h results in a ve
tor P(Ta(v)) in V . Byapplying the inverse transform T�1a to it, we obtain the proje
tion of v on A.This pro
ess is demonstrated in Figure 10.1, in whi
h the linear spa
e is the two di-mensional ve
tor spa
e fhx; yij y = �xg, and the aÆne spa
e is fhx; yij y = �x + 4g. Thetransform Ta in this 
ase 
onsists of subtra
ting the ve
tor h0; 4i. The solid arrow in the�gure 
orresponds to the dire
t proje
tion of the ve
tor v onto the point P(v) of the aÆnespa
e. The dashed arrows represent the proje
tion via translation of v to Ta(v), the pro-je
tion of the latter onto the linear ve
tor spa
e, and the inverse translation of the result,P(Ta(v)), onto the aÆne spa
e.By applying this proje
tion pro
ess, we obtain the values that repla
e the entries in theheading relations ve
tor that were not yet �xed by the previous stage of the algorithm, anddid not satisfy additivity. We plug these values into their 
orre
t entries in the ve
tor andobtain a heading ve
tor that satis�es additivity. We note that it is suÆ
ient to proje
tonly the entries 
orresponding to unde�ned values of �0;1; : : : ; �0;N�1; the rest of the values
an be dedu
ed through the expression: �i;j = �0;j � �0;i. We 
on
lude this se
tion by
ompleting the example provided earlier.



97Example 10.1 (Cont.) We needed to proje
t the values h90; 110;�90;�110i onto a spa
eof the form hx; x+ 5;�x;�x� 5i. It is suÆ
ient to proje
t the entries h90; 110i onto thespa
e hx; x+ 5i, and the rest of the values are obtained through anti-symmetry. The linearspa
e hx; xi is obtained from the aÆne spa
e hx; x+ 5i through the transform of subtra
tingthe ve
tor h0; 5i. Applying this transform to the ve
tor h90; 110i results in h85; 105i. Thespa
e hx; xi is spanned by the orthonormal basis b = h 1p2 ; 1p2i. The proje
tion obtained bytaking bTb applied to the ve
tor h85; 105i results in the ve
tor h95; 95i. We apply the inversetranslation, adding h0; 5i and obtain the ve
tor h95; 100i.The 
omplete ve
tor obtained by plugging h95; 100;�95;�100i into the yet undeterminedentries of the heading relations ve
tor gives us the following additive heading reestimate:h95; 100;�95; 5;�100;�5i :Although the pro
edure for preserving additivity over headings is not proven to preservemonotone 
onvergen
e of the likelihood fun
tion towards a lo
al maximum, our experimentshave shown that monotone 
onvergen
e is preserved. However, under the 
urrent form ofadditivity enfor
ement, the quality of the results, as demonstrated in the next 
hapter,
ompared with those obtained when only symmetry is enfor
ed, does not 
learly justify theadditional e�ort involved.
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Chapter 11Experiments Enfor
ing AdditivitySimilar to the experiments presented in previous 
hapters, we test the algorithm both withina global framework under the perpendi
ularity assumption, and within a relative 
oordinateframework, where the perpendi
ularity assumption is relaxed. Again, we use both real robotdata and data obtained from the same simulated model as before.As before, we provide both qualitative results in terms of plots of the models, and statis-ti
al evaluation. Se
tion 11.1 demonstrates the e�e
ts of additivity enfor
ement under theperpendi
ularity assumption, while Se
tion 11.2 demonstrates its e�e
ts when the perpen-di
ularity assumption is relaxed. Note that there is a signi�
ant di�eren
e between the twosettings. The reason is that when the perpendi
ularity assumption is dropped, obtainingthe 
orre
t headings is 
ru
ial, sin
e the evaluation of both x and y measurements dependon the heading. Through the use of proje
tion over the heading we 
ompromise the qualityof the heading, and possibly harm x and y estimates. Another problem with the additivityenfor
ement is its relian
e on �0i as a basis for the 
onstraints. A bad estimate for the �0i's
an result in a bad estimation of all the geometri
al parameters.Se
tion 11.3 des
ribes some experiments designed spe
i�
ally for studying the e�e
ts ofodometry and additivity on the quality of the topology and the geometry of learnt models.11.1 Results within a Global FrameworkWe applied the algorithm des
ribed in Se
tion 10.1 to the same robot-gathered and simu-lated sequen
es des
ribed and used in Chapter 7. The same evaluation methods are appliedhere as well. 99
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onsisten
y while using the various initialization methods.Bold dashed arrows denote transitions whose probability is very 
lose to the probability ofthe most likely transition from the state. The most a

urate map is learned using the tag-based initialization te
hnique. There is very little 
u
tuation in the quality of the modelsa
ross multiple runs sin
e the initialization is 
lose to deterministi
 (up to the random noisesuperimposed on the data). However, this model is not very di�erent from the one depi
ted



