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Abstract

Hidden Markov models (HMMs) and partially observable Markov decision processes (POMDPS)
provide a useful tool for modeling dynamical systems. They are particularly useful for rep-
resenting environments such as road networks and office buildings, which are typical for
robot navigation and planning. The work presented here describes a formal framework for
incorporating readily available odometric information into both the models and the algo-
rithm that learns them. By taking advantage of such information, learning HMMs/POMDPs
can be made better and require fewer iterations, while being robust in the face of data
reduction. That is, the performance of our algorithm does not significantly deteriorate as
the training sequences provided to it become significantly shorter. Formal proofs for the
convergence of the algorithm to a local maximum of the likelihood function are provided.
Experimental results, obtained from both simulated and real robot data, demonstrate the

effectiveness of the approach.
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Chapter 1

Introduction

Dynamical systems provide a formal mathematical framework for describing many physical
phenomena. Possible states of a physical system are represented as a set of vertices or nodes,
and the dynamical aspect of states changing over time, as arcs or transitions. Since physical
phenomena are seldom either fully observable or completely predictable, it is also desirable
for dynamical systems to model the inherent uncertainty in observations and transitions.
The work presented here is concerned with acquiring a particular family of models for

dynamical systems, namely, Hidden Markov models.

1.1 HMMs and POMDP Models

Hidden Markov models (HMMs) represent a variety of nondeterministic dynamical systems
as abstract probabilistic state-transition systems with discrete states and observations. The
states of the dynamical system are naturally mapped to the states of the model. The ob-
servable aspects of each state in the dynamical system, which are often noisy and imprecise,
are mapped to probability distributions or density functions over observations; each state in
the model has associated with it a distribution, or a probability density function, over pos-
sible observations. The uncertain dynamics of the modeled system is represented through
probabilistic transitions between the model’s states; each state is assigned a probability

distribution over the possible next states.

Such models are adequate for representing systems in which external entities exercise
no control over the dynamics of the system, and the stochastic behavior is completely
specified by the states, transitions and probabilities. They are widely used in a variety of
areas such as natural language understanding [Cha93], speech recognition [Rab89, RJ93],

1



handwritten text analysis [CKZ94, BG95], and protein and DNA representation [Chu89,
BCH193, KBM*94].

Hidden Markov models can be extended to model decision processes in which control
is exercised, by introducing actions into the model. The extended models are known as
partially observable Markov decision process (POMDP) models. Like the basic HMM, a POMDP
model has a set of states corresponding to the states of the modeled system. In addition, each
action has associated with it a set of transition probability distributions — one distribution
per state. The distribution models the probabilistic transition resulting from executing the
action in the state. Similarly, each action has a set of observation probability distributions,
one distribution per state, modeling the probabilistic observation which can be perceived

upon arrival at the state after executing the action.

POMDP models are useful for modeling processes in which the outcome is uncertain and
the state is not fully observable. Such processes arise in almost all aspects of life, from
financial investments to medical decision making. A variety of other applications is given

in work by Littman [Lit96] and Cassandra [Cas98].

1.2 Models for Robot Navigation

POMDP models have proven particularly useful as a basis for robot navigation in buildings,
providing a sound method for localization and planning [SK95, NPB95, CKK96]. Most
other approaches to modeling environments for robot navigation [ME85, Asa91, LDWC91,
TBF98] are concerned with obtaining a geometrical description of the environment, and are
centered around finding positions and locations in it, trying to determine exactly where in
the environment the robot is. In contrast, HMMs and POMDP models are centered around

the concept of state rather than that of location.

A state typically corresponds to a significant landmark in the environment coupled with
other important robot’s attributes. Such attributes may include the robot’s orientation,
its arm position, or its voltage level. This more general concept, naturally captures robot
behaviors and properties that do not necessarily involve a change in location, such as arm
movement, picking or dropping an object, camera positioning etc. , thus providing a consis-
tent framework for planning and acting in the environment. By being concerned with the
topology induced by significant landmarks, rather than with the complete geometry of the

space, the models also tend to be more compact and support efficient planning.

Much previous work on planning using POMDP models has required that the model be



provided, through manual specification. This is a tedious process and it is often difficult
to obtain correct probabilities. An ultimate goal is for an agent to be able to learn such
models automatically, both for robustness and in order to cope with new and changing

environments.

1.3 Learning the Model

From a theoretical-computational standpoint, HMMs and POMDP models, can be viewed as
probabilistic finite automata (PFA) and input/output PFA, respectively. In the general case,
the conjecture is that learning such models is hard, based on Abe and Warmuth’s [AW92]
non-approximability results with respect to probabilistic finite automata, as described in
Section 2.1.2. Still, in practice, the Baum-Welch algorithm [Rab89] is frequently used to
learn HMMs. Since POMDP models are a simple extension of HMMs, they can, theoretically, be
learned with a simple extension to the Baum-Welch algorithm. However, in the general case,
without strong prior constraint on the structure of the model, the Baum-Welch algorithm
does not perform very well: it is slow to converge, requires a great deal of data, and is often

stuck in local minima.

Typically, application domains in which HMM learning has proven successful provide
some bias which assists in the learning process. For instance, due to the temporal nature
of the speech process, it can be modeled using a specific family of HMMs, namely, left-to-
right HMMs [Rab89]. In these models, transitions occur in one direction only, and there are
no cycles other than ones caused by self-transitions. That is, the states can be indexed,
such that the probability of transitions from state ¢ to state j, where j < ¢, is 0. This
constraint determines many of the model parameters, leaving fewer model parameters that
actually need to be learned, thus making the learning problem significantly simpler. A
similar constraint applies to handwritten text, as well as to biological structures such as
proteins or DNA, due to their sequential nature. Such constraints do not usually hold
in the navigation domain, since in most real environments one can move back and forth,

repeatedly visiting the same states via various distinct routes.

Previous work, such as Koenig and Simmons’ [IKKS96b] used prior knowledge of the
environment to bias the learning algorithm towards the correct model. Using their approach,
a human provides a correct but incomplete topological model of the environment, and the
Baum-Welch algorithm is used to fill in the details. One of the central goals of the work

presented here is to explore ways in which better models can be obtained, while using both



less time and less data, without requiring a prior description of the learned environment.

1.4 A New Approach

The approach taken in this work is based on utilizing a different source of information
which allows the Baum-Welch algorithm to learn good topological models without the use
of human-provided initial model. We propose to use readily available weak odometric in-

formation to improve the results of the Baum-Welch algorithm.

Most robots are equipped with wheel encoders that enable an odometer to record the
change in the robot’s position as it moves through the environment. This data is typically
very noisy and inaccurate. The floors in the environment are rarely smooth, the wheels
of the robot are not always aligned and neither are the motors, a lot of the mechanics is
imperfect, resulting in slippage and drift. All these effects accumulate, and if we were to
mark the initial position of the robot, and try to estimate its current position based on a
long sequence of odometric recordings, we would find that our estimate is typically incorrect.
That is, the raw recorded odometric information is not an effective tool for determining the

absolute location of the robot in the environment.

The idea underlying our approach is that this weak odometric information, despite its
noise and inaccuracy, still provides geometrical cues that can help to distinguish between
different states as well as to identify revisitation of the same state. Hence, such information
enhances the ability to learn topological models. However, the use of geometrical information

requires careful treatment of geometrical constraints and directional data.

We demonstrate how the existing models and algorithms can be extended in order to take
advantage of the noisy odometric data and the geometrical constraints. The geometrical
information is directly incorporated into the probabilistic topological framework, producing
a significant improvement over the standard Baum-Welch algorithm, without the need for
human-provided model. Although there are still a number of intriguing problems that
need to be addressed, our experiments prove that this is a promising direction in model

acquisition for robot navigation.

As a possible generalization to the problem of HMM acquisition, outside the scope
of robotics, our approach demonstrates the merit of using domain-specific constraints to
achieve high utilization of the data, and restrict the learning process, directing it towards
acquiring better models. We believe that this approach can be put to use in other do-

mains, such as medical decision making and biological modeling. In the medical domain,



various conditions and symptoms exclude each other, and temporal constraints restrict the
possible transitions in the patient’s state. In the molecular biology domain, one can ex-
ploit 3-dimensional geometrical constraints over molecular structures, which are likely to
be analogous to the constraints arising when modeling environments for robot navigation.
We expect that by using these constraints, the space of appropriate models which may fit
a data set can be reduced, and the model acquisition process can be made more accurate

and efficient.

1.5 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 provides a survey of previous work
in the area of learning maps and automata; Chapter 3 presents the formal framework for
this work; Chapter 4 describes the basic algorithm we have developed for using odometric
information in the context of the Baum-Welch algorithm; Chapter 5 discusses special issues
in handling directional data within a probabilistic framework; Chapter 6 presents methods
for choosing an initial model from which to start the algorithm, and introduces a new
method we have developed for this purpose; Chapter 8 describes ways to overcome the
problem of cumulative rotational errors, which is another facet of the problems caused by
the presence of directional data and angular changes; In Chapter 10 we provide a way for
enforcing complete geometrical consistency in the topological model throughout the learning
process; Chapters 7, 9, and 11 present experimental results for each variant of our learning
algorithm. The experiments demonstrate that our algorithm indeed converges to better
models with fewer iterations than the standard Baum-Welch, and is robust in the face of
data reduction. In Chapter 12 we summarize the results and conclude the work, as well as

list several directions for future research.






Chapter 2

Approaches to Learning Maps and
Models

The work presented in this document lies in the intersection between the theoretical area of
learning computational models — in particular learning automata from data sequences —
and the applied area of map acquisition for robot navigation. In the following we provide
a survey of results from both of these areas. The reinforcement learning literature also
addresses some aspects of learning models for Markov decision processes [Sut90, Thr92,
Kae93]. The latter can be viewed as a special case of learning probabilistic automata with

fully observable states, and we briefly review related work from this domain in Section 2.1.3.

2.1 Learning Automata from Data

Informally speaking, an automaton consists of a set of states, and a set of transitions which
lead from one state to another. In the context of this work, the automaton states correspond
to the states of the modeled environments, and the transitions, to the state changes due
to actions performed in the environment. Each transition of the automaton is tagged by a
symbol from an input alphabet, 3, corresponding to the action or the input to the system,
which caused the state transition. An example of an automaton with three states and input

alphabet {a, b} is shown in Figure 2.1.

Classical automata theory [HU79] distinguishes two types of special states; a single
mitial state and a set of accepting states. If a sequence of actions starts from an initial state
and results in an accepting state, it is said that the automaton accepts the sequence. For

7
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Figure 2.2:An input-output automaton; the
input alphabet is {a, b}, the output alphabet is
{J,K, L.

Figure 2.1:A 3-state automaton over the al-
phabet {a,b}.

instance, in Figure 2.1, state 2 is depicted as a double circle, denoting an accepting state.
If state 1 is assigned to be the initial state, the sequences (a), (ba) and {(aba), are all

accepted by the automaton, while the sequence (a b} is not.

The basic structure described above can be further extended to model the generation
of output sequences [HU79]. This is done by defining an output alphabet A and assigning
to each state a symbol in A that is emitted each time the state is reached. Such extended
automata are called input-output automata. Figure 2.2 depicts a 3-state automaton over
the input alphabet {a,b} and the output alphabet {.J, K,L}. For instance, if the input
sequence is (@ ba) and the initial state is 1, the generated output sequence is (J K .J K).

There are various possible kinds of wncertainty about the environment as well as the
interaction with it, which can be modeled through different types of automata. First, states
in the environment can be either fully observable or partially observable. If the environment
is fully observable, one always knows its exact state in the environment. When states are
only partially observable or hidden, one does not know its state with certainty. In addition,
the results of each action taken in the environment can be either fully determined or uncer-
tain. At any given state (be it observable or hidden), the execution of a fully deterministic
action is guaranteed to lead to a single next state. The execution of an action with uncer-
tain results is not guaranteed to lead to a single next state and is modeled as a stochastic
transition function. Given a pair consisting of the current state and action, the transition
function assigns to each state a probability of being reached through the action, from the

current state. Based on these distinctions, we can partition automata into four groups:
e Fully observable states, deterministic transitions
e Fully observable states, stochastic transitions
e Hidden states, deterministic transitions

e Hidden states, stochastic transitions



Automata with fully observable states can be viewed as input-output automata in which
states are distinctly labeled, the output alphabet consists of state labels, and each state
emits its own label when visited. Automata with hidden states do not emit their state

labels, but might emit other output symbols (hence the term partially observable).

We can imagine an agent moving through an environment while recording its perceived
observations and actions. The problem of learning an automaton, is informally described
as the problem of constructing an automaton that accepts the recorded sequence of actions,
and emits the recorded sequence of observations, if such observations exist. In a setting
where the automaton does not have a distinct accepting state, the learning problem is
similar, but merely requires that the learned automaton has a directed path through its

states, corresponding to the recorded input (and/or output) sequence.

Acting in a fully observable and deterministic environment, corresponding to an au-
tomaton of the first kind, we can record the origin state in which we start the exploration,
as well as each subsequently visited state. In terms of decision process models, this can be
viewed as acting within the framework of deterministic Markov decision processes [Put94].
After visiting all the states (and executing all possible actions - if we do have a choice of
action), we obtain a complete model of the environment. That is, we deterministically know
how to get from each state to all the other reachable states. Hence, learning a model of

such an environment is easy.

The second kind of automata corresponds a stochastic Markov decision process
model [Put94]. Learning such a model based on a sequence of recorded visited states
and executed actions, amounts to estimating transition probabilities under the executed
actions. It is a fairly simple task, under the assumption that the sequence of recorded
states is provided and we are not dealing with the problem of obtaining sufficient data for

estimation purposes, and is discussed in Section 2.1.3.

Obtaining models of the third and the fourth kinds, correspond to the problems of
learning a deterministic and a probabilistic finite automaton, respectively. These problems
do not have simple solutions in the general case. The models and their respective learning

problems are discussed in detail in Sections 2.1.1 and 2.1.2.

It is also possible to have a fully deterministic environment in which an agent with
imperfect perception records its actions and observations. In this case the agent may record
the wrong states, actions or observations resulting in a noisy sequence from which learning

needs to be done. In this case, the learning procedure needs to take into account that with
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some probability each recorded item may be wrong. The model learned is deterministic,
rather than stochastic, but it might contain errors with respect to the true model, due to
the erroneous data from which it was learned. Some results under this scenario are also

discussed in Section 2.1.1.

2.1.1 Deterministic Automata

A standard deterministic finite automaton consists of a finite set of states ), a finite input
alphabet ¥, a transition function § : Q@ x ¥ — @, and a set F' € ) of accepting states.
The basic problem of learning finite deterministic automata from given data can be roughly
described as follows: Given two sets of positive and negative example strings, S and T
respectively, over alphabet X, and a fired number of states k, construct a minimal deter-
ministic finite automaton with no more than k states that accepts S and does not accept T .
This problem has been shown to be Np-complete [Gol78]. Pitt and Warmuth [PW89] have
shown that even if we are not learning the minimal automaton of k states, but are willing
to learn an automaton with a polynomial number of states f(k) with the same language,

the problem is still NP-complete.

Despite the hardness, positive results have been shown possible within various special
settings. Angluin [Ang87] showed that if there is an oracle to answer membership queries
(assuming a reset operator of the automaton to its initial state), and to provide counterex-
amples to conjectures about the automaton, there is a polynomial time learning algorithm
from positive and negative examples. Rivest and Schapire [RS87b, RS87a| provide an ef-
fective method for learning permutation automata, using distinguishing sequences (called
“tests”) for disambiguating states. Their method is guaranteed to find an automaton that
with high probability is the correct one. In later work, [RS89], the authors use homing
sequences for the same purpose. They show that they can learn a correct permutation au-
tomaton in polynomial time assuming there is a “teacher” which provides counterexamples,

while a highly probable automaton can be learned even without the assumption of a teacher.

All of the above work assumes deterministic, noise-free behavior of the learned automa-
ton. As mentioned earlier, there are cases in which the training sequence from which the
automaton is learned may be noisy. Basye, Dean and Kaelbling [BDK95] presented several
algorithms that, with high probability, learn input-output deterministic automata when
various forms of noise are present in the training data. They show that when the transi-
tions (actions) are deterministic but output emissions (observations) are noisy, a polynomial

time algorithm exists, that learns a correct deterministic model with high probability. The
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algorithm does not learn a distribution over the observations, but rather assumes that a
likely observation exists for each state and this observation is the one learned. Thus the
learned model is completely deterministic rather than probabilistic. Similar results hold
when the transitions are noisy and the observations are deterministic. (Again, the automa-
ton learned is a deterministic one and does not model the transitions as probabilistic). For
the case where both transitions and observations are noisy, a polynomial time algorithm
for learning a probably correct deterministic automaton is given under strong assumptions,

which include unique labeling of states.

2.1.2 Probabilistic Automata

Probabilistic automata are ones in which a probability distribution governs the transitions
between states on any given input. In addition, in the case of input-output automata, a
probability distribution is defined over the output emissions as well. The basic learning
problem in this context is to find an automaton that assigns the same distribution as the
true one to data sequences, from training data S generated by the true automaton. Another
form of a learning problem is that of finding a probabilistic automaton A that assigns the

maximum likelihood to the training data S, that is, an automaton that maximizes Pr(S|\).

Abe and Warmuth [AW92] show that finding a probabilistic automaton with 2 states,
even when small error with respect to the true model is allowed with some probability (the
Probably Approzimately Correct learning model), cannot be done in polynomial time with
a polynomial number of examples, unless NP = RP. They also show the equivalence of the
problem of learning an automaton in the PAC sense to that of approximating the maximum
likelihood automaton. This means that approximating a solution to any of the two learning
problems stated above, for a probabilistic automaton, is equivalently hard. From their
work arises a broader conjecture, which has not yet been proven, that the general problem
of learning probabilistic automata with any number of states, even under the PAC learning
model, is hard. A similar broadly accepted conjecture stemming from the same work is that
learning hidden Markov models (the kind of probabilistic automata formally introduced in

Section 3.1) is hard even in the PAC sense.