101in Figure 7.3 whi
h was learned without enfor
ing additivity, using the same initializationalgorithm.The two examples of the learned geometry starting from k-means initialization demon-strate that geometri
ally 
onsistent models 
an still vary in quality. Moreover, althoughthe geometry looks almost a

urate in Figure 11.2, note that the topology is still not asgood, given that we don't have two states at ea
h of the top two 
orners to denote 
hangeof headings during turns, and that there is a ba
k and forth transition between states13 and 16. The variability in the geometri
al outline of the models a
ross multiple runs,when starting with k-means initialization is smaller when additivity is enfor
ed, than whenonly anti-symmetry is enfor
ed. That is, we get more 
onsistently good models and thedependen
e on the initial 
lustering seems to be redu
ed.It is interesting to note that even when starting from a random initial model, the algo-rithm did 
onverge several times to models with geometry that is 
lose to the true one, asshown in Figure 11.4. Again, this behavior appears to o

ur more 
onsistently than whenonly anti-symmetry is enfor
ed.Figures 11.5 { 11.8 show some of the models obtained by applying our algorithm to thesimulated sequen
es, enfor
ing the 
omplete geometri
al 
onsisten
y while using the variousinitialization methods. The most a

urate map, shown in Figure 11.5 is learned using thek-means based initialization te
hnique. Using a global framework allows this method tobe e�e
tive. There is still, however, a lot of variability a
ross multiple runs and trainingsequen
es, in the quality of the results under this initialization method, due to its randomstarting point. A mu
h worse model, geometri
ally speaking, whi
h does not represent thetrue environment well, despite its geometri
al 
onsisten
y, is shown in Figure 11.6. Whenusing the tag-based initialization, we get more uniformity in the quality of the results a
rossmultiple runs, but there is still diversity when running over di�erent data sequen
es. Weshow one of the better geometri
al models in Figure 11.7, and not as good a model inFigure 11.8. A possible explanation to the diversity in quality of the learned simulatedmodel, under tag-based initialization, as opposed to the models learned from robot data,is that the simulated environment is mu
h larger. This 
auses the global relations betweenremote states, whi
h are re
e
ted in the geometri
al 
onsisten
y 
onstraints, to be harderto learn.For the purpose of quantitatively evaluating the learning algorithm we provide in Ta-ble 11.1 a summary of the results of running the algorithm under ea
h of the 3 initializationsettings, 10 times for ea
h sequen
e. The results of the runs without odometri
 information
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Figure 11.7:Learned model of the simulatedenvironment. Initialization is tag-based. Figure 11.8:Learned model of the simulatedenvironment. Initialization is tag-based.are listed here again for 
omparison. The kl divergen
e with respe
t to the true model formodels learned using odometry, starting from either a biased or a random initial model, isabout 5-6 times smaller than for models learned without odometri
 data. The standarddeviation around the means is about 0.2 for kl distan
es for models learned with odom-etry using biased initialization and about 0.1 for models learned from a random startingpoint. The two-sample t-test still veri�es that the odometri
 models are better than thenon-odometri
 ones with a very high statisti
al signi�
an
e.In addition, the number of iterations required for 
onvergen
e when learning using odo-metri
 information is roughly 4-5 times smaller than that required when ignoring su
h



103Seq. Tag-based k-means Random No Odo# kl Iter.# kl Iter. # kl Iter. # kl Iter. #1 0.981 16.70 1.149 29.90 1.061 28.40 6.351 124.12 1.290 20.90 1.037 27.80 1.037 27.70 4.863 126.03 1.115 22.30 1.085 20.40 1.110 21.50 5.926 113.04 1.241 12.70 1.144 26.60 1.055 19.90 6.261 107.45 1.241 27.50 1.442 20.40 1.028 29.20 4.802 122.9Table 11.1: Average results of four learning settings with �ve training sequen
es.information. Again, the t-test veri�es the signi�
an
e of this result. As before, the num-ber of iterations required for 
onvergen
e when starting from a tag-based initial model isstatisti
ally signi�
antly lower than when starting with any other initialization method.Under all three initialization settings, the models learned are topologi
ally somewhatinferior (and this is with high statisti
al signi�
an
e), in terms of the kl divergen
e, tothose learned without enfor
ing additivity. This is likely to be a result of the very strong
onstraints enfor
ed during the learning pro
ess, whi
h prevent the algorithm from sear
hingbetter areas of the learning-spa
e, and restri
t it to rea
h poor lo
al maxima. The geometrylooks superior in some 
ases, but it is not signi�
antly better. However, there seems to beless variability in the quality of the geometri
al models a
ross multiple runs when additivityis enfor
ed.11.2 Results within a Relative FrameworkWe applied the algorithm des
ribed in Se
tion 10.2 to the same robot-gathered and sim-ulated sequen
es des
ribed and used in Chapter 9. The evaluation methods also stay thesame. Figure 11.9 shows a typi
al model obtained by applying the algorithm enfor
ing the
omplete geometri
al 
onsisten
y, to the robot data shown in Figure 9.3, using tag-basedinitialization. The enfor
ement of 
onsisten
y 
onstraints resulted in a better preservationof the re
tangular geometry of the environment. We noti
e that state 0 still does not par-ti
ipate in the loop. The main reason for this is that due to the relatively large number ofstates that are 
lose together in the 
orresponding area of the true environment, it was notre
ognized that we ever returned to this parti
ular state during the loop. Therefore, therewas only one transition re
orded from state 0 to state 1 a

ording to the expe
ted transition
ounts 
al
ulated by the algorithm. When proje
ting the angles to maintain additivity, theangle from state 0 to 1 was therefore 
ompromised, allowing geometri
al 
onsisten
y to
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orridors Ramona traversed. Initialization is tag-based.Seq. Tag-based k-means Random No Odo# kl Iter.# kl Iter. # kl Iter. # kl Iter. #1 1.462 11.80 1.066 36.50 1.076 35.50 6.919 113.32 1.184 36.80 1.051 30.20 1.097 32.00 9.926 113.13 1.195 30.70 1.270 45.00 1.116 31.00 10.030 102.04 1.025 24.60 1.216 40.80 1.043 30.40 9.539 104.25 1.223 33.30 1.100 40.80 1.083 35.90 12.431 112.5Table 11.2: Average results of four learning settings with �ve training sequen
es.maintain the re
tangular geometry among the more regularly visited states.Figures 11.10 { 11.11 show two of the models obtained by applying our algorithm tothe simulated sequen
es, enfor
ing the 
omplete geometri
al 
onsisten
y while using thetag-based initialization methods. The geometry of re
tangular 
ombination is 
lear, but,obviously, these are highly ina

urate geometri
al representations of the simulated environ-ment.For the purpose of quantitatively evaluating the learning algorithm we provide in Ta-ble 11.2 a summary of the results of running the algorithm under ea
h of the 3 initializationsettings, 10 times for ea
h sequen
e. For 
omparison the results of the runs without odo-metri
 information are repeated here. As before, the kl divergen
e with respe
t to thetrue model is signi�
antly smaller when odometri
 information is used. The standard devi-ation around the means is about 0.2 for kl values of models learned with odometry using
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Figure 11.10:Learned model of the simu-lated environment. Figure 11.11:Learned model of the simu-lated environment.tag-based initialization and about 0.1 for models learned from a random or k-means-basedstarting point.The standard deviation around the number of iterations is about 10 for models startedfrom either a random or a tag-based model and about 20 for models whose initializationwas based on k-means. The number of iterations when additivity is enfor
ed in the relative
oordinate setting is 
onsistently higher, with high statisti
al signi�
an
e, than when onlyanti-symmetry is enfor
ed, in the 
ase of k-means based initialization. An explanation forthis is that in the relative setting, the bad initialization starting from k-means leads to lowlikelihood values, whi
h in turn 
auses numeri
al instability in the pro
ess of solving the setof equations required for enfor
ing additivity. This 
auses a slowdown in the 
onvergen
eof the em algorithm. An in
rease in the number of iterations, whi
h is not as dramati
and not as statisti
ally signi�
ant, also exists when using any of the other two initializationmethods.11.3 Studying the E�e
ts of Odometry and AdditivityTo better understand the impa
t of enfor
ing geometri
al 
onsisten
y in parti
ular andthat of odometri
 information in general, we study two small examples. We designed twomodels; One that intuitively does not require additivity in order to be learned, and the otherwhi
h seemingly does require the enfor
ement of the 
omplete geometri
al 
onsisten
y. Wesampled data from both models, and applied our algorithms to it. The models, and theresults analysis are des
ribed throughout the rest of this se
tion.



106 0< D, W, W> 1< O, D, D> 2< O, D, D> 3< O, D, D> 4< O, D, D>0.85 0.85 0.85 0.85
0.85 0< D, W, W> 1< O, D, D> 2< O, D, D> 3< O, D, D> 4< O, D, D>0.22 0.78 0.94 0.81 0.85

0.82Figure 11.12:A model of a simulated en-vironment. The distan
es between states aredrawn to s
ale. Initial state is distin
t. Figure 11.13:A learned model. Initializa-tion is Tag-based. Distan
es are drawn tos
ale.2< D, W, W> 4< O, D, D> 3< O, D, D> 0< O, D, D> 1< O, D, D>0.85
0.82

0.22 0.78 0.810.94 4< O, D, D> 3< O, D, D> 2< O, D, D> 1< O, D, D>0< D, W, W>0.22 0.78
0.81

0.850.810.94Figure 11.14:A learned model. Initializa-tion is k-means based. Figure 11.15:A learned model. Initializa-tion is k-means based.Experiment 11.1 To examine the e�e
ts of odometri
 information on learning a model,we used a small 
y
li
 model, for whi
h the initial state has a distin
t tuple of observations,while all other states look alike observation-wise, but 
an be distinguished by their geomet-ri
al pla
ement in the environment. Figure 11.12 shows a geometri
 layout of the modelas a probabilisti
 state-transition diagram. Note that the states are pla
ed in di�erent dis-tan
es from ea
h other. This pla
ement is signi�
ant, and represents the geometry of thestate spa
e; all the states lie on the same line, with diminishing distan
es from one state tothe next. The distan
es between the states in the �gure are drawn to s
ale. Edges denotetransitions with probability greater than 0:2. The numbers on the edges 
orrespond to thea
tual transition probabilities. At ea
h state, the observations 
onsist of the view on thefront, left and right, whi
h 
an be either a door, D, a wall, W, or and open area O. Themost likely observations are shown in the diagram. These observations are typi
ally seen80-90 per
ent of the times when a state is visited.Using Monte-Carlo sampling we generated two sequen
es of 300 observations and learned5 models from ea
h of them under ea
h of the four learning settings, enfor
ing only anti-symmetry during the learning pro
ess.Figure 11.13 shows a typi
al model learned using tag-based initialization. Again, thestates are pla
ed a

ording to the relation matrix learned. It is 
lear that there is an almostperfe
t 
orresponden
e between both the geometry and the topology under this learningsetting. All models learned using this algorithm look almost identi
al to this one.



1073< O, D, D> 2< O, D, D> 0< O, D, D> 1< O, D, D>4< D, W, W> 0.85
0.81

0.790.940.780.22
4< O, D, D> 0< O, D, D>1< O, D, D>2< D, W, W>3< D, W, W>

0.40 0.420.910.500.50
0.790.21 0.85Figure 11.16:A learned model. Initializa-tion is random. Figure 11.17:A learned model. Initializa-tion is random.3< D, W, W> 4< O, D, D> 2< O, D, D> 0< O, D, D> 1< D, W, W>0.37 0.21