Two ways of addressing this hardness are presented in the rest of this section. One uses
restrictions on the class of probabilistic models learned, and the other learns an unrestricted
hidden Markov model with good practical results but with no PAC guarantees on the quality
of the result.
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Restricting the Learning Problem: In their above mentioned paper, Abe and War-
muth suggest that an interesting open problem is to find subclasses of probabilistic automata

that are both practically useful and polynomially PAC learnable.

Work by Ron et al. [RST94, RST95, RST98] pursues such an approach. The authors
present two classes of probabilistic automata that are useful in the area of natural language
understanding, in particular for cursive hand writing recognition, speech recognition and
printed text analysis. One such class consists of acyclic probabilistic finite automata, and
the other of probabilistic finite suffic automata. Both of these classes can be learned in

polynomial time (in all the parameters) within the pac framework.

Learning with Restricted Guarantees: Another approach, the one predominantly
taken in this work, is to learn a model for the data from the complete unrestricted class of
hidden Markov models. Only weak guarantees exist about the goodness of the model, but

the learning procedure may be directed to obtain practically good results.

This approach is based on guessing an automaton (model), and using an iterative pro-
cedure to make the automaton fit the training data better. One algorithm commonly used
for this purpose is the Baum-Welch algorithm [BE67, BS68, BPST70], which is presented
in detail by Rabiner [Rab89]. The iterative updates of the model are based on gathering
sufficient statistics from the data given the current automaton, and the update proce-
dure is guaranteed to converge to a model that locally maximizes the likelihood function
Pr(datalmodel). Since the maximum is local, the model might not be close enough to the
automaton by which the data was generated, and a challenging problem is to find ways to
force the algorithm into converging to higher maxima, or at least to make it converge faster,
facilitating multiple guesses of initial models, thus raising the probability of converging to

higher maxima. Such an approach is the one taken in this work.

Throughout this work we assume that the number of states in the model we are learning
is given as input. This is not a very strong assumption, since there exist methods for learning
the number of states. A natural generalization of the algorithm presented here is to apply
such methods to directly learn the number of states from the data. Obviously, without any
bound on the number of states, one can designate a state for each data point in the input
sequence, thus perfectly fitting the data. Such an approach is a trivial example of overfitting;
the model indeed fits the data well but is not general enough for modeling other data
obtained from the same modeled environment. Regularization methods are used in order
to avoid overfitting, directing the learning process towards models that fit both the current

training data as well as yet-unseen data. Omne such technique is cross-validation [StoT4,
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Sha93, ET93]. Its basic idea is to use only parts of the available data to learn models of
varying number of states, while saving some of the data for testing purposes. Once several
models are learned, the likelihood (or some other measure of goodness) that they assign to
the part of the data not used for learning is compared. The number of states for the model
that has the highest measure of goodness, is taken to be the correct number of states, and
is fixed. A final model is then obtained by learning from the complete data under the fixed
number of states. Other regularization methods such as the minimum description length
principal for deciding on the number of states and other model parameters, are discussed
in Vapnik’s book [Vap95]. Another similar criterion suggested by Akaike is described in a
book by Sakamoto et al. [SIK86]. In Section 6.2 we suggest another possible heuristic for

estimating the number of states as part of an initialization algorithm.

2.1.3 Models for Markov Decision Processes

Much of the work on reinforcement learning [Kae93, Sut90, Thr92, BBS95, MB98] is con-
cerned with acting optimally within the context of fully observable Markov decision pro-
cesses. The Markov model consists of states and actions that transition an agent from one
state to the other, where every such transition has associated with it a reward. The goal
of the agent is to optimize its reward. The transitions between states are usually stochas-
tic, and the agent does not always know either the probability distribution governing the
transition or the reward associated with each state-action pair. In such cases, where the
parameters are unknown to the agent, it tries to obtain knowledge about them via explo-
ration. The main idea behind exploration is that by taking actions at each state, the agent
obtains counts of the number of times it ended up in every state. It uses the counts to cal-
culate sufficient statistics and estimate the transition probabilities which it does not know
a priori. Given a sequence of states recorded during exploration, learning the model is a
straightforward statistical estimation problem [Bil59]. The more involved issue is that of

deciding on strategies to explore the environment in order to obtain the data [Mar67].

This form of model learning is different from the problem we are addressing, since in the
HMM and POMDP case the state itself is hidden and one can not directly obtain transition
counts between states and calculate statistics. Another aspect of the learning in a partially
observable environment is that of learning the observation distribution associated with each

state, as described in Chapter 3. This aspect does not exist in the fully observable case.
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2.2 Learning Maps and Models for Robot Navigation

The other area which closely relates to the work presented here is that of modeling envi-
ronments for robot navigation. A distinction is usually made between two principal kinds
of maps: geometric and topological. Geometric maps describe the environment as a collec-
tion of objects or occupied positions in space, and the geometric relationships among them.
The topological framework is less concerned with the geometry, and models the world as a
collection of states and their connectivity, that is, which states are reachable from each of

the other states and what actions lead from one state to the next.

We draw an additional distinction, between world-centric! maps that provide an “ob-
jective” description of the environment independent of the agent using the map, and robot-
centric models which capture the interaction of a particular “subjective” agent with the
environment. When learning a map, the learning agent needs to take into account its own
noisy sensors and actuators and try to obtain an objectively correct map that other agents
could use as well. Similarly, other agents using the map need to compensate for their own
limitations in order to assess their position according to the map. When learning a model
that captures interaction the agent acquiring the model is the one who is also using it.
Hence, the noisy sensors and actuators specific to the agent are reflected in the model. A
different model is likely to be needed by different agents. Most of the related work described
below, especially within the geometrical framework, is centered around learning objective
maps of the world rather than agent-specific models. We shall point out in this survey the

work that is concerned with the latter kind of models.

Our work focuses on acquiring purely topological models, and is less concerned with
learning geometrical relationships between locations or objects, or objective maps, although
geometrical relationships do serve as an aid in our acquisition process. The concept of a
state used in this topological framework is more general than the concept of a geometrical
location, since a state can include information such as the battery level, the arm position
etc. Such information, which is of great importance for planning, is non-geometrical in
nature and therefore can not be readily captured in a purely geometrical framework. The
following provide a survey of both work done within the geometrical framework and within

the topological framework as well as combinations of the two approaches.

I thank Sebastian Thrun for the terminology.
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2.2.1 Geometric Maps

Geometric maps provide a description of the environment in terms of the objects placed
in it and their positions. For example, grid-based maps are an instance of the geometric
approach. In a grid-based map, the environment is modeled as a grid (an array), where
each position in the grid can be either vacant or occupied by some object (binary values
placed in the array). This approach can be further refined to reflect uncertainty about the
world, by having grid cells contain occupancy probabilities rather than just binary values.
A lot of work has been done on learning such grid-based maps for robot navigation, through
the use of sonar readings and their interpretation, by Movarec and Elfes and others [MES85,
Mor88, Elf89, Asa91].

An underlying assumption when learning such maps is that the robot can tell where it is
on the grid when it obtains a sonar reading indicating an object, and therefore can place the
object correctly on the grid. A similar localization assumption underlies other geometric
mapping techniques [LDWC91, SSC91, TGF'98], even when an explicit grid is not part
of the model. This assumption can be hard to satisfy. Leonard and Cox [LDWC91] and
Smith et al. [SSC91] address this issue through the use of geometrical beacons to estimate
the location of the robot. A probability distribution is used to model the robot’s possible

current location, based on observations collected up to the current point.

Recent work by Thrun et al. [TBF98], uses a similar probabilistic approach for obtaining
grid-based maps. This work is refined [TGF198] to first learn the location of significant
landmarks in the environment and then fill in the details of the complete geometrical grid,
based on laser range scans. The latter work extends the approach of Smith et al. , by using
observations obtained both before and after a location has been visited, in order to derive a
probability distribution over possible locations. To achieve this, the authors use a forward-
backward procedure similar to the one used in the Baum-Welch algorithm [Rab89], (see
Chapter 4 of this work), in order to determine possible locations from observed data. The
approach resembles ours both in the use of the forward-backward estimation procedure, and
in its probabilistic basis, aiming at obtaining a maximum likelihood map of the environment.
It still significantly differs from ours both in its initial assumptions and in its final results.
The data assumed to be provided to the learner includes both the motion model and the
perceptual model of the robot. These consist of transition and observation probabilities
within the grid. Both of these components are learnt by our algorithm, although not in
a grid context but in a topological, coarser-grained, framework. The end result of their

algorithm is a probabilistic grid-based map, while ours is a probabilistic topological model.
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In addition to being concerned only with locations, rather than with the richer notion
of state, a fundamental drawback of geometrical maps is their fine granularity and high
accuracy. Geometrical maps, particularly grid-based ones, tend to give an accurate and
detailed picture of the environment. In cases where it is necessary for a robot to know
its exact location in terms of metric coordinates, metric maps are indeed the best choice.
However, many planning tasks do not require such fine granularity or accurate measures,
and are better facilitated through a more abstract representation of the world. For example,
if a robot needs to deliver a bagel from office a to office b, all it needs to have is a map
depicting the relative location of a with respect to b, the passageways between the two
offices, and perhaps a few other landmarks to help it orient itself if it gets lost. If it has a
reasonably well-operating low-level obstacle avoidance mechanism to help it bypass flower
pots and chairs that it might encounter on its way, such objects do not need to be part of
the environment map. Just as a driver traveling between cities needs to know neither its
longitude and latitude coordinates on the globe, nor the location of the specific houses along
the way, the robot does not need to know its exact location within the building nor the
exact location of various items in the environment, in order to get from one point to another.
Hence, the effort of obtaining such detailed maps is not usually justified. In addition the
maps can be very large, which makes planning — even though planning is polynomial in

the size of the map — be inefficient.

2.2.2 Topological Maps and Models

An alternative to the detailed geometric maps are the more abstract topological maps.
Such maps specify the topology of important landmarks and situations (states), and routes
or transitions (arcs) between them. They are less concerned with the physical location of
landmarks, and more with topological relationships between situations. Typically, they are
less complex and support much more efficient planning than metric maps. Topological maps
are built on lower-level abstractions that allow the robot to move along arcs (perhaps by
wall- or road-following), to recognize properties of locations, and to distinguish significant
locations as states; they are flexible in allowing a more general notion of state, possibly

including information about the non-geometrical aspects of the robot’s situation.

There are two typical strategies for deriving topological maps: one is to learn the topo-
logical map directly; the other is to first learn a geometric map, then to derive a topological

model from it through some process of analysis.

A nice example of the second approach is provided by Thrun and Biicken [TB96a,
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TB96b, Thr99], who use occupancy-grid techniques to build the initial map. This strategy
is appropriate when the primary cues for decomposition and abstraction of the map are
geometric. However, in many cases, the nodes of a topological map are defined in terms of
other sensory data (e.g. labels on a door or whether or not the robot is holding a bagel).
Learning a geometric map first also relies on the odometric abilities of a robot; if they are

weak and the space is large, it is very difficult to derive a consistent map.

In contrast, our work concentrates on learning a topological model directly, assuming
that abstraction of the robot’s perception and action abilities has already been done. Such
abstractions were manually encoded into the lower level of our robot navigational software,
as described in Chapter 7. Work by Pierce and Kuipers [PK97] discusses an automatic

method for extracting abstract states and features from raw perceptual information.

Kuipers and Byun [KB91] provide a strategy for learning deterministic topological maps.
It works well in domains in which most of the noise in the robot’s perception and action is
abstracted away, learning from single visits to nodes and traversals of arcs. An underlying
assumption for this strategy is that the current state can be reliably identified based on
local information, or based on distance traversed from the previous well-identified state.
It is unable to handle situations in which long sequences of actions and observations are

necessary to disambiguate the robot’s state.

Engelson and McDermott [EM92] learn “diktiometric” maps (topological maps with
metric relations between nodes) from experience. The uncertainty model they use is interval-
based rather than probabilistic, and the learned representation is deterministic. Ad hoc

routines handle problems resulting from failures of the uncertainty representation.

We prefer to learn a combined model of the world and the robot’s interaction with the
world; this allows robust planning that takes into account likelihood of error in sensing and
action. The work most closely related to ours is by Koenig and Simmons [KS96b, KS96a],
who learn POMDP models (stochastic topological models) of a robot hallway environment.
They also recognize the difficulty of learning a good model without initial information;
they solve the problem by using a human-provided topological map, together with further
constraints on the structure of the model. A modified version of the Baum-Welch algo-
rithm learns the parameters of the model. They also developed an incremental version of
Baum-Welch that can be used on-line. Their models contain very weak metric information,
representing hallways as chains of one-meter segments and allowing the learning algorithm
to select the most probable chain length. This method is effective, but results in large mod-

els with size proportional to the hallways length, and strongly depends on the provision of



18

a good initial model.
The rest of the work describes our approach to learning topological models. We show
that by using weak odometric information directly, we can avoid the use of human-provided

a priori models and still learn stochastic maps efficiently and effectively.



Chapter 3
Models and Assumptions

This chapter describes the basics of the formal framework for our work. It starts by in-
troducing the classic hidden Markov model. The model is then extended to accommodate
noisy odometric information in its simplest form, ignoring information about the robot’s
heading and orientation. In chapters 5 and 8, the model is further extended and refined to

accommodate heading information and address the problems that arise as a result.

We concentrate here on describing models and algorithms for learning HMMSs, rather
than poMDPs. The extension to complete POMDPs is through learning an HMM for each of
the possible actions, and is straightforward although notationally more cumbersome. We

briefly discuss it in Section 3.3.

3.1 HMMs — The Basics

A hidden Markov model consists of states, transitions, observations and probabilistic be-
havior. We provide here a more formal definition of this basic model. In the next section

we elaborate the definition to account for odometric information.

A hidden Markov model is a tuple A = (S, 0, A, B, ), where

e S ={sp,...,Sny_1} is a finite set of N states;
e O={o0y,...,0p} is a finite set of M possible observation values;

e Ais a stochastic transition matrix, with 4; ; = Pr(g41 = s;la = 5); 0<i, j <N — 1;
N-1
¢; is the state at time t; for every state s;, Z A ;=1
J=0
19
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A; ; holds the transition probability from state s; to state s;.

e B is a stochastic observation matrix, with B =Pr(vi=ok|lq:=5;); 0 <j < N —1,
M
1 <k < M; v is the observation recorded at time ¢; for every state s, ZBJ?’C =1.
k=1

B; ), holds the probability of observing o, while being at state s;.

e 7 is a stochastic initial distribution vector, with m; = Pr(q = s;); 0 < i < N - 1;
N-1

Zﬂ',’ = 1. m; holds the probability of being in state s; at time 0, when starting to

=0
record the observations.

This model corresponds to a world in which the actual state of matters at any given time ¢,
¢ € S, is hidden and not directly observable, but some observation, v; € O, is detected and
recorded at the state when it is visited at time t. An agent moves from one hidden state
to the next according to the probability distribution encoded in matrix A. The observed

information in each state is governed by the probability matrix B.

Given a stochastic system with an unknown model, one can gather sequences of observa-
tions in the system. By calculating sufficient statistics from the observed data, estimates for
the states and the observations of the system are obtained. Using these estimates, one may
be able to reconstruct a plausible model of the system, as demonstrated by the following

simple example.

Example 3.1 Consider a system consisting of a single biased coin that is being tossed. It
can be viewed as a system with a single state, in which one can observe, either a head, H,

or a tail, T, with some unknown probability.

A sequence of observations can be recorded by tossing the coin several times. For in-
stance, HTTT HTT, is such a sequence. By counting the number of times H was observed
(2), and the number of times T was observed (5), we obtain the estimate % for the proba-
bility of observing a head, and the estimate % for the probability of observing a tail. These

probabilities constitute a plausible model of the tossed coin.

The learning problem for HMMs can be roughly stated as follows: Given a sequence of
observations gathered from a stochastic system, reconstruct a plausible hidden Markov model

of the system. A more accurate measure of “plausibility” will be given in Section 4.1.
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3.2 Adding Odometry to Hidden Markov Models

The world is composed of a finite set of states. The states do not necessarily correspond di-
rectly to locations of the robot; they may include other state information, such as orientation
or battery level. The dynamics of the world are described by state-transition distributions
that specify the probability of making transitions from one state to the next. There is a
finite set of observations that can be made in each state; the frequency of such observa-
tions is described by a probability distribution and depends only on the current state. In
our model, observations are multi-dimensional; an observation is a vector of values, each
chosen from a finite domain. It is assumed that these observation values are conditionally

independent, given the state.

In addition to the set of possible observations, each state is assumed to be associated
with a position in a metric space. Whenever a state transition is made, the robot records an
odometry vector, which estimates the position of the current state relative to the previous
state. For the time being we assume that the odometry vector consists of readings of x and y
coordinates in a global coordinate system, and that these readings are corrupted with inde-
pendent normal noise (extension to dependent noise is possible, and requires consideration
of the complete covariance matrix). We extend the odometry vector to include informa-
tion about the heading of the robot, and relax the global coordinate system assumption in

Chapters 5 and 8, respectively.

There are two important assumptions underlying our treatment of odometric relations
between states: First, that there is an inherent “true” odometric relation between the
position of every two states in the world; Second, that when the robot moves from one state
to the next, there is a normal, 0-mean noise around the correct expected odometric reading

along each odometric dimension. This noise reflects two kinds of odometric error sources:

— The lack of precision in the discretization of the real world into states (e.g. there is a

rather large area in which the robot can stand which can be regarded as “the doorway

of the AT lab”).

— The lack of precision of the odometric measures recorded by the robot, due to slippage,

friction, disalignment of the wheels, imprecision of the measuring instruments, etc.