0.42 0.51 0.49
0.570.430.88 0.730.27 3< O, D, D> 0< D, W, W> 4< O, D, D> 1< D, O, W> 2< D, W, W>0.87 0.440.560.81

0.280.63 0.46 0.54Figure 11.18:A learned model. No odome-try used. State pla
ing is arbitrary, Figure 11.19:A learned model. No odome-try used. State pla
ing is arbitrary.Figures 11.14 and 11.15 demonstrate the results of learning using k-means based ini-tialization. The �gure on the left shows a typi
al good result, where both topology andgeometry almost exa
tly �t the true model. However, when starting from a poor 
lustering,the model is not as good; although it is still topologi
ally 
orre
t, the initial state is not
orre
tly identi�ed. This is shown in Figure 11.15.Figures 11.16 and 11.17 show the results of learning starting from a randomly initializedmodel. The �gure on the left shows the less frequent 
ase in whi
h the algorithm managed tolearn a good model despite the random initialization. The �gure on the right demonstratesone of the less well-learned models, in whi
h the geometry is 
learly not as good as inall the other odometri
 model. The two leftmost states are a
tually pla
ed in the sameposition a

ording to the relation matrix, and are pla
ed one above the other for the sakeof readability only. These two states 
orrespond the initial state in the original model. The
y
li
ity is still present and the observations are still the same as in the original model, butboth the topologi
al and the geometri
al stru
ture is di�erent from the true one.Figures 11.18 and 11.19 show the results of learning without the use of odometry. Itis important to note that the pla
ement of the states here has no geometri
al signi�
an
e,and the layout is imposed in order to 
larify the plot. Figure 11.18 depi
ts one of thebetter models, in whi
h the observation distribution 
orresponds well to that of the originalmodel although the topology is di�erent. In Figure 11.19, we see that in state 1, the triplehD; O; W i that is highly unlikely in the original model was learned as a likely observationtriple, although, in an unlikely-to-be-rea
hed state.



108 Seq. Tag-based k-means Random No Odo# Mean StD Mean StD Mean StD Mean StD1 0.073 0.019 0.641 0.766 0.699 0.101 0.609 0.1982 0.032 0.006 0.091 0.067 0.805 0.239 0.987 1.117Table 11.3: Average results of four learning settings with two training sequen
es.We 
an see that under this setting, odometry greatly helps to distinguish the states fromea
h other, and the tag-based initialization ensures 
onsistently good results.To verify these results we also used the Kullba
k-Liebler divergen
e, evaluated based ongenerating 50 sequen
es of length 20 ea
h from the true model and measuring the di�eren
ebetween their likelihood with respe
t to the true model and the likelihood with respe
tto the learned model (averaging over the total number of data points { 1000 in this 
ase).Table 11.3 lists the means and standard deviations of the Kullba
k-Leibler measure for ea
hof the sequen
es averaged over the 5 di�erent learning experien
es. The kl divergen
e formodels learned using tag-based initialization are mu
h smaller than for those learned usingany other initialization method, or not using odometry at all. Using k-means based initial-ization typi
ally gives very good results in this setting, but due to two severe outliers whenstarting from bad initial 
lustering, the mean is not mu
h lower than when using randominitialization or no odometry in the 
ase of the �rst sequen
e. Note that the geometri
alsetting of the model is su
h that there are no turns, and therefore 
umulative rotationalerror does not interfere with the e�e
tiveness of the k-means based initialization. (Still,the algorithm used here does take into a

ount 
umulative rotational errors, as des
ribedin Chapter 9.)Models learned using odometry, starting from a random initialization, are not mu
hbetter than those learned without odometri
 information at all, although, at times theformer still does very well, while the latter sometimes performs mu
h worse. (Spe
i�
ally,when using the se
ond sequen
e the di�eren
e between the two settings is apparent). Itis important to note that the example uses a small model whi
h is not very peaked, andthat there was an abundan
e of data provided from it. Hen
e, even the non-odometri
learning performed quite well, if all we are 
on
erned about is the probability distributionover sequen
es.Experiment 11.2 To examine the e�e
ts of enfor
ing additivity on the learning pro
ess,it takes a model in whi
h not only is odometry needed to distinguish between seeminglysimilar states, but also, odometry helps to tell that a state rea
hed via two distin
t routes
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Figure 11.20:A model of a simulated envi-ronment. Figure 11.21:A geometri
al proje
tion of a600 observations sequen
e sampled from themodel
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-4500Figure 11.22:Log-likelihood as a fun
tion ofthe number of iterations. Learning from se-quen
e 2. Figure 11.23:Log-likelihood as a fun
tion ofthe number of iterations. Learning from se-quen
e 3.is still the same state. This is where we expe
t geometri
al 
onsisten
y to play a majorrole. We use a small model as shown in Figure 11.20. State 5 is rea
hable from state 0both by going north, turning east, and then turning north again, (the state sequen
e in this
ase is: h0; 1; 2; 3; 4; 9; 5i) and also by �rst going east then north (the state sequen
e ish0; 6; 7; 10; 8; 5i). From state 5 we 
an go dire
tly to state 0, and also, from state 2 we 
ango with equal probability either to state 3 or to state 8.Using Monte-Carlo sampling we generated three sequen
es of 600 observations andlearned 5 models from ea
h of them under all learning settings, with and without theenfor
ement of additivity. One of these sequen
es is plotted in Figure 11.21. The resultspresented here are only 
on
erned with the value of enfor
ing additivity. Therefore, welimit our dis
ussion to using the tag-based initialization whi
h is the superior initializationmethod a