To formally introduce odometric information into the hidden Markov model framework, we

define an augmented hidden Markov model as a tuple A = (S,0, A, B, R, ), where

e S ={sp,...,Sny_1} is a finite set of N states;
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0= Hi»:l O; is a finite set of observation vectors of length [; the ith element of an

observation vector is chosen from the finite set Oy;

A is a stochastic transition matrix, with A; ; = Pr(gi41 = s;lq = 5i); 0<¢, j <N — 1;

q; is the state at time t;

A; ; holds the transition probability from state s; to state s;.

B is an array of [ stochastic observation matrices, with B; ;, = Pr(V{[i] =o|¢ = s;);
1<i<,0<j<N—-1,0€ O,; V; is the observation vector at time t; V4[¢] is its ith

component.

B; ;i holds the probability of observing oy, along the ith component of the observation

vector, while being at state s;.

R is a relation matrix, specifying for each pair of states, s; and s;, the mean and vari-

ance of the D-dimensional' odometric relation between them; (R, j[m]) is the mean

of the m!* component of the relation between s; and s; and o%(R; j[m]), the vari-

ance; furthermore, R is geometrically consistent: for each component m, the relation
def

p"(a,b) = p(Rqp[m]) must be a directed metric, satisfying the following properties

for all states a, b, and ¢:

o u™(a,b) = —pu™(b,a) (anti-symmetry); and
o u™(a,c) = pu™(a,b) + pu™(b,c) (additivity) .

This representation of odometric relations reflects the two assumptions, previously
stated, regarding the nature of the odometric information. The “true” odometric
relation between the position of every two states is represented as the mean. The
noise around the correct expected odometric relation, accounting for both the lack
of precision in the real-world discretization and the inaccuracy in measurement, is

represented through the variance.

7 is a stochastic initial probability vector describing the distribution of the initial state;
for simplicity it is assumed here to be of the form (0,...,0,1,0,...,0), implying that

there is one designated initial state, s;, in which the robot is always started.

'For the time being we consider D to be 2, corresponding to (z,y) readings.
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This model extends the standard hidden Markov model, as presented in Section 3.1, in two

ways:

3.3

It allows for observations to be factored into independent components (given the
state), and represented as vectors. Factoring the observations into components and
assuming conditional independence between them allows for the calculation of the
probability of an observation vector from the probability of its components. It there-
fore results in fewer probabilistic parameters in the learnt model than if we were to

view each observation vector as a single “atomic” observation.

It introduces the odometric relation matrix R and constraints over its components.
The use of R and the constraints over it have proven useful for learning the other

model parameters, as demonstrated in Chapters 7, 9 and 11.

Extending POMDP Models

We briefly review the definition of partially observable Markov decision process models

(POMDP models), and describe their adaptation for supporting odometric information. A

more detailed description of standard POMDPs can be found in work done by Cassandra,

Littman and Kaelbling [CKL94, CKK96, Cas98].

Traditionally, a POMDP model consists of:

S ={sp,...,8y—1} is a finite set of N states;
O = {oy,...,0p} is a finite set of M possible observation values;
a ={ay,...,ax} is a finite set of K possible actions;

{A', ..., AR} are stochastic transition matrices, one for each possible action;
Ai',j = Pr(g41 = Sjlqe = siee = a7); 0< 4, <N — 1; 1<I< K} ¢ is the state at time
N-1
t; ¢; is the action taken at time ¢; for every state s; and action ay, Z Ai',j =1.
=0
{B',...,B") are stochastic observation matrices, one for each possible action;
B}k:Pr(vt:okmt:s]‘,ct_l =q); 0<j<N-1, 1<kE<M, 1<I<K;uv is the
observation recorded at time #; ¢;_; is the action taken at time ¢ — 1, which caused

the transition from the previous state to state s;; for every state s; and action

M
I
a, Y B =1
k=1
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e 7 is a stochastic initial probability vector describing the distribution of the initial

N-1
state of the model; m; = Pr(qo = s;); Z 7 = 1.
=0

The above is a straightforward extension of the basic HMM described in Section 3.1 to a
decision process model that includes actions?. This definition implies that a POMDP model
can be viewed as a collection of K HMMs, where K is the number of actions. As such, it

can be learned through a simple extension to any algorithm aimed at acquiring HMMs.

We extend the definition to accommodate multi-dimensional observation vectors as follows:
0= Hi»:l O; is a finite set of observation vectors of length [; the ¢th element of an observa-

tion vector is chosen from the finite set O;.

As in the case of HMMs, we introduce the odometric relation matrix. However, there is still
only one matriz R that is common for the whole POMDP, as opposed to one matrix per
action. The reason is that usually a single action type does not allow us to gather enough
information about the odometric relation among a group of neighboring states, in order
to deduce reliable mean and standard deviation. By considering all odometric transitions
combined over all the executed actions we can obtain better estimates regarding the odo-
metric relations between states. Moreover, typically, odometric measures between states
are not effected by the actions, and any possible effect that a specific action, responsible
for a transition, has on the odometric error is reflected in the variance around the mean

odometric relation.

We have introduced the basic formal model that we use for representing environments and
the robot interaction with them. The rest of the formal framework, namely, a statement of
the learning problem and the basic algorithm for learning the model from data, is described

in the following chapter.

2We do not discuss here the reward component of POMDP models since rewards are usually associated
with tasks and goals that the planner has to accomplish, and is not always an “objective” part of the
world in which the robot moves.



Chapter 4

Learning HMMs with Odometric

Information

This chapter introduces the learning problem for HMMs, and discusses the standard learning
algorithm and the basics of our odometric extension to it. Convergence proofs for the
resulting algorithm are also provided. The augmented HMM learned by the algorithm is of
the most restricted type, as given in Chapter 3. As we elaborate the model in the following

chapters, the learning algorithms are also extended, as described in Chapters 5, 8 and 10.

4.1 The Learning Problem

The learning problem for hidden Markov models can be generally stated as follows: Given
an exrperience sequence E sampled from a model which is assumed to be a hidden Markov
model, find a hidden Markov model that could have generated this sequence and is “useful”
or “close to the original” according to some criterion. Clearly this broad definition lacks a
formal notion of what it means for the learned model to be close to the original model, or

useful. We provide more rigorous criteria in the following paragraphs.

One common statistical approach is to look for a model A that maximizes the likelithood
of the data E given the model. Formally stated it maximizes: Pr(E|\). Another approach
is to find a model that maximizes the posterior probability of the model given the data
Pr(A|E). This model is known as the Mazimum Aposteriori Probability model (MAP).
Note that the latter probability is typically more complicated to directly compute than
the former. Moreover, by applying Bayes rule, it is easy to see that under the assumption

25
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that a priori all models are equally likely, the model that maximizes the likelihood also
maximizes the posterior probability, hence the two criteria are equivalent. However, given
the complicated landscape of typical likelihood functions in a multi-parameter domain,
obtaining a maximum likelihood model is not feasible. All known practical methods can

only guarantee a local-mazimum likelihood model.

Another way of evaluating the quality of a learned model is by comparing it to the true
model. We note that stochastic models (such as HMMs) induce a probability distribution
over all observation sequences of a given length. The Kullback-Leibler [KL51] divergence of
a learned distribution from a true one is a commonly used measure for estimating how good
a learned model is. Obtaining a model that minimizes this measure is a possible learning
goal. The culprit here is that in practice, when we learn a model from data, we do not have
any ground truth to compare the learned model with. However, we can evaluate learning
algorithms by measuring how well they perform on data obtained from known models. It is
reasonable to expect that an algorithm that learns well from data that is generated from a
model we do have, will perform well on data generated from an unknown model, assuming
that the models we use indeed form a suitable representation of the true generating process.
We discuss the Kullback-Leibler (KL) divergence in more detail in Section 7.2 in the context

of evaluating our experimental results.

It is shown by Abe and Warmuth [AW92], that maximizing the likelihood and minimizing
the KL-divergence is a related process, since a model that maximizes the likelihood of the
training data also minimizes the Ki-divergence of the distribution induced by the model
with respect to the training data distribution. ldeally speaking, if the data is a faithful
representative of the true model, finding a maximum likelihood model for the data and
finding a minimum KL-divergence model with respect to the true model should amount
to the same thing. More precisely, as the amount of training data tends to infinity, the
training data distribution approaches the one induced by the true generating process, and
the Ki-divergence of the maximum likelihood model with respect to the true generating

process tends to 0.

An evaluation scheme based on the KL-divergence, has a similar underlying idea to that
of using cross-validation [Sto74, GHWT79] for assessing how good a model is. When learning
a model from given training data, we would like the model to be general enough to model
data outside the training set, that is generated by the same process. When using cross-
validation, parts of the available data are held out during the training process, and are only

used for assessing the learned model, thus verifying that the model is indeed general enough
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to account for data outside the training set. The KL-divergence compares the learned model
with the true one based on newly generated sequences of the true model that were not used
during the training phase. Thus, it enables the assessment of the learned model’s generality,
without the need to hold-out any of the training data. In the general case, when the true
model is not available, cross validation may prove useful for comparing the goodness of

various learned models.

To summarize, the learning problem as we address it in this work, is that of obtaining
a model by attempting to (locally) maximize the likelihood, while evaluating the results
based on the Ki-divergence with respect to the true underlying distribution, when such a

distribution is available.

4.2 The Learning Algorithm

The learning algorithm for a hidden Markov model starts from an initial model A and is
given an experience sequence, E; it returns a revised model A, with the goal of maximizing
the likelihood Pr(E|\). The experience sequence E is of length T'; each element is a pair
E; = {ri, Vi), where r; is the observed odometric relation between ¢;—; and ¢; and V; is the

observation vector at time ¢.

Our algorithm is a straightforward extension of the Baum-Welch algorithm to deal with
the odometric information and the factored observation sets. The Baum-Welch algorithm
is an expectation-maximization (EM) algorithm [DLR77]; it starts with an initial model Ag

and alternates between

e the FE-step: computing the state-occupation and state-transition probabilities,
(1) = Pr(q = s;|E, X) and & (¢, j) = Pr(q: = si, qe+1 = 5;|E, A), respectively, at each

time ¢ in the sequence, given E and the current model A, and

e the M-step: finding a new model A that maximizes Pr(E|A,v,§).

An EM algorithm is guaranteed to provide monotonically increasing convergence of Pr(E|)).
The Baum-Welch has been proven to be an EM algorithm [DLR77]; it has also been prov-
ably extended to real-valued observations [Lip82, Jua85]. Our algorithm, as described
throughout the rest of this section, uses the additional matrix, R, and enforces the first two
geometric consistency constraints on the M-step, but like the standard Baum-Welch it is

still guaranteed to converge to a local maximum of the likelihood function. The proof is
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along the lines of the one presented by Juang et al. [JLS86] for the standard Baum-Welch

algorithm, and is given in Section 4.3.

4.2.1 Computing State-Occupation Probabilities

Following Rabiner [Rab89], we first compute the forward («) and backward () matrices.
When all measurements are discrete, o, (7) is the probability of observing Eq through E; and
¢t = si, given A; 3,(7) is the probability of observing E;1 through Ez_; given ¢, = s; and
A. Formally:

ar (i) = Pr(Eo,...,Eq,q = si|A)

ﬁt(l) = _PT‘(EH_l7 ey ET—1|qt = S, A) .

When some of the measurements are continuous (as is the case with R), these matrices

contain probability density values rather than probabilities.

The forward procedure for calculating the o matrix is initialized with
, b ifmi=1
ao(1) =
0  otherwise |,

and continued for 0 < ¢t < T — 1 with

Z (a7 1 zyf rt|Rz ]) . (41)

f(r¢|R; ;) denotes the density at point r; according to the normal distribution represented
by the means and variances in entry ¢, 7 of the relation matrix R, and b{ is the probability

of observing vector v; in state s;; that is, b] ', B; ivjweli] -

The backward procedure for calculating the § matrix is initialized with

ﬁT—l(j) =1,

and continued for 0 <t < T — 1 with
Z By Jf rey1|R; ]) t+1 - (4.2)

Given a and 3, we now compute the state-occupation and state-transition probabilities, v
and £. The state-occupation probabilities are computed as follows:

filg = si, E[A)

%5(2) = Pr(Qt - 5i|E7 /\) = f2(E|/\)
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_ at(i)ﬁt(i)
R (4.3)
> ) Be(d)
=0
where fy, f; are density functions. Similarly, the state-transition probabilities are computed

as:

5t(i7j) = PI’(Qt = S Qi1 = 3j|E7 /\)

_ (1) Ai j07 11 f (reg | Ri ) Bega ()
T N-1N-1

SN () A; 0 1 f(reqa | R ) Beaa ()

1=0 35=0

(4.4)

We note that the numerator and the denominator in the fractions are both density functions,
but the quotient is a discrete probability function. These are essentially the same formulae
appearing in Rabiner’s tutorial [Rab89], but they also take into account the density of the

relational observation.

4.2.2 Updating Model Parameters

At this phase of the algorithm, the goal is to find a new model, A, that maximizes Pr(E[X,¥).
Generally, this is simply done using maximum-likelihood estimation of the probability dis-
tributions in A and B by computing expected transition and observation frequencies. It
is more difficult in our model than in regular HMMs, because we must also compute a new
relation matrix, R, under the constraint that it remain geometrically consistent. Through
the rest of this chapter we use the notation 7 to denote a reestimated value, and y to denote

the current value.

The A and B matrices can be straightforwardly reestimated; 4; ; is the expected number

of transitions from s; to s; divided by the expected number of transitions from s;:
T-2
th (27 ])
t=0
T-2
> i)
t=0

B, ;o is the expected number of times o is observed along the ith dimension when in s;

A4, ;= (4.5)

divided by the expected number of times of being in s;:

T-1
Z:I(Vt[i] = 0)7:(J)

-1
z_:%(i)

17]70 -
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where I(c) is an indicator function with value 1 if ¢ is true and 0 otherwise.

If we were not enforcing geometrical consistency, the R matrix would be reestimated by:

Zf‘t 164, 7)

my = u(Riglm)) = S (4.7)

z_:ft(l}j)

"’T

T—
luz] gt(’h])
7 G2 (Fyyfm)) = = , (43)

l7]
th(iv ])
t=0

where m € {z, y}.

However, the geometrical constraints induce interdependencies among the optimal mean
estimates as well as between optimal variance estimates and mean estimates. Parameter es-
timation under this form of constraints is almost untreated in main-stream statistics [Bar84]
and we found no previous existing solutions to the estimation problem we are facing. As

an illustration consider the following constrained estimation problem of 2 normal means.

Example 4.1 Suppose we are given two sample sets of points P = {py,ps,...,pn} and
Q ={q,90,..,q}. We are told that they were independently drawn from two distinct
normal distributions with means up, pg and variances o, O'é, respectively. We are asked
to find mazimum likelihood estimates for the two distribution parameters. Moreover, we are
also told that the means of the two distributions are related, such that pg = —up. This

setting is shown in Figure 4.1.

If not for the latter constraint, the task is simple [DeG86], and we have:

k k
2ic Pi D =14 2 e (P = pa)? 2 _ 2= 1(g5 '“y)
— = — Bl — = = . 4.9
Hp n » HQ L » Op n » 0Q L ( )
However, the constraint up = —ug forces us to find a single mean value i and set the other

one to its negated value, — . Intuitively speaking, when choosing such a mazimum likelihood
single mean, the sample that is more concentrated should have more effect and the sample
that varies more should be more “submissive”. This way the overall sample deviation from
the means would be minimized and the likelihood of the data maximized. Thus, there exists
mutual dependence between the estimation of the mean and the estimation of the variance,
as opposed to the estimation given in formulae 4.9, in which the optimal mean estimation

depends solely on the sampled values.
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o cmcoamomme s * c— 2.5

Figure 4.1: Examples of two sets of normally distributed points with constrained means,
in 1 and 2 dimensions.

Since the samples are independently drawn, their joint likelihood function is:

(Pz pp)? M
P 2
P
P7 b b 0-2 b U
F(P.Qlup, po,0p,04) I I aror ]I I1 Broq

The log of the joint likelihood function under the constraint ug = —up 1s therefore:

2 (g

r)” — log(V2rap) ) Z ( (4; —|—,up) log(\/ﬂaQ)) . (4.10)

Q
By taking the derwatives of expression 4.10 with respect to pup, op and og and equating
them to 0, while using the constraint ug = —pp, we obtain the following set of mutual

equations for mazximum likelthood estimators:

n k k
0D Pi— 0P 4 > (pi — ur)? > (g5 +pp)?
=1 7=1 ; 7=1

2 2
= — ocp—m———— )= ———— |
no_é_l_ko_]% y HQ Hmpe, P n 3 Q L

pp =

By substituting the expressions for op and og into the expression for jp, we obtain a cubic
equation which is cumbersome, hence is not given here, but still solvable (in this simple
case). The solution provides a mazimum likelihood estimate for the mean and variance

under the above constraint.

In the case where the two samples are assumed to have the same variance, the variance

factors in the expression for pup above cancel out, and the estimate for pp is simply:

n k
> pi— D4
=1 7=1

'uP:_’uQ:_nT’
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which agrees with the intuitive solution to the problem. Under this assumption, the mauxi-
mum likelthood estimate for UZ), 0% needs to take into account the equality constraint, and

can be expressed as:

n

k
> (pi— up)? + > (g + pp)?

=1 7=1

n+k

0% = 0% =

We now proceed to the update of the relation matrix under constraints. For clarity, we
discuss only the first two geometrical constraints at this stage. Enforcing the additivity

constraint is discussed in Chapter 10.

Zero distances between states and themselves are trivially enforced, by setting all the
diagonal entries in the R matrix to 0, with a small variance, along the z and y dimension.
Anti-symmetry is enforced by using the data from s; to s; as well as from s; to s; when
reestimating p(R; ;). However, we note that the variance has to be taken into account, and

we obtain the following set of mutual equations:

& lf‘t[m]ft(lvj) _ rt[m]ft(]vl)]
agm.)2 g2
ﬁzl] _ t=0 T_z( z,]) . ( ?,z) : (411)
gt(lmj) gt(]vl)
Z —m2 T (=ma2
=0 (Ui,j) (Uj,i)
T-2
[&e (i, 4) (relm] = 775)?]
@) = T . (4.12)
th(iv ])
t=0
For the z and y dimensions we get a complicated but still solvable equation of the 3" degree.