ording to all of our experiments, in the presen
e of 
umulative rotational error.Typi
ally when the model is small, tag-based initialization performs well and plays asigni�
ant role in 
apturing the geometry of the model. However, the iterative learning
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Figure 11.24:Model learned from sequen
e1. Additivity is enfor
ed. Figure 11.25:Model learned from sequen
e1. Only anti-symmetry is enfor
ed.
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10Figure 11.26:Model learned from sequen
e2. Additivity is enfor
ed. Figure 11.27:Model learned from sequen
e2. Only anti-symmetry is enfor
ed.pro
edure still 
ontributes a lot to learning the model parameters and improving the likeli-hood. This is demonstrated by the plots in Figures 11.22 and 11.23. The �gures show thelog-likelihood, as it in
reases during the learning pro
ess, as a fun
tion of the number ofiterations, for two typi
al runs of the learning algorithm. The likelihood at iteration 0 isthe likelihood of the data given the initial model. There is always a signi�
ant in
rease inthe likelihood fun
tion following the �rst iteration of the algorithm, whi
h shows that theinitialization stage is not suÆ
ient, in and of itself, to a

ount for the quality of the learnedmodels.Figures 11.24 { 11.28 depi
t models that were learned from ea
h of the three sequen
esusing the enfor
ement of additivity, while Figures 11.25 { 11.29 depi
t models learned withonly anti-symmetry enfor
ed. The variability around these example models is very small,due to the almost-deterministi
 nature of the initialization method. The bold dashed arrows
orrespond to transitions that are very 
lose in probability to the most likely one.Figure 11.24 demonstrates that even though the model is learned very well from the
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10Figure 11.28:Model learned from sequen
e3. Additivity is enfor
ed. Figure 11.29:Model learned from sequen
e3. Only anti-symmetry is enfor
ed.data sequen
e without the enfor
ement of additivity (Figure 11.25), our attempt to pre-serve geometri
al 
onsisten
y has 
ompromised some of the angular relationships betweenstates. States 3 and 4, whi
h should have been aligned with states 1 and 5, are not pla
edexa
tly where they should be. It 
an be explained as a side-e�e
t of the dependen
y onthe relationship of ea
h state to state 0 when enfor
ing global 
onsisten
y between everypair of states (see Se
tion 10.2). If the relations to state 0 are not substantiated by data,it is likely that the estimates obtained from the 
onstrained equations are 
ompromised.Future resear
h will examine the possibility to 
hange the referen
e system when enfor
inggeometri
al 
onsisten
y to be with respe
t to state transitions that are estimated to havebeen traversed the most.Figures 11.26 and 11.27 demonstrate a 
ase in whi
h the results are very similar withand without enfor
ing additivity.Figures 11.28 and 11.29 demonstrate a 
ase in whi
h the enfor
ement of additivitya
tually makes a signi�
ant di�eren
e in the quality of the learned model. Here we see thatan almost 
orre
t model is obtained by the use of additivity (aside for state 10, whi
h isunrea
hable and probably should have 
orresponded to state 10 in the true model). Withoutadditivity, the model learned (Figure 11.29) is not geometri
ally 
onsistent. State 6 is pla
edas shown in the �gure when drawn with respe
t to state 7, while it should be 
lose to state5 if drawn with respe
t to state 5. Note that the returning edge to the initial state is fromstate 7 rather than from state 5.There is no signi�
ant di�eren
e in the Kullba
k-Leibler divergen
e between the sym-metri
 and the additive 
ase.



112In summary, to obtain models that are good both geometri
ally and topologi
ally, it is
ru
ial to start with a good initial model. The tag-based method we have developed provesuseful in many 
ases. It is parti
ularly e�e
tive for small models in whi
h the a

umulatedvarian
e 
al
ulated and used when �lling the relations table is not too big. An importantresear
h dire
tion is that of learning small pie
es of a large model and then 
ombining thesmall models into one large model of the 
omplete environment.The enfor
ement of geometri
al 
onsisten
y throughout the model 
an be helpful attimes, but is not, in its present form, guaranteed to be signi�
antly advantageous over thesimpler anti-symmetry enfor
ement. In addition, it may in
rease the number of iterationsrequired for 
onvergen
e. By strongly 
onstraining the learning pro
ess, it may even resultin topologi
ally inferior models, as demonstrated by our larger simulated experiments inSe
tions 11.1 and 11.2. It is possible that enfor
ing anti-symmetry at the early stagesof the learning pro
ess, and the 
omplete geometri
al 
onsisten
y only towards the end,would allow the algorithm to 
onverge to better models. As for the 
onsisten
y-enfor
ementpro
ess itself, an alternative 
hoi
e of the basis for the 
onsisten
y 
onstraints may rely onthe estimated state transitions 
ounts, 
hoosing as a basis the transitions that have themost estimated 
ounts.



Chapter 12Con
lusions and Future WorkIn this work we introdu
ed a way in whi
h readily available information is used to improvethe quality of a
quired models for robot navigation, as well as to redu
e the resour
esrequired for obtaining su
h models.We have shown that the separation 
ommonly made between geometri
al and topologi
almodels as mutually ex
lusive entities, (see an extensive dis
ussion by Thrun [Thr99℄), is notne
essary. Not only 
an it be bridged, as done by Thrun in a two-tiered fashion by learning�rst a geometri
al model and then a topologi
al one from it, but rather, geometri
al-in-nature odometri
 information 
an be dire
tly in
orporated into the topologi
al realm, andused to improve the a
quisition pro
ess of a topologi
al model. This se
tion summarizesthe 
ontributions of the thesis, and surveys several dire
tions for future work.12.1 ContributionsThe theoreti
al 
ontributions of the thesis are as follows:� Extension of the formal hidden Markov models framework to a

ommodate odometri
information.� Extension of the Baum-Wel
h algorithm to use odometri
 information for learninghidden Markov models, providing proof of 
onvergen
e for most of the algorithmi
extensions.� Pointing out several spe
ial issues in handling dire
tional data in the 
ontext of robotnavigation. In parti
ular, the need for dire
tional distributions su
h as the von-Mises113



114 distribution, and the asso
iated estimation pro
edures.� Providing a basis for maintaining geometri
al 
onsisten
y throughout the system,both in terms of proje
tion and in terms of dire
t optimization under geometri
al
onstraints. Su
h statisti
al estimation under 
onstraints is hardly treated in themain-stream statisti
al literature [Bar84℄.The pra
ti
al 
ontributions are:� Implementation of the learning algorithm for both pomdps and hmms, as well as thesupporting pa
kages for parsing, testing, 
omparing, sampling sequen
es from thesemodels, and for plotting hmms.� Empiri
al tests showing that through the use of odometri
 information better models
an be learned, while requiring fewer iterations and shorter data sequen
es.� Appli
ation of the algorithm to real robot data gathered from a globally ambiguousenvironment whi
h 
ontains loops. Learning models for environments with loops is
onsidered one of the hardest problems in model a
quisition for robot navigation.� A new heuristi
 for �nding an initial model, based on odometri
 information. Thealgorithm is robust in the presen
e of 
umulative rotational error, and may also serveas a possible basis for estimating the number of states in the model.12.2 Future WorkLearning topologi
al maps through the use of odometri
 information is by no means a solvedproblem. First, we stress that the redu
tion in the number of iterations does not 
urrentlytranslate to a redu
tion in the expe
ted run time, sin
e the 
omputation of the normaland von-Mises distribution for ea
h data point and ea
h pair of states in ea
h iteration isan expensive operator. Through the use of lookup-tables, 
a
hing, and exploitation of thesymmetries in the relations table, this 
ost should be redu
ed, allowing us to take advantageof the fewer iterations. Our 
urrent na��ve implementation does not bene�t mu
h from thefewer iterations, aside from the fa
t that the run time would have been mu
h greater ifto a
hieve the same quality of models as our algorithm a
hieves, we would have needed asmany iterations as in the non-odometri
 
ase.As demonstrated in Chapter 11, the geometri
al-
onsisten
y maintenan
e su�ers fromtwo main drawba
ks. It is more 
ompli
ated due to the need to solve a potentially large set



115of linear equations, and it depends on obtaining good estimates for the values of �0i along alldimensions. Despite the relatively 
ompli
ated reestimation pro
edure, having to solve a setof equations is not a 
omputational bottlene
k of the algorithm. However, it may still provebene�
ial to use advan
ed te
hniques for treating sparse matri
es for solving the equations.Su
h te
hniques may also prove e�e
tive for addressing the numeri
al instabilities o

urringwhile solving the equations. An important dire
tion to explore, addressing the dependen
yon the means with respe
t to state 0, is that of 
hoosing the expressions for geometri
al
onstraints to be based on the transitions whi
h have the most support. This may be donein a way similar to the one taken for treating the proje
tion of heading estimates. Su
han approa
h might 
ompli
ate the algorithm on one hand, but may make it mu
h morea

urate on the other.The value of enfor
ing 
omplete geometri
al 
onsisten
y is not fully determined. It maybe an e�e
tive learning pro
edure to enfor
e anti-symmetry rather than 
omplete geomet-ri
al 
onsisten
y for several learning iterations, enfor
ing 
omplete geometri
al 
onsisten
yonly in the last stages of the learning pro
ess. An additional alternative is to enfor
e addi-tivity over the x and y dimensions, while enfor
ing only anti-symmetry along the headingdimension.Another important issue is the understanding of the e�e
ts of the parameters that are
urrently provided to the algorithm. These in
lude the number of states, the initial defaultvarian
e, and the weight assigned to sines and 
osines when 
al
ulating the distan
e betweenodometri
 measures. Our experien
e has shown that all of the latter parameters e�e
t theresults of the initialization (both the k-means and the tag-based), and although it is feasibleto adjust these few parameters manually a

ording to the problem at hand, it is desirable tohave de�nite guidelines in 
hoosing them, or a fully automated pro
edure that does it basedon the magnitude of the input data. We stress that all the experiments reported in thiswork were 
ondu
ted under the same �xed set of 
onstants. The only varying parameterwas the number of states in the model, as expli
itly stated.An additional dire
tion we have started to explore is that of 
ombining learning themodel and planning within it into a uni�ed framework, based on reinfor
ement learning.The basi
 idea behind this possible extension, is to take the 
urrent learned model of apomdp and augment ea
h state with a reward that is invertly proportional to our 
on�den
ein the a

ura
y of the probability distributions 
urrently asso
iated with the state. Thatis, states whose distributions are believed to be well supported by the data sequen
e fromwhi
h the model was learned, are assigned low rewards while states whose distributions



116are unsupported by enough data are assigned high rewards. The robot, moving in theenvironment a