However, for the more general cases involving information regarding the orientation of the
robot (see Chapters 5, 8), as well as when complete additivity is enforced (see Chapter 10)

there are no such closed form reestimation formulae.

Hence, rather than have very complicated reestimation formulae, we use a lag-behind
update rule; the yet-unupdated estimate of the variance is used for calculating a new es-
timate for the mean, and the newly updated mean estimate is then used to update the

variance. Thus, the mean is updated using a variance parameter that lags behind it in the
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update process, and the reestimation formula 4.11 needs to use 07" rather than 77":

(4.13)

lhj

A possible alternative to our lag-behind approach is to update the mean as though the
assumption o;; = o; ; indeed holds. Under this assumption, the variance terms in equa-
tion 4.11 cancel out, and the mean update is independent of the variance once again. Then
the variances are updated as stated in equation 4.12, without assuming any constraints over
them. This approach was taken in earlier stages of this work [SK97b, SK98]. We experimen-
tally studied various update policies for learning constrained Gaussian parameters!. The
experimental results under the restricted experimental settings suggest that the lag-behind
strategy is superior to the others and very close to the actual maximum likelihood estima-
tion method. Moreover, a similar approach was taken by other researchers when using EM
in highly non-linear optimization problem, termed one step late update [MK97]. It turns
out, as we also show in Section 4.3.3, that this update approach falls under the generalized

EM family of algorithms, which have similar properties to the EM algorithms.

The complexity of the above algorithm per iteration is still O(TN?), like the standard
Baum-Welch method. Note that the constants are significant here, since the calculation of
formulae 4.1 and 4.2 requires the evaluation of exponential terms, which is a time consuming
operation. This cost can be significantly reduced through the use of lookup-tables, although

this is not currently implemented in our code.

4.2.3 Stopping Criterion

As stated in the beginning of this section, and proved in Section 4.3, our algorithm is an
EM algorithm and as such it is guaranteed to converge to a local maximum of the likelihood
function. Moreover, a local maximum is reached if and only if the model parameters have

reached a fixed point and are no longer changed by the reestimation procedure.

To practically determine that the algorithm has indeed converged, we can compare the

value of the likelihood function between consecutive iterations. When the change in the

'T am grateful to Luis Ortiz for lending his code and expertise, as well as for conducting these experiments
with me.
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likelihood value is less than a predetermined small €, we can assume that convergence has

been reached, and stop the algorithm.

Alternatively, we can compare the amount of change in the model parameters themselves
between iterations, and when the change in each parameter is less than a predetermined e,

decide that a fixed point has been reached, which implies the convergence of the algorithm.

Note that the odometric data and the odometric relation matrix are used as an aid to-
wards obtaining the transition and observation matrices, and therefore, a stopping criterion
need only take into consideration the transition and observation matrices or the likelihood
of the observation data, rather than the relation matrix or the likelihood of the odometric

data.

The latter of the two stopping criteria can be viewed as more conservative. The reason is
that the likelihood function expression involves a product of the model’s parameters [Rab89)].
Since these parameters are all probabilities (as we are only taking into account the transition
and observation distribution matrices), they are all numbers between 0 and 1. Therefore,
when the change in each of them is less than ¢, the change in the likelihood value is typically

much smaller.

In our implementation of the algorithm, we use this second criterion, and determine
that the algorithm has converged when the change in each of the entries of the transition
matrix, A, and the observation matrix, B, from one iteration to the next does not exceed a
predefined e. (We set € = 0.001 in our implementation). By comparing only the change in
the transition and observation matrices, we also enable a fair comparison of the number of
iterations required for convergence with and without the use of odometric information, as

described in Chapters 7 and 9 of this work.

4.2.4 Extending the Algorithm for Learning POMDPs

To extend the algorithm given above to learn a complete POMDP, each item in the experience
sequence E contains, in addition to the observation and the odometric relation, the action

that caused the transition associated with the odometric relation.

For each action there is a separate pair of matrices A and B. Hence, the forward-
backward procedure as described in Section 4.2.1, and in particular Equations 4.1 and 4.2,
must take into account at each time ¢ the transition probabilities A;; and the observation
probabilities 57 that are associated with the specific action taken at time #. Furthermore,

the update procedure for the A and B matrices, (formulae 4.5 and 4.6), for a particular
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action a, only takes into account the estimated state transitions and observations that are
a result of @ in the data sequence. The update of the relation matrix R does not need to
take any action information into account since R is a single common matrix for the whole

model.

The time complexity of learning a POMDP compared with that of learning an HMM is
not significantly different since the forward-backward procedure described in Section 4.2.1,
which is the most computationally-intensive part of the algorithm, does not require any
additional computational steps. The only difference in this procedure is the one mentioned
above. Only the final update of the A and B matrices, needs to be performed separately for
each action, but this stage is not a computational bottleneck. Therefore, the overall time
requirements remain almost unchanged, under the assumption that the number of possible
actions is typically much smaller than the number of states in the model. A factor that is
likely to make learning a POMDP more time consuming, and needs to be taken into account,
is the larger number of model parameters introduced due to the multiple actions. In order to
facilitate the learning of useful models, longer data sequences, and therefore proportionally

more computation time, may be required.

4.3 Correctness Proof of the Reestimation Formulae

For the kind of iterative reestimation algorithms that we use, proving the correctness of the
reestimation formulae means proving that through repeated reestimation, the likelihood
does not decrease, and that the algorithm converges to a fixed-point model X, which is
a local maximum of the likelihood function P(E|A), where E is the observed experience

sequence. We formalize this in the following theorem:

Theorem 4.1 Let X be the current model, E be the experience sequence, and X be the
reestimated model according to the reestimation formulae 4.5, 4.6, and either 4.7 and 4.8,
or 4.18 and 4.12. Then Pr(E|\) < Pr(E|)\), and N = X if and only if X is a local mazimum
of Pr(E|X) as a function of X.

Proof: There are several proof techniques for the correctness of the reestimation for-
mulae for the standard Baum-Welch algorithm (under various kinds of observation matrix
B) [BPS*70, DLR77, LRS83, Jua85, JLS86]. Our proof uses the same approach as the
latter two. It is straightforward to show that maximization of the likelihood function with

respect to each of the parameters separately is equivalent to its maximization with respect
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the complete model. Hence, we break up the proof, and prove that each of the reestimation
formulae indeed improves the likelihood function with respect to the associated reestimated
parameter. Since the likelihood function with respect to the A and B matrices is a discrete
probability distribution, it is bounded from above, and the convergence of the process is
guaranteed. For the relation matrix reestimation procedure, convergence is also guaran-
teed through a more complicated condition given by Wu [Wu83], and which holds for the

exponential family of distributions [MK97]. Hence convergence is guaranteed.

4.3.1 Transitions and Observations

To prove the correctness of formulae (4.5) and (4.6), we use the central theorem of Baum

and Sell [BS68], which states? that for v = {z;;} s.t. x;; > 0,0 < j < N —1, and

Z;y:_ol z;; = 1, gwen a homogeneous polynomial P in the variable x;;, with nonnegative
coefficients, the transformation
y.: OP
__ Y 9wy
T = (4.14)
Z aP
Lik5pr ix
k=0

satisfies P(x) < P(Z), and T = z if and only if © is a local mazimum of P.

The density expression Pr(E|A) = Y Nclar_1(i) = SN ar_1(3)Br-1(1) , which we
want to maximize, is indeed a homogeneous polynomial in A;; and in B;j,. Both A;; and
B, are discrete probability distributions, therefore are positive and satisfy ZN ! Aj;=1
and > ,c0, Bijo = 1. Hence, according to the above theorem the reestimation formula for

A;;, that leads to a local maximization of P(E|A4,;) is:

Az’j e
A, = L (4.15)

OP(E|A)
ZAlk aAL

We now need to show that the right-hand side of formula (4.15) is equal to that of (4.5).
To do this we need to show that:

oP(E|N) 2
A| Zat Vi1 f(repal Rig) Brea () - (4.16)
ij

By substituting the right hand side expression into (4.15), and using equations (4.3,4.4) we
get the desired equality.

2Baum and Sell’s theorems are actually somewhat stronger and the statement given here is just one
consequence.
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By induction on k, 0 < k < T — 1, it is easy to show that:

k—1

8a ‘
Z 82,] k(1) = Zat(i)b]tﬂf(rtﬂ|Rivﬂ')ﬁt+1(j) ’

t=0

For k =T — 1 we get (4.16), which concludes the proof of formula (4.5). The proof for B,

(formula (4.6)) is almost identical.

4.3.2 Odometric Relations

We note that the density expression, Pr(E|A), is not a polynomial in p(R; ;[m]) and
0?(R; j[m]). Hence the theorem by Baum and Sell can not be applied here. Still, since we
assume that the odometric relations along the  and y dimensions are normally distributed,
in the unconstrained case, their reestimation procedure is an instance of the exponential
family reestimation, discussed by Dempster et al [DLR77]. However, for the sake of com-
pleteness and for an easier discussion of the constrained case, we provide a complete proof,
using the technique of maximizing Baum’s auxiliary function, following Section 4 of the
paper by Baum et al. [BPST70]. We denote by \,, where p is some relation matrix , the
model whose A and B matrices are the same as those of A, but whose relation matrix R is

replaced by the matrix p.

We start by making the observation that if § is the set of all state sequences of length T,
ie. 8§ = {s} where s = sg,...,s7_1 is a sequence of states of length T, the density P(E[))

can be expressed as

P(E|IX) =Y P(E, s|]A)=>_ P(E[s, \)P(s|) .

€S €S
We can rewrite P(E|s, A) and P(s|)A) as
T-1 T-1 T-1
P(E|s,\) = HO byt H1 f(riRs,_,s,) and P(s|A) =y, H1 Agiyse -
t= t= t=

Thus, P(E|)A) can be expressed as

T-1
ZT(S) 1:[ f(rt|R5t—175t) )

SES t
where 7(s) is a product of initial, transition and observation probabilities. Recalling that
f(r¢|R; ;) denotes the density of r; according to the D-variate independent normal distri-

bution with the parameters stored in R; ;, we rewrite it as

f(rR; j) = H () (4.17)

27TO'
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where ™ = rm] and G Lt 0P =27 We also use the notation:
—m e — i T2 e
Fijrir) & e VTR and fij(re) € T £ (),

Baum et al. [BPST70] introduce an auxiliary function, @, and prove that maximizing it
is the same as increasing the likelihood. More formally, the R that maximizes the auxiliary
function

T-1
Q(R,R)= Y P(E,«|))log( 1:[ FrelRs,y )

SES
T-1
= Y _P(E.s|N) D log(f(re|Re,_, s.)
SES t=1
also satisfies P(E|Ag) > P(E[AR).
Since the R that maximizes Q(R,R) also maximizes the same expression in which

V2r fI(r}?) is substituted for fI'(r}"), we can ignore the v27 factor in (4.17) and rewrite
Q as

1 D

T—
= ZP(E7S|A) log St—1, St )) log( St 1,St)] ° (418)
SES t=1 m=1

Since the normal distribution is strictly log-concave, a slight adaptation to the proof of The-
orem 4.1 in [BPS*70] is sufficient for showing that ) above has a unique global maximum

as a function of fzj} and 7}, which is the unique point in which the partial derivatives of @

l] ?
according to 17 and 7} are 0. We now show that the reestimation formulae (4.7) and (4.8)

indeed find the maximizing g7} and 7).

For a pair of states ¢,j and an odometry component m € {x, y} we can express the re-
striction of the auxiliary function @ to transitions from i to j and to the m! odometric

component, m, as

GR,R) =) P(Es|IN) D (log(fi,_, . (") = log(a%_, ,,)) -

SES ts.t.
sp_1=t
st=j
Observing that &1 (4, 7) Z P(E, s[\) allows us to rewrite Q7 (R, R) as
s€S s.t.
sp_1=t
st=j
(R R) th i, j)(log(fir; (1)) — log(a7})) (4.19)
12} 12}
Since ;—Q = 63—,’,{ and a—m = agm ; showing that the partial derivatives of Q}} with respect

to 117 and ot are 0 Whenever equatlons (4.7) and (4.8) are satisfied, concludes our proof.

J
The differentiation is straightforward and is provided in Appendix B.1 .
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4.3.3 Constrained Odometric Relations

The correctness of formulae 4.13 and 4.12, under our lag-behind update policy, is proved by
showing that these update rules are instances of generalized EM. Dempster et al. [DLR77]
introduced this notion, and it is explained in detail by McLachlan and Krishnan [MK97].
The idea is that by merely improving the auxiliary function @, rather than mazimizing it,
at each iteration, we are still guaranteed to improve the likelihood function. Therefore, it

is not necessary to find an update rule that maximizes ) but simply one that improves it.

The proof technique presented here uses direct enforcement of the anti-symmetry constraint
in the expression for (). This is in contrast to the use of Lagrange multipliers in earlier

work [SK97a].
From equations (4.18) and (4.19) we have:

N-—

—_

N-1

D
> QU (R,R) (4.20)

1=0 j=0 m=1

By isolating all terms in which ¢ = j we can rewrite this expression as:

B N-1 D _ N-1 N-1 D
QR.R)= > > QiR R+ > [QF(RR)+Qji(RR)] . (421)
1=0 m=1 1=0 j=(i+1) m=1
In order to increase the sum in (4.21), under the constraint Ry = —Rj;, with respect to

the parameters fif} and @7}, it is sufficient to increase the sum of each pair ( ?}(R,R) +

l]7
;’}(R,R)) with respect to these parameters, since all other pairs do not contain them.

Thus, we are left with the following expression:

L (luz] 9 :u]u 2]70.;2@)

- ek P -E?
)2 —m .o F77)2 —m
Z (i, ) [logle  *T07 ) —log(@?) | +& (1) {logle > ) — log(a)

t=0

We enforce the anti-symmetry constraint by substituting p'; by —;7 in the above expres-

sion, and obtain the following expression which we need to increase with respect to 1z;7, @77

—-m.
and oy



( m_my2 m_my2
T-2 _ oD _ A"
.. T2 —m .. )2 —m
= &(i,5) [logle >3 ) —log(@) | +&(j, i) [log(e *“5" ) —log(a™)
t=0
T-2 - (rm _ ﬁm)Z (rm _I_—m)Z
= > |&lid) (—T - log<ﬁ?>) +&(.1) (—T - logw’?:»))]
i—o L QQEQZ ! 2@202 !
Let pi, o/} and of} be the current values of the parameters. To increase L]} we do the
following:
1. Temporarily fix @;7,7}; to be the current o], 0};. Denote by Ll] (7z7;) the function

obtained from L}7 through this instantiation of the @ parameters. Formally stated:

m(—m def m m
L ( ) L (Mz]? 1]70-”) .

5 71
2. Find the value fij? that maximizes EZL (ﬁ:?)

3. Set {7 in L7} to the value zij? found in step 2. Denote by L (@,

obtained from L;7 through this instantiation of g;}. Formally stated:

o~m
T (=m —=m def rm —m —m
Li] (02]7031) L (:uzgv zgvgji) .
o~m
4. Find values 7,07} that maximize L,;
=m
5. Set 7}, 7} to be 5,07

. /\m . . Am .
Since fif} maximizes L7} (7)}) we have:

Lm(luz]7 2]7 )>Lm(luz]7 17;70-;?) ‘

om

m —=m .
Since o;7,07; maximize L, (@, 51) we have:

Lm(ﬁZL7AZL7A )>Lm(luz]7 17;70-;?) ‘

By transitivity:

Lm(ﬁZL7AZL7A )>Lm(luz]7 17;70-;?) ‘

;.07 according to the above procedure does not decrease L.

does not strictly increase L

Hence, setting [,

17
of the likelihood function is reached.

. . . A ~m
It is now left to obtain expressions for i}, o7, and o7}

a7) the function

then according to the generalized EM algorithm a maximum
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To find pf}, we take the derivative of EZL (773) with respect to @7} and equate it to 0.

8E2n — =) ()
thlﬂ W &y, )W] :

8“2’] - 70

By equating to 0 we get:

T-2 m i rme, (G,
Z[rt gt(vj) tf(]v )]

op)? o)

i[ft(l ]) + ft(]} l)]

= (ay)* (o)

which is identical the reestimation expression for fz;"; given in 4.13. It is easy to check that

]7l

the second derivative of Lm (ﬁ:?) with respect to 7]} is negative, and therefore this is indeed

a maximum rather than a minimum.

~m
Similarly, to obtain 77, we take the derivative of L;; (EZ?,E;«’;) with respect to 77}, and

equate it to 0, and a similar process is done for finding 5;’;. The obtained expressions are:

z_: gt i ] ]_ EZL])Z] z_: gt ]7 —I_:uz,]) ]
__ t=0 _ t=0

(o7)* = (@) =

z_:ft(l}j) z_:ft(ﬂ i)

which agree with the update formulae 4.12. Again, the second derivative is negative, which

ensures that this is indeed a maximum point. This concludes our proof. |

For the special case where ¢ = j, the value g} is 0, which shows that the update formula

indeed satisfies the first two of the three geometrical consistency constraints.
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Chapter 5

Directional Data and Distributions

5.1 Motivation

Throughout our discussion so far, we have considered only two components of the odometric
information gathered by the robot, namely, the  and y coordinates. However, an additional
measure that is usually recorded is the change of the robot’s heading, 6, as it moves from
one state to the next. If a robot is standing in one position and takes the action of turning
left or right, a respective change of heading of approximately £90° is recorded between the
state prior to the turn and the state following the turn. Obviously, there is noise around this
measure, as is the case for the x and y measures. In previous work [SK97b, SK97a], we did
treat the change in heading as though it were simply normally distributed. However, the
change in heading is different from that in x and y, in the sense that angular measurements

are cyclic. That is, a change in heading of 90° is the same as a change of 450° or of —270°.

If we knew in advance, for every two states, the approximate change in heading (A#f)
that the robot goes through when moving from one of them to the other, we could still
have modeled it as though it were approximately normal with a mean A#, and some small
variance o2 [AC82]. We could adopt a convention of having all angles normalized to be
within a cyclic range, e.g. [—180°, 180°], (similarly we may use radians or other units),
and always choose to take as the angular change between two points min(]6], 360° — |6|),
and assign it the correct sign. However, we do not know in advance the angular change
between every two states. We have a sequence of angular measurements and we estimate
the probabilities of the states in which they were recorded, and take a weighted mean of the
measurements in order to estimate the angular change between every two states. Thus, we
are facing the following problem: What is the interpretation of a “mean angle”?
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Figure 5.1: Robot changes heading from state a to state b.

As an example, consider the transition from state a to state b, as depicted in Figure 5.1.
Suppose that we adopt the convention that angles are expressed as numbers between —180°
and 180°. Also, suppose we have two (noisy) measurements of the angular distance from
state a to state b: —169° and 185°. The simple average between these two measurements
gives us an estimate of the mean heading change of 8°. Obviously this is not the value that
reflects even remotely the change of heading between the two states. A similar problem
arises if we use a convention for expressing angles between 0° and 360°. The problem lies in
the fact that angles that are about 180° away from the mean angle greatly deviate from this
mean, while angles that are about 360° away from the mean are actually very close to it.
To capture this idea, the concept of circular distribution is required. Angular data plays a
significant role in various aspects of both theory and mechanics of robotics, as well as other
areas of computer science (e.g computer graphics). Since distributions over such data are
not widely known to researchers in this area, (although the problematic aspect of such data
has long been realized by statisticians), we provide here a brief introduction to the basic
concepts and techniques used for handling circular data. In particular we concentrate on
the von Mises distribution, which is a circular version of the normal distribution. Further
discussion can be found in several statistical publications [GGD53, Mar72, KJ82a, KJ82b].

Section 5.4 returns to show how the theory is applied in our model and learning algorithm.

5.2 Statistics of Directional Data

Directional data in the 2-dimensional space can be represented as a collection of 2-dimensional
vectors, {(z1,Y1),-..{Tn, Yn)}, on the unit circle, as shown in Figure 5.2. The 2-dimensional
points can also be represented as the corresponding angles between the radii from the center
of the unit circle and the x axis, (64,...,6,), respectively. The relationship between the

two representations is:
x; = cos(;), y; = sin(;), (1<i<n) .

The vector mean of the n points, (Z,7), is calculated as:
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'
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Figure 5.2: Directional data represented as angles and as vectors on the unit circle.

__ S _ oy COS(H,')7 7= D1 Vi _ D et Sin(ei) ‘ (5‘1)
n n n n

Using polar coordinates, we can express the mean vector in terms of angle, 8, and length,
@, where (except for the case T =7 = 0):

f=arctan(y), a=@F+7)7 . (5.2)
z

The angle  is the mean angle, while the length @ is a measure (between 0 and 1) of how
concentrated the sample angles are around §. The closer @ is to 1, the more concentrated

the sample is around the mean, which corresponds to a smaller sample variance.

Distributions that generate directional data are called directional or circular distribu-
tions. A function f is a density function of a continuous circular distribution if and only
if:

2m
F(z) >0, / fla)de =1 .
0

A simple example of a circular distribution is the wniform circular distribution, whose
density function is f(§) = 3= (where § is measured in radians). One way of deriving
a circular version of an unlimited linear distribution is through “wrapping” it around the
circumference of the unit circle. If x is a random variable on the line with probability density
function f(z), the wrapped random variable z,, = [z mod 2] is distributed according to

a wrapped distribution with the probability density function: f,(0) = > f(6 + 27k).
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Applying this derivation to the normal distribution results in a circular version of the normal
distribution, but estimating its parameters from sample data can be problematic [GGD53,

Mar72].

An easier-to-estimate circular version of the normal distribution was derived by von
Mises [GGD53, Mar72], in a way analogous to the way Gauss derived the linear normal
distribution — whose maximum-likelihood parameter estimates are the sample mean and
variance. This circular distribution is the one we are using to model the robot heading in

this work, and is described below.

5.3 The von Mises Distribution
A circular random variable, 8, 0 < § < 27, is said to have the von Mises distribution with
parameters p and k, where 0 < p < 27 and & > 0, if its probability density function is:

1 K cos(f0—pu)

fu,m(e) - m 3

where Iy(k) is the modified Bessel function of the first kind and order 0:

= 1
=2 -al3r

r:O

l\DI»—t

Similar to the linear normal distribution, this is a unimodal distribution, symmetrical
around p. The mode is at # = p while the antimode is at # = u + 7. We observe that the
ratio of the density at the mode to the density at the antimode is 2%, which indicates that
the larger x is, the more concentrated the density is about the mode. Figure 5.3 shows an

“unwrapped” plot of the von Mises distribution for various values of k¥ where p = 0.

We now describe how to estimate the parameters p and x given a set of heading samples,
angles 6y,...6,, from a von Mises distribution. We are looking for maximum likelihood
estimates for p and x. The likelihood function for the data generated by a von Mises

distribution with parameters p and k can be expressed as:

n e(n Z?:l COS(M—@,’))
B = L0 = gy

Hence the log likelihood is

log(L,x) = I{zn:COS(,u —6;) —log((2m)"Ip(K)") .

=1
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¢ in radians

Figure 5.3: The von Mises distribution with mode 0 and various  values.

alog(Lmﬁ)
au

To find the maximum likelihood estimate for i we take , equate it to 0, and obtain

the estimate  for p:

& ||

), (5.3)

ot = arctan(

where 7, T are as defined in equation 5.1.

The maximum likelihood estimate for « is obtained by taking % and equating it

to 0. We note that %ﬁl = I (x), where I;(k) is the modified Bessel function of the first

kind and order 1:
s 1 1

Il(lﬁl) = Z m(§,{)2r+l .

r=0

Hence the maximum likelihood estimate for x is the ® that solves the equation:

= %icos(@i — ) . (5.4)

If we do not know g and are only interested in estimating x with respect to the estimated

i, 7t (as defined in 5.3), we can use the identity:

%iCOS(ei - = %J (z:l: cos(6;))? + (z:l: sin(6;))? , (5.5)

and the definition of @, as given in Equation 5.2, to deduce that the maximum likelihood

estimate for k is the & that satisfies:
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However, if we do have a given u and we want to find a maximum likelihood estimate for
the concentration x of the sample data around that specified p, the identity 5.5 cannot be
used (see also Upton [Upt73]). We need to use as a maximum likelihood estimate for «, the

% that satisfies:

L(F) = max| cos(0; —p), 0] = max L (Z cos(f;))* + (Z sin(6;))? — (Z sin(s — 6:)), 0

Io(R) i=1 M\ = i=1 i=1

3|

The above estimation formulae agree with the intuition that the sample is more concentrated

(R is larger) about the sample mean, f, than about the true distribution mean, p.

5.4 Handling Angular Odometric Readings

It is now left to explain how we use the von Mises distribution to model the heading readings
obtained by the robot as part of its odometric information. Through the rest of this section
we explain how the parameters of the von Mises distribution are incorporated into the
hidden Markov model and how the learning algorithm described in Chapter 4 is adapted to

learn these parameters.

To model the heading difference between each pair of states, the relation matrix R,
described in Section 3.2, becomes 3-dimensional rather than 2-dimensional, consisting of the
components (z, y, #) rather than just (z, y). The component R, ;{f] represents the heading
change when moving from state s; to s;, and is assumed to consist of the two parameters of
the von Mises distribution governing this change. The notation H?,j = u(R; ;[]) represents
the mean of the distribution for this heading change, while x? ; = k(R; ;[0]) represents the

concentration parameter around the mean. The three constraints stated in Section 3.2 for

the components of R, hold for the # component as well.

Similarly, every observed relation item, r;, in the experience sequence E, has a heading-
change component, #, which records the change in heading of the robot between the state

at time ¢, q;, and the state g 1.

The reestimation formula for the von Mises mean and concentration parameters of the

heading change between states s; and s; is the solution to the equations:

T-2

[sin (re[0]) (€e(4, J)Fi ;= & (dy )F;i)]

Il
SR =]

i 5 = arctan
?

’lﬂw

[cos(r4[0]) (&4 (4, 1) Fi i + &4 (J, 1)F.a)]

o~
Il
=]
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LR ] o € i, ) cos(r 6] — 7 )]
“— = max = 0] . 5.6
Io[r? ] Yo &liy ) >0

Note here that the larger %;; is, the more concentrated the sample is around the mean, and
the more weight we give to the estimated counts &(¢, j) of observing this mean. Also note
that the denominator contains a sum rather than a difference, since cos is an even function
and cos(—r[0]) = cos(r[6]).

Rather than try to solve these hard mutual equations, we take advantage of generalized
EM as we did in Section 4.3.2, and use the “lag-behind” update. We update the mean using

the current estimates of the concentration parameters, &; ;, #;,, as follows:

T-2

[sin(re[0]) (§:(é, 7) ki j — &(ds ki)

ﬁfj — arctan

e
(AL
SR =]

[cos(rd6]) (& (45 7) ki + & (35 )#)]

=

o

and then calculate the new concentration parameters based on the newly updated mean,

as the solution to equation 5.6. Finding Eﬁj that satisfies this equation is done through the
[=]

use of a lookup table, listing values of the quotient il)[x].

The above reestimation formulae agree with the maximum likelihood estimator formulae
given in equations (5.3, 5.4). The convergence of the estimation process is guaranteed due
to the von Mises being a member of the exponential family [Mar72], and the monotone
improvement of the likelihood through their use can be proved along the lines of the proof

provided in Section 4.3.3.
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Chapter 6
Choosing an Initial Model

It is typical in instances of the Baum-Welch algorithm to simply initialize the model at
random, perhaps trying multiple initial models to find different local likelihood maxima.
Concretely, to choose an N-state model uniformly at random, we first choose N discrete
probability distributions over N events, from the set of all possible N-dimensional proba-
bility distributions, uniformly at random!, in order to construct the transition-distribution
matrix A; similarly, we choose IV distributions over observations for the observation matrix
B; finally we populate the relation matrix with random means, while enforcing consistency

constraints.

It is important to note that when continuous distributions are estimated, arbitrary ini-
tialization of means and variances can cause numerical instability throughout the algorithm.
For instance, if an odometric relation between state ¢ and state 7 is initially assigned a dis-
tribution with an arbitrary mean that is far from any of the actual odometric readings, with
only a small variance around it, the density mass assigned to any odometric data accord-
ing to this distribution is very small, and can exceed the machine’s precision, causing an
underflow to occur. It is especially severe in a multi-dimensional odometric readings set-
ting, like the one we are dealing with, since when numbers are multiplied by one another,
even plausible density values rapidly decrease. Moreover, very small probability values ex-
clude plausible state transitions between states ¢ and j from being considered since they

are assigned a density mass which is arbitrarily close to 0.

We may try to choose an initial large variance for the odometric distribution, thus

'See Cassandra’s Ph.D. thesis [Cas98] for details on choosing distributions at random.
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avoiding the underflow problem. Such an approach results in highly inaccurate mean rees-
timation; if the odometry from state i to state j is initially estimated at a value with high
variance, many transitions that do not go from ¢ to j still get a reasonably high density
under the distribution from ¢ to j. When the mean is reestimated, all these transitions
would participate in the calculation. Thus the model reduces to having arbitrary means

that roughly accommodate all the data points due to the large variance around them.

This problem has long been realized by Rabiner et al. [RJL*85], and they make two

suggestions for a solution:

e When events have very low density mass, add some small constant to it.

e Start from a good initial model.

The first suggestion is close in practice to the Bayesian approach, with a uniform prior over
all events. This approach is adopted in our implementation, as we add a small constant
to the estimated transition and occupation probabilities € and v, to avoid 0 probabilities.
However, as Rabiner et al. point out, it is not sufficient, since without good estimates for
most of the parameters, all the data has low probability which is compensated for by the
added constants, resulting in a very flat model. The overall effect is similar to that of having

a large variance around arbitrary means.

The second suggestion is not easily met, since we rarely have enough prior knowledge
to provide a good initial model, and as stated earlier, our goal is to automate as much as
possible the learning process, avoiding the hard work of manually obtaining a good initial

model.

We have come up with three initialization strategies. One is to use random initial distri-
butions for the transition and observation matrix, and random relation means from within
the range of odometric readings, assigning large initial variance. All three geometrical con-
straints are enforced on the relation means through dependency propagation. For instance,
once we pick the mean yj; at random, the mean pj; is set to —u; rather than chosen
at random itself. This method still often leads to numerical instability of the algorithm,
and results in very flat models, both in the sense of being close to uniform transition and
observation distributions and in terms of inaccurate odometric mean estimates with high

variance around them.

The two other initialization strategies are biased by the odometric data. One of them

was briefly described in earlier publications [SK97b, SK97a], and is based on clustering
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states according to their odometric locations in a global coordinate system. This method

is not robust in the face of cumulative rotational errors, which are discussed in Chapter 8.

We also developed another initialization algorithm, based on clustering odometric rela-
tions rather than positions, and on tagging each odometric relation by its estimated origin
and destination states. The algorithm is only concerned with odometric relations between
states, and therefore is not sensitive to cumulative rotational errors. It also has the poten-
tial advantage that it may assist in determining the number of states in the model when all
we have is a rough overestimate for this number.

In the following we present both algorithms. They both take as input the sequences E
of observations recorded at states and odometric relations recorded between states, as well

as the number of states N.

6.1 K-Means-Based Initialization

Given a sequence of observations and odometric readings E, we begin by assigning global
metric coordinates to each element in the sequence. This is done by accumulating the
observed odometric relations between consecutive pairs of odometric readings, as demon-

strated in the following example.

Example 6.1 Suppose we have the following 8 consecutive odometric readings:

(294 92), (1994 0 88), (3 —93 86), (—1999 —1 94), (—4 102 91),
(1998 —590), (-2 —106 91), (—2003 7 87) .
These can be viewed as the change in heading from one state to the next measured within a
global coordinate system.

By accumulating these measures, assuming that the initial position is (0 0 0) we get the

following sequence of global position assignments:

(00 0), (294 92), (1996 94 180), (1999 1 —94), (0 0 0), (6.1)
(-4 102 91), (1994 97 —179), (1992 —9 —88), (—11 —2 —1) .

The angles here are taken to be in the interval [—180°,180°]. The set of global coordinates,
as demonstrated above, ignoring any other observation information, is fed into a k-means
clustering algorithm (see, for instance, the discussion on simple isodata in Duda and Hart’s

book [DH73]) , vielding a partition of the data into N clusters.
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The k-means algorithm is an iterative procedure that starts by arbitrarily choosing k
cluster seeds, where a seed is just a point of the same dimension as the data. The number
of clusters that we are looking for, k, corresponds in our case to the number of states in the
model, N. Each data point is assigned to the cluster whose seed is closest to it. Then the
mean of each cluster is calculated from its points, and these means are used as the cluster
seeds for the next iteration. The algorithm halts when a fixed-point is reached, and there

is no more transition of elements between the clusters.

To use this algorithm, we need to define a procedure for calculating the means as well
as a distance metric between elements, in order to find the elements closest to each mean.
Since our odometric locations are of the form (z,y,0) where 6 is an angle, we use the

mean angle as defined in Section 5.2, and define the mean of a set of odometric locations

{(zir i, 0)} as:

. DT D Yi
<:ux7:uy7,u9> — 77 n , arctan

> sin(6;) > >
> cos(;)

A simple way to overcome the cyclicity of the heading component when calculating the
distance between an odometric location (z,y, #) and a cluster mean (fi,, [y, o) is to take the
Euclidean distance between the vectors (z,y,sin(8),cos(6)) and {ju,, pty,sin(ue), cos(g)).
However, since z, y, g, fty are expressed in centimeters, and sine and cosine are always
numbers between —1 and 1, the latter’s effect on the distance is negligible, even when the
actual heading difference between the mean and the point is very large. To overcome this
phenomenon, we choose a constant, C', to scale the sine and cosine components of the
Euclidean distance to the same order of magnitude as the z and y components. In our case,
where z and y are measured in centimeters, the scaling constant C' = 200 proved to be a
good choice throughout all our experiments. It is however possible to calculate C' from the
order of magnitude of the typical changes in # and y rather than provide it as a constant

to the program.

Example 6.1 (Cont.)If the k-means algorithm works well, and the number of states is
known to be 4, we would expect to obtain the following clustering assignment to the se-

quence 6.1 (perhaps with a different choice of distinct cluster numbers):
(0, 1, 2, 3, 0, 1, 2, 3, 0) .

Once clustering is done, each distinct cluster corresponds to a state. The experience se-
quence can be mapped directly onto a state sequence, such as the one shown in the example

above. The state sequence, in turn, is used as though it were the actual state transition
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sequence through which the experience sequence, E, was generated. We then compute occu-
pation and transition probabilities, (v and £ values, respectively), with the ~ values being 0
or 1, due to the deterministic nature of the clusters (it might be beneficial to use stochastic
clusters, using an algorithm such as Autoclass [CKS190] as an alternative to k-means).
The A, B, and R matrices are all estimated from v and £ as described in Section 4.2.2.
Finally, an ad hoc process is used to adjust R to satisfy the additivity constraint. The
main drawback of this algorithm is that in the presence of cumulative rotational error (to
be discussed in Chapter 8), the odometric location assignment within a global coordinate
system can be highly inaccurate, resulting in clustering together unrelated state positions

and in separation of positions that are physically close together.