ording to its 
urrent model, trying to maximize its expe
ted reward, would
on
entrate on arriving at those states about whi
h it knows the least, thus obtaining moredata about them. It 
an then improve the 
urrent model based on the newly obtaineddata. As a 
onsequen
e { both the model and the reward assignment 
hange. The pro
essthen 
ontinues under the updated model and reward fun
tion. Su
h \ignoran
e rewards"
an potentially be 
ombined with the standard pomdp rewards, thus enabling the tasks ofplanning within a pomdp environment [CKL94, Cas98℄ and learning it to be 
ombined.12.3 Beyond Roboti
sHidden Markov models serve as useful modeling tools in a variety of domains other thanrobot navigation, from natural language understanding [Cha93℄ to 
omputational mole
ularbiology [BCH+93, KBM+94℄.Our work demonstrates that through the use of domain-spe
i�
 information and 
on-straints, automati
 model a
quisition is made more e�e
tive while requiring fewer iterationsand less gathered data. We strongly believe that this idea 
an be applied for learning hmmsand pomdp models in areas other than roboti
s.One appealing appli
ation domain is medi
al de
ision support. Probabilisti
 modelssu
h as Bayesian networks and pomdp models have been re
ently introdu
ed as aids fordiagnosti
s and de
ision making in medi
ine [SDL+93, SOA97, HF98℄. The patient's stateand symptoms that evolve through time as a result of treatment, 
an be naturally modeledas a pomdp. Various 
onditions that the patient may be in are mutually ex
lusive and timedependent. Thus there are many potential 
onstraints on the 
hange in the patient's 
ondi-tion. These 
onstraints 
an be exploited in order to learn models both for the developmentof the disease and for the expe
ted 
hange in the patient's state as treatment is applied.Su
h models 
an be of great value for predi
ting the results of possible treatments, and forassisting physi
ians in de
iding on su
h treatments.Another area that is rapidly developing is 
omputational biology [KBM+94, GM96,FMG+97, KSB+97℄. Hidden Markov models are already su

essfully used for modelingproteins and dna sequen
es. Su
h large mole
ules have an intri
ate 3-dimensional geomet-ri
al stru
ture. It is likely that by enfor
ing geometri
al 
onstraints, similar to the onesdis
ussed throughout this work, a
quiring models for proteins and dna sequen
es 
an bemade better and faster.



117In both the medi
al and the biologi
al domain, the ability to learn from relatively smallquantities of data is parti
ularly important. There are medi
al treatments that are rarelyapplied due to their high 
ost or high risk, as well as medi
al 
onditions that are rarelyen
ountered. Similarly, some families of proteins, for whi
h models need to be learned,have only a few instan
es that are fully analyzed. In order to obtain models from theexisting data in these 
ases, it is important to be able to take advantage of the availabledata to the fullest. As demonstrated by the experiments des
ribed in previous 
hapters,our algorithm retains its good performan
e even when the amount of data available to itis signi�
antly redu
ed. This 
apability is expe
ted to be of great value if our approa
h isapplied in the bio-medi
al domain.



118



Appendix AAn Overview of the Odometri
Learning Algorithm for HMMsThe algorithm takes as input an experien
e sequen
e E = hr; V i, 
onsisting of the odometri
sequen
e r and the observation sequen
e V .Learn Odometri
 HMM(E)1 Initialize matri
es A;B;R (See Chapter 6)2 max 
hange  13 while ( max 
hange > �)4 do Cal
ulate Forward probabilities, � (Formula 4.1)5 Cal
ulate Ba
kward probabilities, � (Formula 4.2)6 Cal
ulate state-o

upation probabilities, 
 (Formula 4.3)7 Cal
ulate State-transition probabilities, �; (Formula 4.4)8 Old A  A; Old B  B9 A Reestimate (A) (Formula 4.5)10 B  Reestimate (B) (Formula 4.6)11 R�  Reestimate (R�) (Formulae 5.4 and 5.6)12 hRx; Ryi  Reestimate(Rx; Ry), using either� Formulae 4.13 and 4.12 (within a global framework), or� Formulae 8.3, 8.4 and 4.12 (within a relative framework)13 max 
hange  MAX(Get Max Change(A; Old A );Get Max Change(B; Old B ))If additivity is enfor
ed, step 13 is followed by a proje
tion of the reestimated R� onto anadditive aÆne spa
e, as des
ribed in Se
tion 10.3. In addition, step 12 is substituted by119



120the pro
edure des
ribed in either Se
tion 10.1 or 10.2. That is, if we are operating withina global framework, the equations denoted by Formula 10.3 are solved and the means are
al
ulated from the solution a

ording to equation 10.4. If we are operating within a state-relative framework, the system of equations B.1, B.2 is solved, and the means are 
al
ulateda

ording to equations 10.6 and 10.7.Get Max Chage is a fun
tion that takes two matri
es and returns the maximal element-wise absolute di�eren
e between them.



Appendix BDi�erentiation DetailsWe provide here two di�erentiations whose details were omitted earlier.B.1 Un
onstrained Odometri
 Reestimation FormulaeIn Se
tion 4.3.2, Formula 4.19, we rewrote Baum's auxiliary fun
tion, Q, restri
ted to apair of states i; j, and for a single odometri
 dimension, m, as:Qmij (R;R) = T�2Xt=0 �t(i; j)(log(fmi;j(rmt+1))� log(�mij )) ;and 
laimed that by setting its partial derivatives, �Qmij��mij and �Qmij��mij to 0, we obtain theun
onstrained reestimation formulae 4.7 and 4.8:�mi;j = T�2Xt=0 rt[m℄�t(i; j)T�2Xt=0 �t(i; j) ; �2mi;j) = T�2Xt=0 (rt[m℄� �mi;j)2�t(i; j)T�2Xt=0 �t(i; j) :The derivative of Qmij with respe
t to �mij is:�Qmij��mij = �T�2Xt=0 �t(i; j)�(rmt ��mij )22(�mij )2��mij = T�2Xt=0 �t(i; j)(rmt � �mij )(�mij )2 :By setting this derivative to 0, we obtain the equation:T�2Xt=0 �t(i; j)(rmt � �mij )(�mij )2 = 0 ;121