6.2 Tag-Based Initialization

We have developed an alternative initialization algorithm which assigns states to the recorded
observations, based directly on the recorded relations between states — rather than on states
location within a global coordinate system. This algorithm is much more robust to changes
in the coordinate system and can accommodate rotational errors. For the sake of clarity,
the description given here still assumes that the relation between states is recorded with

respect to a global coordinate system. In Chapter 8 we show how this assumption is relaxed.

Given a sequence of observations and odometric readings E, we begin by clustering the
odometric readings into buckets. The number of buckets is bounded from above by the
possible number of distinct state transitions that are accounted for in the sequence, which
is min(N?2,7 — 1), where T is the length of the observation sequence (hence containing
T — 1 odometric records of state transitions). The idea in the bucketing process is that each
bucket will contain all the odometric readings that are close to each other along all three

dimension.

To achieve this, we start by fixing a small standard deviation value (again, a predeter-
mined constant), along the z, y, and 6 dimensions. Denote these standard deviation values
Oy, 0y, 0p respectively, where typically o, = o,. The process is initialized by assigning the
first odometric reading to bucket 0 and setting the mean of this bucket to be the value of
this reading. The rest of the process consists of examining the next odometric reading. If it
is within 1.5 standard deviations along each of the three dimensions from the mean of some
existing non-empty bucket, add it to the bucket and update the bucket mean accordingly.
If not, assign it to an empty bucket and set the mean of this bucket to be this reading. Note
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<2,94,92>
<-4,102,91>

pl:
<-1, 98, 91.5>

<1994, 0, 88 >
<1998, -5,90>

u2:
<1996, -2.5, 89>

<3,-93,86>
<-2,-106, 91 >

u3:

<-1999, -1, 94>
<-2003, 7, 87 >

pa:
<-2001, 3, 90.5>

1 2 3 4

Figure 6.1: The bucket assignment of the example sequence.

that the number of buckets is sufficient to account for all state transitions or elements of the
sequence (the largest of the two). Therefore, under the assumption that the relations are
indeed normally distributed, with a reasonable choice of standard deviations for populating

the buckets, there is always a bucket found for placing each of the readings.

This algorithm guarantees that all the odometric readings in each bucket are within a
range of 1.5(c,, 0y, 0g) from the bucket mean. Since the actual sample standard deviation
of each bucket is guaranteed to be no larger than the predetermined standard deviation
used during the bucketing process, intuitively each bucket is tightly concentrated around
its mean. Obviously, this does not guarantee that all readings that are within this predeter-
mined range from each other are indeed placed in the same bucket (although this is what
we ideally hope to achieve when applying the algorithm.) We note that other clustering
algorithms could be used at the bucketing stage. (See, for instance, Duda and Hart’s book

for a variety of such algorithms.)

Since here each bucket holds only readings close to its mean, it is reasonable to use a
standard deviation even for the heading information and treat it in this context as though

it were normal, as long as we keep the representation consistent.

Example 6.2 Suppose we want to learn a 4-state model from a sequence whose odometric
component is as given in the previous erample:

(294 92), (1994 0 88), (3 —93 86), (—19991 94), (—4 102 91), (1998 —5 90), (=2 —106 91), (—2003 7 87) .

As a first stage we place these readings into buckets. Suppose the standard deviation
constant is 20. Then the placement into buckets is as shown in Figure 6.1. The mean value

associated with each bucket is shown as well.

Once bucketing is done, each odometric reading has a bucket to which it has been assigned,
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and the next phase of the algorithm starts. It consists of state-tagging each odometric
reading. Each odometric reading, ry, is assigned a pair of states, s;, s;, corresponding to
the origin state (from which the transition took place) and the destination state (to which
the transition led), respectively. In conjunction with this process the mean entries, p;;, of

the relation matrix R are populated.

Example 6.3 Returning to the sequence used in example 6.2, the process is demonstrated

in Figure 6.2. We assume that the recording starts at state 0, and that the odometric change

A B
0 1 2 3 0 1 2 3
<-1,
0| <0,0,0> 0| <0,00>| 98,
91.5>
< 1,
1 <0,0,0> 1| -98, <0,0,0>
-91.5>
2 <0,0,0> 2 <0,0,0>
3 <0,0,0> 3 <0,0,0>
S0 S 0.1

Bucket(R[O][1]) = pl

C D
0 1 2 3 0 1 2 3
<1, <1995, <-1, <1995, (<1995.5,
0| <0,0,0>| 98, 95.5, 0 <0,0,0>| 98, 95.5, -4,
91.5> | -179.5> 91.5> | -179.5>| -91>
< 1, <1996, < 1, <1996, [<1996.5,
1 98" |<000>| -25 1| -8 |<000>| -25 |-102,
-91.5> 89> -91.5> 89> 177.5>
<-1995, | <-1996, <-1995, | <-1996, <05,
2| -95.5, 25, |<0,00> 2| -955, 25, |<0,0,0>| -99.5,
179.5> | -89> 179.5>| -89> 88.5>
K-1995.5, |<-1996.5, | <-0.5,
4, 102, 99.5, | <0,0,0>
3 <000 3 91> | -177.5> | -88.5>
S01,2 S.0,1,2,3
Bucket(R[2][3]) = p3

Bucket(R[1][2]) = p2
S:0,1,2,3,0

Bucket(R[3][0]) = p4
- $0,1,2,3,0,1,23,0

Figure 6.2: Populating the odometric relation matrix and creating a state tagging se-
quernce.

through self transitions is 0, with some small standard deviation (we use 20 here as well).
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This is shown on part A of the figure.

Since the first element in the sequence, (2 94 92) is more than two standard deviations
away from the mean p[0][0] and no other entry in the relation row of state 0 is populated we
pick 1 as the next state and populate the mean p[0][1] to be the same as the mean of bucket 1,
to which (2 94 92) belongs. To maintain geometrical consistency the mean u[1][0] is set to be
—1[0][1], as shown in part B of the figure. We now have 2 non-diagonal entries populated in
the matriz and the state sequence is {0,1). The entry [0][1] in the matriz becomes associated
with bucket 1, and this information is kept for helping with tagging future odometric readings

which were assigned the same bucket.

The next odometric reading, (1994 0 88), is also several standard deviations from any
populated mean in row 1 (where 1 is the current believed state) of the relation matriz. Hence,
we pick a new state 2, and set the mean u[1][2] to be p2 — the mean of the bucket 2 —
to which the odometric reading belongs. For symmetry preservation, u[2][1] is set to be
—u[1][2]. We record that entry [1][2] in the matriz becomes associated with bucket 2. For
preserving additivity we also set u[0][2] to be the sum of p[0][1] and p[1][2]. w[2][0] is set
to —u[0]2]. Similarly, p[2][3] is updated to be the mean of bucket 3, causing the setting of
w[31[2], p[1][3], 1[0][3], n[3][1], and u[3][0]. Bucket 3 is associated with pu[2][3].

At this stage the odometric table is fully populated, as shown in part D of Figure 6.2.
Since the mean calculation is based on accumulation, the standard deviations grow as well,

as the square root of the accumulated variances, although this is not shown in the figure.

The state sequence at this point is: (0,1,2,3). The next reading, (—1999 —1 94), is
within one standard deviation from p[3][0] and therefore the next state is 0. Entry [3][0]
is associated with bucket 4, (the bucket to which the reading was assigned), and the state
sequence becomes: (0,1,2,3,0).

The nezt reading, being from bucket 1 is associated with the relation from state 0 that
1s tagged by bucket 1, namely, state 1. By repeating this for the last two readings the final

state transition sequence becomes (0,1,2,3,0,1,2,3,0).

Figure 6.3 provides a pseudo-code version of this algorithm. The input to the algorithm is
the odometric reading sequence, E,, of length T—1, together with the bucketing information.
For 0 < i < T —1, Buckets[i] contains the number of the bucket to which the i*" odometric
reading in the sequence is assigned. The algorithm produces a sequence S of the states
believed to have been traversed when the data sequence E was produced, as well as an

initial estimate for the mean of each entry in the relation matrix R.
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for it +— 0 ton
do
ulilli] = 0
Dev[i][i] + ¢
for j <« 0ton,j#:
do
uli[j] < EMPTY

S[0]«0

Current_tag <+ 0

fori+—0toT -1

do Find j s.t. p[ Current_tag ][j]. Bucket = Buckets[]
if not found

then Find j s.t. p[ Current_tag |[j] is within 1.5 standard deviations from F,[4].

if not found
then Find j s.t. p[ Current_tag ][j] is still undefined
if found
then p[ Current_tag ][j] « Buckets[i].mean.
p[ Current_tag |[j]. Bucket < Buckets][i]
Propagate update to maintain symmetry and additivity.

else Find js.t. j # Current_tag
and p[ Current_tag ][] is closest to F,[d].

Current_tag = j.
Sli+ 1] =j.

return S

Figure 6.3: The state tagging algorithm.
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It is possible that by the end of the tagging algorithm, some rows or columns of the
relation matrix are still unpopulated. This happens when there is too little data to learn
from or when the number of states provided to the algorithm is too large with respect to the
actual model. In such cases we can either “trim” the model, using the number of populated
rows as the number of states, or pick random odometric readings to populate the rest of
the table, improving these estimates later. Note that the first approach suggests a method
for learning the number of states in the model when this is not given, starting from a gross
over-estimate of the number, and truncating it to the number of populated rows in the

odometric table after initialization is performed.

Once the state-transition sequence is obtained, the rest of the algorithm is the same
as before, deriving state-transition counts from the state-transition sequence, assigning the
observations to the states under the assumption that the state sequence is correct, and

obtaining the state-transition and observation statistics.

The complexity of this algorithm is worst-case bounded by the complexity of a single
Baum-Welch iteration, namely TN?2. To roughly estimate its run time, we observe that
the algorithm has to find for each of the T'— 1 odometric readings in the sequence E,, an
assignment of a destination state from within IV possible assignment and update the rest of
the odometric relationships that are affected by this assignment. If with each assignment
we would have had to update N? entries, we would have had a complexity of TN?. Note
that the relation matrix can only be fully populated once, hence altogether the complexity
for the tagging stage is TN + N2,

The preliminary bucketing stage requires an assignment of a bucket to each of the
T — 1 odometric readings. We take as the maximal number of buckets min(N% T — 1),
that is, at most every reading has its own bucket. In this case, however, no two readings
reflect the same state-transition. The maximal number of possible distinct state transitions
over N states is N2. Therefore, in any case, the complexity of bucketing is bounded by
min (T N2, T?).

Thus, the initialization phase does not incur much overhead on the algorithm, and is
equivalent to performing a single additional iteration of the Baum-Welch procedure. Judging

by the improvement in the results due to the initialization, it is well justified.



Chapter 7

Experiments within a Global

Framework

The goal of the work described so far is to use odometry to improve the learning of topolog-
ical models, while using fewer iterations and less data. We tested our algorithm in a simple
robot-navigation world. Our experiments consist of running the algorithm both on data
obtained from a simulated model and on data gathered by our mobile robot, Ramona. The
amount of data gathered by Ramona is used here as a proof of concept but is not sufficient

for statistical analysis. For the latter, we use data obtained from the simulated model.

Significant assumptions underlying all the experiments described in this chapter are that
the corridors in the environment are all perpendicular to each other, and that the agent —
both in the real robot case and in the simulated case — is aware of this'. Hence, after each
turn the agent assumes that its new heading is almost perpendicular to its previous heading.
This assumption is used when the agent is gathering its data sequence, E. The assumption
is satisfied in most office buildings, but is violated in a lot of other environments. We relax

the perpendicularity assumption starting in Chapter 8.

7.1 Robot Domain

The robot used in our experiments, Ramona, is a modified RWI B21 robot. It has a
cylindrical synchro-drive base, 24 ultrasonic sensors and 24 infrared sensors, situated evenly

around its circumference. The infrared sensors are used mostly for short-range obstacle

'Thanks to Sebastian Thrun for explicitly expressing this assumption
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avoidance. The ultrasonic sensors are longer ranged, and are used for obtaining (noisy)
observations of the environment. In the experiments described here, the robot follows a

prescribed path through the corridors in the office environment of our department.

Low-level software? provides a level of abstraction that allows the robot to move through
hallways from intersection to intersection and to turn ninety degrees to the left or right.
The software uses sonar data to distinguish doors, openings, and intersections along the
path, and to stop the robot’s current action whenever such a landmark is detected. Each
stop — either due to the natural termination of an action or due to a landmark detection

— is considered by the robot to be a “state”.

At each stop, ultrasonic data interpretation allows the robot to perceive, in each of the
three cardinal directions, (front, left and right), whether there is an open space, a door, a

wall, or something unknown.

The robot also has encoders on its wheels that allow it to estimate its pose (position
and orientation) with respect to its pose at the previous intersection. After recording both
the sonar-based observations and the odometric information, the robot goes on to execute
the following prescribed action. The next action command is issued manually by a human
being. Of course, both the action and perception routines are subject to error. The path
Ramona followed consists of 4 connected corridors in our building, which include 17 states,

as shown in Figure 7.1.

In our simulation, we manually generated an HMM representing a prescribed path of the
robot through the complete office environment of our department, consisting of 44 states,
and the associated transition, observation, and odometric distributions. The transition
probabilities reflect action failure rate of about 5 — 10%. That is, the probability of moving
from the current state to the correct next state in the environment, under the predetermined
action is between 0.85 and 0.95. The probability of self transition is typically between 0.05
and 0.15. Some small probability (typically smaller than 0.02) is sometimes assigned to
other transitions. Qur experience with the real robot proves that this is a reasonable
transition model, since typically the robot moves to the next state correctly, and the only
error that occurs with some significant frequency is when it does not move at all, due
to sonar interpretation indicating a barrier when there is actually none. Once the action
command is repeated the robot usually performs the action correctly, moving to the expected
next state. The observation distribution typically assign probabilities of 0.85 — 0.95 to the

true observation that should be perceived by the robot at each state, and probabilities of

2The low-level software was written by James Kurien.
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Figure 7.1:True model of the corridors Ra-
mona traversed. Arrows represent the pre-
scribed path direction.

Figure 7.2:True model of a prescribed path
through the simulated hallway environment.

0.05 — 0.15 to other observations that might be perceived. For example, if a door should
actually be perceived, a door is typically assigned a probability of 0.85 — 0.9, a wall is
assigned a probability of 0.09 — 0.1 and an open space is assigned a probability of about
0.01 to be perceived. The standard deviation around odometric readings is about 5% of the

meail.

Figure 7.2 shows the HMM corresponding to the simulated hallway environment. Ob-
servations and orientation are omitted for clarity. Nodes correspond to states in the en-
vironment, while edges correspond to the corridors, drawn according to the direction in
which they were traversed. Further interpretation of the figures is provided in the following

section.

7.2 Evaluation Method

There are a number of different ways of evaluating the results of a model-learning algorithm.

None is completely satisfactory, but they all give some insight into the utility of the results.

In this domain, there are transitions and observations that usually take place, and are
therefore more likely than the others. Furthermore, the relational information gives us
a rough estimate of the metric locations of the states. To get a qualitative sense of the
plausibility of a learned model, we can extract an essential map from the learned model,

consisting of the states, the most likely transitions and the metric measures associated with
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Figure 7.6:Learned model of the simulated
hallway environment. K-means initialization.

them, and ask whether this map corresponds to the essential map underlying the true world.

Figures 7.1 and 7.2 are such essential versions of the true models, while Figure 7.3, 7.4,

7.5 and 7.6 are essential versions of representative learned ones, (obtained using the two

biased initialization methods). Black dots represent the physical locations of states. Mul-

tiple states (depicted as numbers in the plot) associated with a single location typically

correspond to different orientations of the robot at that location. The larger black circle
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represents the initial state. Solid arrows represent the most likely non-self transitions be-
tween the states. Dashed arrows represent the other transitions when their probability is
0.2 or higher. Typically, due to the predetermined path we have taken, the connectivity of
the modeled environment is low, and therefore the transitions represented by dashed arrows
are almost as likely as the most likely ones. Note that the length of the arrows, within each

plot, is significant and represents the length of the corridors, drawn to scale.

It is important to note that the figures do not give the complete picture of the models.
First, they lack observation distribution and orientation information. Second, in the figures
we can only position each state once, and geometrical inconsistencies are not visible. For
instance, state 16 in Figure 7.4 is placed according to its geometric relationship to state
5, which places it to the left of the initial state, 9. However, its geometric relationship
with respect to state 9 is simply perpendicular, that is, according to our odometric model
one merely needs to turn right to reach from state 16 to state 9, which agrees well with
the true model. We also omitted states 18 and 41 in figure 7.6 since their relation to the
rest of the model was not learned correctly; they are unreachable from all other states and
have a uniform transition distribution into all the other states, and therefore have no well
defined position in the model. We stress the fact that the figures serve more as a visual
aid than as a plot of the true model. We are looking for a good topological model rather
than a geometrical model. The figures provide a geometrical embedding of the topological
model. However, even when the geometry, as described by the relation matrix, is different,

the topology, as described by the transition and observation matrices, can still be valid.

Traditionally, in simulation experiments, the learned model is quantitatively compared
to the actual model that generated the data. Each of the models induces a probability
distribution on strings of observations; the asymmetric Kullback-Leibler divergence [KL51]
between the two distributions is a measure of how good the learned model is with respect
to the true model. Given a true probability distribution P = {py,...,p,} and a learned one
Q ={q,...,qn}, the KL divergence of ) with respect to P is:

D(PIIQ) = Y pilogy -
We report our results in terms of a sampl(le(_ilversion of the KL divergence, as described
by Juang and Rabiner [JR85]. It is based on generating sequences of sufficient length (5
sequences of 1000 observations in our case) according to the distribution induced by the
true model, and comparing their log-likelihood according to the learned model with the
true model log-likelihood. The total difference in log-likelihood is then divided by the total

number of observations, accumulated over all the sequences, giving a number that roughly
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mona. simulator.

measures the difference in log-likelihood per observation. Formally stated, let M; be the
true model and M; a learned one. By generating K sequences Si,...,Sk, each of length
T, from the true model, Mj, the sampled KiL-divergence, D, is:

K
Z[log(Pf(5i|M1)) — log(Pr(S;|M>))]
D,(My||My) = =

KT
We ignore the odometric information when applying the KL measure, thus allowing com-

parison between purely topological models that are learned with and without odometry.

7.3 Results

We let Ramona go around the path depicted in Figure 7.1 and collect a sequence of about
300 observations. Figure 7.7 plots the sequence of metric coordinates, projected on (z,y),
obtained by accumulating consecutive odometric readings (as described in Section 6.1). We
applied the learning algorithm to the data 30 times. 10 of these runs were started from
a k-means-based initial model, 10 started from a tag-based initial model, and 10 started
from a random initial model. In addition we also ran the standard Baum-Welch algorithm,
ignoring the odometric information, 10 times. (Note that there is non-determinism even
when using biased initial models, since the k-means clustering starts from random seeds,
and low random noise is added to the data in all algorithms to avoid numerical instabilities,

thus multiple runs give multiple results).
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Ramona traversed. Random initialization. without the use of odometry.

Figures 7.3 and 7.4 show the essential representations of typical learned models starting
from tag-based and k-means-based models, respectively. The geometry of the learned model
strongly corresponds to that of the true environment, and most of the states positions were
learned correctly. Although the figure does not show it, the learned observation distributions
at each state usually match well with the true observations. Starting from a tag-based
initialization, the geometry obtained is better in this case than when starting from a k-
means-based model. Typically, when the number of states is relatively small, the tag-based
initialization performs very well, and outperforms k-means-based initialization. Enforcing
geometrical consistency during the tag-based initialization process involves accumulating
variances in the relation matrix. When the number of states is large, the variances in the
initial relation matrix grow large as well, and the tagging process is not as accurate any
more. Figure 7.9 depicts a typical model learned when starting from an arbitrary random
model. The geometrical relationships learned under this setting are not as accurate as when

using either one of the biased initialization methods.

To demonstrate the effect of odometry on the quality of the learned topological model,
we contrast the plotted models learned using odometry with a representative topological
model learned without the use of odometric information. Figure 7.10 shows the topology
of a typical model learned without the use of odometric information. In this case, the arcs
represent only topological relationships, and their length is not meaningful. The initial state
is shown as a bold circle. It is clear that the topology does not match the characteristic

ring topology of the true environment.
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For obtaining statistically sufficient information, we generated 5 data sequences, each of
length 1000, using Monte Carlo sampling from the hidden Markov model whose projection
is shown in Figure 7.2. One of these sequences is depicted in Figure 7.8. The figure
demonstrates that the noise model used in the simulation is indeed compatible with the

noise pattern associated with real robot data.

We used four different settings of the learning algorithm:

e starting from a biased, tag-based, initial model and using odometric information;
e starting from a biased, k-means-based, initial model and using odometric information;

e starting from an initial model picked uniformly at random, while using odometric

information;

e starting from a random initial model without using odometric information (standard

Baum-Welch).

For each sequence and each of the four algorithmic settings we ran the algorithm 10 times.
In all the experiments, N was set to be 44, which is the “correct” number of states; for
generalization, it will be necessary to use cross-validation or regularization methods to select
model complexity. Section 6.2 also suggests one possible heuristic for obtaining an estimate

of the number of states.

Figures 7.5 and 7.6 show essential versions of a learned model (obtained from the se-
quence of Figure 7.8) for a representative run using each of the biased initialization methods.
Due to the perpendicularity assumption applied when collecting the data, the K-means al-
gorithm performs well enough in this context. We note that some of the states whose
locations overlap in the true model (e.g. 12,13) become separated in the learned model
(e.g. states 16,17,28 at the top left corner of Figure 7.5). This is even more noticeable for
states 17,18 in the original model which correspond to states 21,31,35, and 20 in Figure 7.5.
Similarly, separated states (e.g. 34,35,36,37,38,39,40) that are geometrically close together
in the true model are clustered together and overlap in the learned model (e.g. 10,12,43 of
Figure 7.5), due to noise in the odometry readings and observations, combined with the
limitations of the initialization techniques. However, there is an obvious correspondence
between groups of states in the learned and true models, and most of the transitions (as

well as the observations, which are not shown) were learned correctly.

Table 7.1 lists the KI. divergence between the true and learned model, as well as the

number of runs until convergence was reached, for each of the 5 sequences under each
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Seq. Tag-based k-means Random No Odo
# KL ‘ Iter.# KL ‘ Iter. # KL ‘ Iter. # KL ‘ Iter. #

1.027 23.7 1.023 30.0 0.954 23.4 6.351 124.1
1.006 41.3 0.994 31.4 0.953 25.8 4.863 126.0
0.984 16.9 1.029 21.9 1.035 26.6 5.927 113.0
1.124 15.8 1.021 25.9 1.017 23.6 6.261 107.4
1.029 8.8 1.142 27.2 1.035 32.4 4.802 122.9

QU = | W N

Table 7.1: Average results of four learning settings with five training sequences.

of the 4 learning settings, averaged over 10 runs per sequence. We stress that each KL
divergence measure is calculated based on new data sequences that are generated from the
true model, as described in Section 7.2. The 5 sequences from which the models were learned
do not participate in the testing process. From the table it is clear that the KL divergence
with respect to the true model for models learned using odometry, starting from either a
biased or a random initial model, is about & times smaller than for models learned without
odometry data. The standard deviation around the KL-divergence means was about 1.5 for
the no-odometry setting and about 0.1 (often lower) for the odometric settings. To check
the significance of our results we used the simple two-sample t-test. The models learned
using odometric information have statistically significantly (p > 0.9995) lower average KL

divergence than the others.

The models learned using random initialization seem slightly better in terms of the KL
measure than the ones learned with biased initialization and this difference is statistically
significant. A close look at the obtained models reveals that the models based on biased
initialization are more peaked (that is, have more probabilities very close to 0 and to 1)
than the ones based on random initialization®. Since the true model is slightly less peaked
than the ones learned using biased initialization, it occasionally generates, when we execute
the KL routine, sequences that are quite unlikely according to its own distribution and
highly unlikely according to the learned model distribution. This results in a larger KL-
divergence for the models learned from biased initialization with respect to the true model.
To avoid this difference in peakedness it might be desirable, during the learning stage, to
use the Bayesian approach, biasing the learning process towards models that do not have
as sharp a distribution over transitions and observations. This will ensure that the models
would accommodate even the least likely events in the true environment. It is also possible

to post-process learned models, adding a fixed small constant to near-0 probabilities and

3The relative flatness of odometric models learned from a random starting point was discussed in Chap-
ter 6.
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subtracting a small constant from near-1 probabilities.

The number of iterations required for convergence when learning using odometric infor-
mation is roughly 1/4 of that required when ignoring such information. Again, the t-test
verifies the significance (p > 0.9995) of this result. The standard deviation around the
mean iteration number is about 10 for models learned from biased initial points (lower than
that when the number of iterations is low and higher than that when the number of itera-
tions is high). In the case of random initialization the standard deviation is also typically
around 10. When no odometric information is used the standard deviation is about 30. The
number of iterations is statistically significantly lower (p > 0.95) when using the tag-based

initialization than when using any other initialization strategy.

It is important to point out that the number of iterations, although much lower, does
not automatically imply that the algorithm works faster or runs in less time. The major
bottleneck is the fact that we need to calculate within the forward-backward calculations,
as described in Section 4.2.1, the values of the normal and the von-Mises densities. These
require the calculation of exponent terms rather than simple multiplications, slowing down
the runs considerably, under the current naive implementation. However, we can solve this
by augmenting the program with look-up tables for obtaining the relevant values rather
than calculating them. In addition, we can take advantage of the symmetry in the relations
table to cut down on the amount of calculation required. It is also possible to use the fact
that many odometric relations remain unchanged (particularly in the later iterations of the
algorithm) from one iteration to the next, and therefore values can be cached and shared

between iterations rather than be recalculated at each iteration.

The initial clustering strongly biases the outcome of learning; it is important to un-
derstand whether this bias is useful. When the entire model is initialized at random, the
resulting models are usually close, in terms of the Ki-divergence, to the true model. This is
due to two factors; first, by being typically flatter than the other models, they give reason-
able likelihood to any data sequence, and second, by starting from an odometric model that
is typically bad with respect to the data, the algorithm ends up not learning much of the
geometric setting of the environment. Therefore it can learn topologies that may account
for the probabilistic distribution of the data but do not agree with the true topology. This

is demonstrated in more detail in Section 11.3.

When starting from a tag-based initial model, the number of iterations is typically

lower than when using any other setting. The models obtained when starting either from a
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Seq. Tag-based k-means Random No Odo
length || Mean | Std. || Mean | Std. || Mean | Std. || Mean | Std.
KL Dev. KL Dev. KL Dev. KL Dev.

1000 0.984 | 0.049 1.029 | 0.111 1.035 | 0.063 5.927 | 1.956
900 1.173 | 0.351 1.176 | 0.162 1.027 | 0.077 7.852 | 1.446
800 1.108 | 0.094 1.220 | 0.102 1.068 | 0.045 9.624 | 1.755
700 1.185 | 0.160 1.329 | 0.111 1.116 | 0.104 || 10.504 | 2.774
600 1.346 | 0.249 2.575 | 1.922 1.250 | 0.237 || 14.576 | 3.498
500 1.205 | 0.066 2.049 | 0.717 1.270 | 0.137 || 19.649 | 4.975
400 1.279 | 0.050 2.558 | 1.827 1.285 | 0.214 || 26.341 | 4.357
300 1.737 | 0.428 2.447 | 0.369 1.599 | 0.508 || 33.252 | 4.444
200 14.047 | 11.635 || 2.781 | 0.406 3.946 | 2.704 || 52.780 | 4.147
100 63.438 | 1.482 || 20.606 | 10.807 || 12.770 | 11.987 || 78.982 | 6.394

Table 7.2: Average results of three learning settings with 10 incrementally longer se-
quences.

k-means based or from a tag-based initialization are about equivalent in quality, both topo-
logically and geometrically. However, since the tag-based algorithm is almost deterministic
the results obtained by using it are more consistent, and are less prone to change due to
varying initial conditions. Typically, when the initialization is good, most of the work is al-
ready done and the EM algorithm quickly fills in the details. However, if the initial k-means
clustering is bad, it is often close to a poor local maximum and the algorithm is unable to
adjust it well. It may be best to run the algorithm multiple times, taking the model with
the highest likelihood as the final result.

To examine the influence of the amount of data on the quality of the learned models,
we took one of the 5 sequences (Seq. #3) and used its prefixes of length 100 to 1000 (the
complete sequence), in increments of 100, as individual sequences. We ran each of the four
algorithmic settings over each of the 10 prefix sequences, 10 times repeatedly. We then used
the KL-divergence as described above to evaluate each of the resulting models with respect

to the true model. For each prefix length we averaged the Ki-divergence over the 10 runs.

Table 7.2 summarizes the results of this experiment. It lists the mean Ki-divergence
over the 10 runs for each of the prefixes, as well as the standard deviation around this mean.
The plot in Figure 7.11 depicts the Ki-divergence as a function of the sequence length for
each of the three settings. Both the table and the plot demonstrate that, in terms of the
KL-divergence, our algorithm, which uses odometric information, is robust in the face of
data reduction. In contrast, learning without the use of odometry is much more sensitive

to reduction in the amount of data.

Again, we applied the two-sample t-test to verify the statistical significance of these
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Figure 7.11: Average KL-divergence as a function of the sequence length.

results. For example, the Ki-divergence being greater for models learned from a sequence
of length 800 than from a sequence of length 1000, without the use of odometry, is highly
statistically significant (p > 0.999). In contrast, the Ki-divergence is usually not highly
statistically significantly greater when the odometry is used, for either biased or random
models. The Ki-divergence of the learned biased model fluctuates somewhat since shorter
sequences tend to have less accumulated error on their readings, thus clustering may perform
better, resulting in better learned models despite the fewer data points available (see for

instance the change from 600 to 500 observations).

We note that the data sequence is twice as “wide” when odometry is used than when
it is not; that is, there is more information in each element of the sequence when odometry
data is recorded. However, the effort of recording this additional odometric information is
negligible, and is well rewarded by the fact that fewer observations and less exploration are

required for obtaining a data sequence sufficient for adequate learning.



Chapter 8
State-Relative Coordinate Systems

Throughout the discussion so far, we have assumed that there is a single global coordinate
system within which the robot operates. Moreover, we assumed that the robot collects
its data within a perpendicular corridor framework and that it is taking advantage of this
perpendicularity and the single framework while recording odometric information. This
assumption can be troublesome in practice. This chapter discusses the potential prob-
lems, and presents our way for relaxing the assumption and addressing the problems. A

demonstration of the effectiveness of our solution is presented in Chapter 9.

8.1 Motivation

We tend to think about an environment as consisting of landmarks fixed in a global coor-
dinate system and corridors or transitions connecting these landmarks. However, this view

of the environment may be problematic when robots are involved.

Conceptually, a robot has two levels in which it operates; the abstract level, in which it
centers itself through corridors, follows walls and avoids obstacles, and the physical level in
which motors turn the wheels as the robot moves. In the physical level many inaccuracies
can manifest themselves: wheels can be unaligned with each other resulting in a drift to the
right or to the left, one motor can be slightly faster than another resulting in similar drifts,
an obstacle under one of the wheels can cause the robot to rotate around itself slightly, or
uneven floors may cause the robot to slip in a certain direction. In addition, the measuring
instrumentation for odometric information may not be accurate in and of itself. At the
abstract level, corrective actions are constantly executed to overcome the physical drift and
drag. For example, if the left wheel is misaligned and drags the robot leftwards, a corrective
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- e - actual position
— m - recorded position

Figure 8.1: A robot moving along the solid arrow, while correcting for drift in the direction
of the dashed arrow. The dotted arrow marks its recorded change in position.

action of moving to the right is constantly taken in the higher level to keep the robot away

from the left wall and centered in the corridor.

The phenomena described above have a significant effect on the odometry recorded by
the robot, if it is interpreted with respect to one global framework. For example, consider
the robot depicted in Figure 8.1. It drifts to the left —e® when moving from one state to the
next, and corrects for it by moving €° to the right in order to maintain itself centered in the
corridor. Let us assume that states are 5 meters apart along the center of the corridor, and
that the center of the corridor is aligned with the y axis of the global coordinate system.
The robot steps back and forth in the corridor from one state to the next. Whenever the
robot reaches a state, its odometry reading changes by (z,y,#) along the (XY, heading )
dimensions, respectively. As the robot proceeds, the deviation with respect to the z axis
becomes more and more severe. Thus, after going through several transitions, the odometric
changes recorded between every pair of states, if taken with respect to a global coordinate
system, become larger and larger (especially along the X dimension). Similar problems of
inconsistent odometric changes recorded between pairs of states can arise along any of the
odometric dimensions. It is especially severe when such inconsistencies arise with respect to
the heading, since this can lead to mistakenly switching movement along the X and the Y
axes, as well as confusion between forwards and backwards movement (when the deviation
in the heading is around 90° or 180° respectively). Figure 8.2 demonstrates Ramona’s view
of a path through the perfectly perpendicular department corridors, depicted in Figure 7.1,

based on its odometric recording, with respect to a global coordinate system.

A solution to such a situation is to model the odometric relations of moving from state
s; to state s; using a changing coordinate system which is relative to state s;, as opposed to

a global coordinate system anchored at the initial state. This way, the learned relationship
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Figure 8.2: A path in a perpendicular environment plotted based on odometric readings
taken by Ramona.

between each pair of states, (s;,s;), is reliable despite the fact that it is based on multi-
ple transitions recorded from s; to s;. Within the global coordinate system the relations
recorded may vary greatly between one transition from s; to the next. We formalize this
idea and provide the update rules for the odometric information based on this approach in

the rest of this chapter.

8.2 Learning Odometric Relations with Relative Coordinates

As before, our experience sequence, E, consists of T pairs {r, V) of recorded odometric rela-
tions and observation vectors. The odometric relations are recorded as before, with respect
to the robot’s global coordinate system. However, when learning the relation matriz from
the odometric readings, we interpret the entry R;; in the relation matrix R as encoding
the information with respect to a coordinate system whose origin is anchored at the state
s;; the y axis is aligned with the robot’s current heading and the z axis is perpendicular to
it. This is depicted in figure 8.3. The robot is in state s; facing in the direction pointed
to by the y axis, and its relationship to the state s; is described in terms of the coordinate

system shown in the figure.

To support this interpretation of the relation matrix we need to revisit the formulation
of the geometrical-consistency constraints stated in Section 3.2, as well as the initialization

procedure and the update formulae used when learning the model.
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Figure 8.3: The robot is in state S; facing in the direction of the y axis; the relation
between S; and S; is measured according to S;’s coordinate framework.

8.2.1 Geometrical Consistency in a Relative Framework

The consistency constraints have to reflect the coordinate system with respect to which the
odometry is represented. Note that the change in heading from one state to the next is
independent of any specific coordinate system. Hence, only the constraints over the  and

y components of the odometric relation need to be redefined.

Given a pair of states a and b, we denote by u{*¥ (a,b) the vector (u(Rqp[2]), tt(Rap[y]))-
Let us define 74 to be the transformation that maps an (x,,y,) pair represented with
respect to the coordinate system of state @, to the same pair represented with respect to

the coordinate system of state b, (x5, y) (note that 7o = T, ', and p(a,b) = —p?(b, a)).