122whose solution is indeed: �mij = T�2Xt=0 �t(i; j)rmtT�2Xt=0 �t(i; j) :The derivative of Qmij with respe
t to �mij is:�Qmij��mij = �T�2Xt=0 �t(i; j)��(rmt ��mij )22(�mij )2 � log(�mij )���mij = T�2Xt=0 �t(i; j) (rmt � �mij )2(�mij )3 � 1�mij ! :Setting it to 0 results in the equation:T�2Xt=0 �t(i; j) (rmt � �mij )2(�mij )3 � 1�mij ! = 0 ;whose solution is indeed: (�mij )2 = T�2Xt=0 �t(i; j)(rmt � �mij )2T�2Xt=0 �t(i; j) : 2B.2 Enfor
ing Additivity within a Relative FrameworkIn Se
tion 10.2, Formula 10.5, we rewrote Baum's auxiliary fun
tion, Q, restri
ted to theodometri
 dimensions x; y, as a fun
tion of the lo
ations, hx00; y00i; : : :hx0N�1; y0N�1i, of statess0; : : : ; sN�1, along the global x and y 
oordinate system, as follows:Qx;y(R;R) = N�1Xi=0 N�1Xj=0 T�2Xt=0 �t(i; j) �(rxt+1 � (
os(��0;i)(x0j � x0i )� sin(��0;i)(y0j � y0i )))22(�xij)2� log(�xij)� (ryt+1 � (sin(��0;i)(x0j � x0i ) + 
os(��0;i)(y0j � y0i )))22(�yij)2 � log(�yij)! :The lo
ation hx00; y00i is assumed to be the origin, h0; 0i. Rotations a

ording to the heading
hanges with respe
t to the origin, ��0;0; : : : ; ��0;N�1, are applied in order to a

ount for therepresentation of the odometri
 relation within a state-relative framework.We stated that by di�erentiating this expression a

ording to ea
h x0j and ea
h y0jwhere j 6= 0 , and equating ea
h derivative to 0 we obtain a set of (2N � 2) linear equationsin (2N � 2) unknowns. These equations are solved at ea
h iteration of the em algorithmwhen additivity in a relative framework is enfor
ed.



123We give here the expli
it expressions for the derivatives and the resulting equations thatare solved at ea
h iteration.For ea
h x0k and y0k, where 0 < k � N � 1 :�Qx;y(R;R)�x0k =N�1Xi=0i 6=k  T�2Xt=0 �t(i; k) "�(rxt � 
os(��0;i)(x0k � x0i ) + sin(��0;i)(y0k � y0i ))(� 
os(��0;i))(�xik)2 �(ryt � sin(��0;i)(x0k � x0i )� 
os(��0;i)(y0k � y0i ))(� sin(��0;i))(�yik)2 # +T�2Xt=0 �t(k; i) "�(rxt � 
os(��0;k)(x0i � x0k) + sin(��0;k)(y0i � y0k)) 
os(��0;k)(�xki)2 �(ryt � sin(��0;k)(x0i � x0k)� 
os(��0;k)(y0i � y0k)) sin(��0;k)(�yki)2 # ! and�Qx;y(R;R)�y0k =N�1Xi=0i 6=k  T�2Xt=0 �t(i; k) "�(rxt � 
os(��0;i)(x0k � x0i ) + sin(��0;i)(y0k � y0i )) sin(��0;i)(�xik)2 �(ryt � sin(��0;i)(x0k � x0i )� 
os(��0;i)(y0k � y0i ))(� 
os(��0;i))(�yik)2 # +T�2Xt=0 �t(k; i) "�(rxt � 
os(��0;k)(x0i � x0k) + sin(��0;k)(y0i � y0k))(� sin(��0;k))(�xki)2 �(ryt � sin(��0;k)(x0i � x0k)� 
os(��0;k)(y0i � y0k)) 
os(��0;k)(�yki)2 # ! :



124By equating all these partial derivatives to 0, we get for ea
h k, where 0 < k � N � 1, twoequations as follows:N�1Xi=0i 6=k "T�2Xt=0 �t(i; k) rxt 
os(��0;i)(�xik)2 + ryt sin(��0;i)(�yik)2 !� T�2Xt=0 �t(k; i) rxt 
os(��0;k)(�xki)2 + ryt sin(��0;k)(�yki)2 !# =N�1Xi=0i 6=k (x0k � x0i ) "T�2Xt=0 �t(i; k) 
os2(��0;i)(�xik)2 + sin2(��0;i)(�yik)2 !+T�2Xt=0 �t(k; i) 
os2(��0;k)(�xki)2 + sin2(��0;k)(�yki)2 !#�N�1Xi=0i 6=k (y0k � y0i ) "T�2Xt=0 �t(i; k) sin(��0;i) 
os(��0;i) 1(�xik)2 � 1(�yik)2!+T�2Xt=0 �t(k; i) sin(��0;k) 
os(��0;k) 1(�xki)2 � 1(�yki)2!# ; (B.1)N�1Xi=0i 6=k "T�2Xt=0 �t(i; k) rxt sin(��0;i)(�xik)2 � ryt 
os(��0;i)(�yik)2 !+ T�2Xt=0 �t(k; i) ryt 
os(��0;k)(�yki)2 � rxt sin(��0;k)(�xki)2 !# =N�1Xi=0i 6=k (x0k � x0i ) "T�2Xt=0 �t(i; k) sin(��0;i) 
os(��0;i) 1(�xik)2 � 1(�yik)2!+T�2Xt=0 �t(k; i) sin(��0;k) 
os(��0;k) 1(�xki)2 � 1(�yki)2!#�N�1Xi=0i 6=k (y0k � y0i ) "T�2Xt=0 �t(i; k) sin2(��0;i)(�xik)2 + 
os2(��0;i)(�yik)2 !+T�2Xt=0 �t(k; i) sin2(��0;k)(�xki)2 + 
os2(��0;k)(�yki)2 !# : (B.2)
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