More explicitly, as before, let u’(a,b) be the mean change in heading from state a to

state b. Then the transformation 7,p is defined as follows:
Tp Tq zq cos(uf(a, b)) — yqsin(u?(a, b))
< Yo > - 7;6< Ya > N < asin(p®(a, b)) + ya cos(u’ (a, b)) >
Tap can also be expressed using the matrix notation:

cos(p? (a, b)) —Sin(ﬂe(avb))] ‘

Tab =
sin(a?(a,))  cos(?(a, b))
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We can now redefine the consistency constraints given in Section 3.2, for the 2 and y

components of the odometric relation:
o pbr (0, a) = (0,0);
o pt9 (a,0) = ~Toal ¥ (b, a)] (anti-symmetry);

o o9 (a,¢) = b (@, b) + Toa["¥) (b, ¢)] (additivity) .

8.2.2 Initialization

Recall that the tag-based initialization algorithm, described in Section 6.2, maintains ge-
ometrical consistency while populating the relation matrix. When the matrix represents
relations in a relative coordinate system, the above constraints need to be taken into ac-
count when maintaining the consistency of the data. Explicitly, when p;; is set to (z,y, 9),
ftj; is set to

(—(xcos(f) — ysin(8)), —(xsin(f) + ycos(d)), —6) .

Similarly, if u;; is already set to (z1,y1,61) and pg; is being set to (xg,ys,02) then pi;;

needs to be set to

(x1 4+ (22 cos(1) + y2sin(b1)), y1 — (z2sin(f1) — ya cos(y)), 61 + 02)) .

8.2.3 Reestimation

The reestimation formulae for all the parameters except for the x and y components of the
relation matrix R, remain as before. However, the reestimation formulae for the z and y
parameters are changed to reflect the relative coordinate systems used. We follow a similar
process to the one used when deriving the reestimation formulae in Section 4.3.3. Again,

we are looking to improve expression 4.21 which we repeat here for the sake of clarity:

N-1 D N-1 —
=2 2 QIR+ > Z QI (R, B) + Qi(R, R)]
1= =0 j=(i+1)m

only this time the symmetry constraints are:

ﬁf@ = - Cos(ﬁfj)ﬁlxj + Sin(ﬁle])luz] s (81)
ﬁgz = - Sln(ﬁ?j)ﬁlxj - COS(HG )luz] . (82)

By substituting these expressions for nj; and ﬁgi, taking the derivatives of equation 4.21
with respect to 77, and ﬁ?j, equating them to 0, and using the “lag-behind” policy with
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respect to the update of standard deviations, as described in Section 4.2.2, we obtain the
following pair of equations:

a u cos(0) W sin(0)

V1 \)] V3
2 i 2
e <L | kleos(0))?  Ksin(0)) > 47 kcos(9) sin(0) <i _ i) —0, (83)
vy Vo V3 \)] V3
b usin(f) wcos(f)
V4 Vo V3
. 2 2
+ 7i; jk cos(0) sin(0) <i - l) — T <|_ + <) + e > =0, 84
) Vo V3 ? Vy \b) V3
where

a—zg rtv b_Z€ rtv u_zgzzrtv W—Zlerg, I_Zgzﬁ k_Z€;l, = 23)27

vy = (Uﬁ)z7 vy = (O'gl»)27 vy = (Ul‘yj)z7 and 4= lh’j )

The expressions for 7ij; and ﬁ?j that solve this set of equations constitute the update
formulae in the 2 and y dimensions. As before, these update formulae are guaranteed to

improve (), and are therefore an instance of the generalized EM algorithm.

Note that in earlier work [SK98] we used an update heuristic of assuming that all

variances are the same when updating the means, obtaining the following reestimation

formulae:
T-2 T-2 re[z]
> (i d)re]) = 3 (@) [cos(al), sin(id,) ] [ [ ]]
ﬁij _ t=0 t;o_2 tlY :
(&e(i,7) + &7, 0)]
T-2 T—_2 re[z]
(&(d, g)rdy]) = D (&(d,0) [—sin(ﬁ?,j% COS(E?,;)} [ [ ]]
—y t=0 =0 Ty
Hij = T—2

(&2, 7) + &, 0)]

These reestimation rules are easily obtalned from the more general ones by setting vy, vo, v3, vy

to all be the same.

This chapter has introduced an approach for learning models from data that is corrupted
by cumulative rotational error. To demonstrate the effectiveness of this approach we ran
experiments on data that was collected without applying the perpendicularity assumption,
thus indeed suffers from the phenomena described in the beginning of this chapter. The

experiments and their results are presented in the next chapter.



Chapter 9

Experiments Using Relative

Coordinates

Similar to the experiments presented in Chapter 7, we test our algorithm in a simple robot-
navigation world. Again, we use both real robot data and data obtained from the same

simulated model as before, as shown in Figure 9.2, with two distinctions:

e The data is generated without the perpendicularity assumption. This means that the
2 and y coordinates are not realigned after each turn with the global x and y axes,

but rather, recorded as is. This is true for both robot data and simulated data.

e The algorithm used for learning the model from the data is as described in Section 8.2.

9.1 Experimental Setting

As before, we provide qualitative results from applying the algorithm to the data obtained
from the robot. For statistically evaluating our results we used the sampled Kullback-Leibler
divergence of the distribution induced by the learned model with respect to that induced by
the true model. The sampled sequences according to which the KiL-divergence is calculated

are generated and compared as before, ignoring the odometric data.

Figure 9.1 depicts the directed path through which Ramona moved. This is the same
true environment as the one described in Chapter 7. Figure 9.3 shows the projection of the
odometric readings that Ramona recorded along the & and y dimensions, while traversing
this environment. For obtaining statistically sufficient information, we generated 5 data
sequences, each of length 800, using Monte Carlo sampling from the hidden Markov model
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Figure 9.1:True model of the corridors Ra-
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Figure 9.2:True model of a prescribed path
through the simulated hallway environment.

whose projection is shown in Figure 9.2. One of these sequences is depicted in Figure 9.4.

The figures of both real and simulated data demonstrate that in addition to the noise along

the z and y measurements, a cumulative rotational error is present once the perpendicularity

assumption is dropped.

We use the same four settings of the learning algorithm as before:

e starting from a biased, tag-based, initial model and using odometric information;

e starting from a biased, k-means based, initial model and using odometric information;

e starting from a random initial model and using odometric information;

e starting from a random initial model without using odometric information (standard

Baum-Welch).

For each sequence and each of the four algorithmic settings we ran the algorithm repeatedly

10 times. In all the experiments based on simulated data, IV was set to be 44, while in the

experiments using real robot data the number of states was set to 17. In both cases this

number of states is the “correct” one.
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Figure 9.4:A data sequence generated by our
simulator, without perpendicularity assump-
tion.

Figure 9.3:A data sequence collected by Ra-
mona in a perpendicular hallway environment.

9.2 Results

Figure 9.5 depicts a typical model learned from data obtained by the robot, using odometry,
starting from a tag-based initial model. The models learned using k-means initialization
and uninformed initialization do not typically reflect the clear rectangular geometry of the
true environment, and hence are not satisfactory geometrically. Note that the k-means
initialization, as described in Section 6.1, was expected not to perform well in the presence

of cumulative rotational error.

As before, the geometrical plot used in Figure 9.5 prevents us from observing the ge-
ometrical inconsistencies in the learned model. For example, State 16, when drawn with
respect to state 15 is at the same 2 and y coordinates as state 15, but the heading is perpen-
dicular to it, that is, the robot needs to turn to the right in order to move from state 15 to
state 16. However, if we were to draw state 16 with respect to state 1, it should have been
placed very close to where state 0 is, thus corresponding much better to the rectangular
geometry of the true environment. Since state 1 was drawn with respect to state 0 and state
16 with respect to state 15, while lacking geometrical consistency throughout the model,

the geometry is somewhat distorted.

We contrast this model with the one shown in Figure 9.6 which is the topological layout of
a model learned without the use of odometric information, from the same data sequence. It
is obvious from the figure that the characteristic loop topology of the traversed environment

was not learnt when odometric information was not used.
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Figure 9.6:Model learned without the use of

Figure 9.5:Learned model of the corridors odometric information, from the same data se-

Ramona traversed. Initialization is Tag-based.
quence.

Figures 9.7 and 9.8 depict the geometrical layout of typical models learned from the
simulated data, starting from a tag-based initial model. These models are not geometrically
good, although some of the rectangular characteristics of the environment are visible. The
models learned using k-means initialization and uninformed initialization are, obviously,
geometrically worse. The tag-based initialization performs much better when the number
of states is small. This can be explained by the fact that when it populates the initial
relation matrix and tags odometric readings, it checks the proximity of readings to the
table entries, using standard deviations that are accumulated when consistency is enforced.
The larger the number of states, the bigger the deviation becomes, and the less accurate
the tagging process is. It is an interesting possible research direction to try and learn well
small portions of the environment and then combine them into a complete map of the

environment.

Table 9.1 lists the KL divergence between the true and learned models, and the number
of iterations the algorithm took to converge, for each of the 5 sequences under each of the
4 learning settings, averaged over 10 runs per sequence. The KL divergence with respect
to the true model for models learned using odometry, starting from either a biased or a
random initial model, is about 8-9 times smaller than for models learned without odometric
data. Note that in these experiments learning was done from training sequences of 800
observations rather than 1000. Therefore the KL measure for the non-odometric case is
higher than that given in Table 7.1. The standard deviation around the means is about

0.1 for KL distances learned with odometry, and about 2.5 for models learned without
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Figure 9.7:Learned model of the simulated Figure 9.8:Learned model of the simulated

environment. Initialization is Tag-based. environment. Initialization is Tag-based.
Seq. Tag-based k-means Random No Odo
# KL ‘ Iter.# KL ‘ Iter. # KL ‘ Iter. # KL ‘ Iter. #
1 1.540 9.90 0.983 19.80 1.110 27.00 6.919 113.30
2 1.029 | 15.10 0.984 24.70 1.065 32.60 9.926 113.10
3 1.301 | 26.40 1.236 22.70 1.119 27.10 10.030 | 102.00
4 1.028 | 33.50 1.100 36.00 1.020 36.00 9.539 104.20
5 1.029 | 28.30 1.107 25.30 1.060 31.90 12.431 | 112.50

Table 9.1: Average results of the four learning settings with five training sequences.

odometry. To check the significance of our results we again applied the two-sample t-test.
The models learned using odometric information have statistically significantly (p > 0.9995)
lower average KL divergence than the others. We can conclude that despite the cumulative
rotational error in the odometric data, the topological models learned using it are much

better than those learned without any odometric information.

We notice that models learned with random initialization and the ones based on k-means
have a slightly lower KL-divergence than the models whose learning used the tag-based
initialization. The explanation to this is again the fact that the tag-based initialization,
which is more rigorous than the others, results in more peaked models, typically assigning
very low probabilities to the less likely sequences of the original model, even when the
learned distributions are similar to the true ones. Thus, the divergence between the learned
and the true model is larger when this initialization is used than when the other methods,

which result in flatter models, are used.



84

H Seq. H Tag-based H k-means H Random H

1 1.280 0.854 1.081
2 0.876 0.904 1.025
3 1.173 1.056 1.058
4 0.837 0.968 0.954
5 0.880 0.949 0.956

Table 9.2: Average results of three learning settings with five training sequences. Distri-
butions are flattened.

To illustrate this point, we applied a simple “flattening” procedure to the models, adding
a small constant, (0.001) to all the small probabilities (< 0.0001) and subtracting a propor-
tional portion from the larger probabilities. This procedure was applied to models that were
learned using all three initialization procedure, and not just the ones that were learned from
tag-based initialization. We compared the resulting less peaked models to the true model,
and the results are summarized in Table 9.2. The values of the Ki-divergence for the flatter
models are indeed smaller than those of Table 9.1. The model learned from sequence 1 is
still much worse when using tag-based initialization, since the initial model which is bad
in this case, strongly biases the learning algorithm towards a peaked model that is quite
different from the true one. Sequence 3 also seems to be associated with worse models when
starting from tag-based initialization, although the difference here is not highly statistically
significant, due to large standard deviations. For sequences 2, 4, and 5, once the learned
models are flattened the Ki-divergence of the models learned starting from tag-based ini-
tialization is smaller than that of the flattened models learned using the other initialization

method. The differences in these cases are highly statistically significant.

The number of iterations required for convergence when learning using odometric in-
formation is roughly 3-5 times smaller than that required when ignoring such information.
Again, the t-test verifies the significance (p > 0.9995) of this result. The typical standard
deviation around the mean number of iterations is about 10 when odometry is used and
about 35 when odometry is not used. Again, among the methods that use odometric infor-
mation, the tag-based initialization method results in the smallest iterations number, while
the random initialization results in the largest one. This ordering is statistically significant

(p > 0.95).

To examine the influence of the amount of data on the quality of the learned models,
we took one of the 5 sequences (Seq. #1) and used its prefixes of length 100 to 800 (the

complete sequence), in increments of 100, as individual sequences. We ran each of the four



Seq. Tag-based k-means Random No Odo
length || Mean | Std. || Mean | Std. || Mean | Std. || Mean | Std.
KL Dev. KL Dev. KL Dev. KL Dev.
800 1.029 | 0.046 || 1.107 | 0.058 || 1.060 | 0.105 || 12.431 | 2.869
700 1.147 | 0.044 || 1.102 | 0.039 || 1.129 | 0.080 || 15.102 | 3.578
600 1.361 | 0.080 || 1.276 | 0.171 || 1.129 | 0.142 || 16.832 | 2.854
500 1.377 | 0.131 || 1.267 | 0.110 || 1.271 | 0.118 || 22.721 | 4.560
400 1.324 | 0.102 || 1.216 | 0.067 || 1.267 | 0.085 || 28.570 | 4.755
300 1.475 | 0.229 || 1.930 | 0.698 || 2.046 | 1.024 || 37.111 | 6.690
200 1.630 | 0.806 || 6.493 | 3.751 || 3.025 | 1.776 || 55.387 | 3.548
100 16.780 | 8.572 || 38.722 | 7.464 || 11.396 | 14.796 || 85.945 | 4.054

85

Table 9.3: Average results of four learning settings with 8 incrementally longer sequences.
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Figure 9.9: Average KL-divergence as a function of the sequence length.

algorithmic settings over each of the 8 prefix sequences, 10 times repeatedly. We then used
the KL-divergence as described above to evaluate each of the resulting models with respect

to the true model. For each prefix length we averaged the Ki-divergence over the 10 runs.

Table 9.3 summarizes the results of this experiment. It lists the mean KL-divergence
over the 10 runs for each of the prefixes, as well as the standard deviation around this mean.
The plot in Figure 9.9 depicts the Ki-divergence as a function of the sequence length for
each of the four settings. Both the table and the plot demonstrate the robustness of the
algorithm in the face of data reduction. In contrast, learning without the use of odometry

is much more sensitive to reduction in the amount of data.

The conclusion from these experiments is that using odometric information, even in the
presence of cumulative rotational error can be, when treated correctly, highly beneficial for

learning topological models. The results also demonstrate the usefulness of the tag-based



86

algorithm for reducing the number of iterations required for convergence, as well as for
obtaining good geometrical models when the number of states is small. However, they
also demonstrate a weekness of the initialization algorithm in handling large models. This
limitation mostly seem to effect the quality of the geometrical aspects of the learned model.
It would be interesting to see if there is a way to address this limitation directly, and also
to find ways for learning well small portions of the environment and later combining them

into a complete model.



Chapter 10

Enforcing Additivity

In Chapter 3, we augmented the standard HMM with an odometric relation matrix, stating
that the relation matrix should satisfy the three geometrical-consistency conditions, for all

states a, b, and c:
o p"(a,a) = 0;
o ™ (a,b) = —pu™(b,a) (anti-symmetry); and
o u™(a,c) = pu™(a,b) + pu™(b,c) (additivity) .

In Chapter 8 we have adapted the statement of these conditions to accommodate relative
coordinate systems. However, our discussion and experiments up to this point have only
dealt with the first two constraints. Although the results are typically topologically satis-
factory, it is of interest to know if better results can be obtained by completely satisfying
geometrical consistency. Intuitively, there are cases in which enforcing additivity is crucial
in order to identify that a state that is reached through two distinct routes is still the
very same state. There are several ways we have explored to enforce the full geometrical

consistency.

As a first step, we tried to use the iterative procedure described in the previous chapters,
augmenting each iteration (which provides a symmetrical but non-additive model), with a
procedure for deriving an additive model from the symmetric one. Our first attempt at doing
this was through the use of a spring-system model, solving a set of equilibrium equations.
The idea is to model each pair of states as though they are connected by a spring, where the
length of the spring corresponds to the mean of the odometric relation between the states (as
obtained from the symmetric estimation procedure), and the spring constant corresponds

87
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to the expected number of times we have transitioned between these two states. By solving
the equilibrium equations we obtain the state coordinates that minimize the energy in the
system, and due to the geometrical nature of the model, we obtain a geometrically consistent

model.

This approach was also taken in other work on geometrical consistency in the context of
metric maps. See, for instance, work by Lu and Milios on alignment of laser scans [LM97] or
by Golfarelli et al. [GMR9S8]. However, embedding this approach in the EM setting proved
unsatisfactory. At the end of each iteration, solving the equations and changing the relation
estimates based on the obtained solution did not preserve monotonic improvement of the

likelihood function, and did not guarantee convergence to any kind of solution at any stage.

The approach we take here is that of directly enforcing the additivity constraints through
the reestimation procedure. We start by explaining the approach in the case of a global
coordinate system for the z and y dimensions only. We then extend the solution to the
case of relative coordinate systems. Finally we describe the way in which we maintain
geometrical consistency over headings, where the direct approach is problematic due to the

special nature of the von Mises distribution.

10.1 Additivity within a Global Framework

The main observation underlying our approach is that the additivity constraint is a result
of the fact that states can be embedded in a geometrical space. That is, assuming we have
N states, sg,...,Sn_1, there are points on some global X and Y and 6 axes, zg,...,25_1,
Yoy« .-y YUN—1, Ho,...,0n_1 respectively, such that each state s; is associated with the coor-
dinates (x;, y;, 0;).

Assuming that the use of one global coordinate system is feasible, the mean odometric
relation from state s; to state s; can be expressed as: (z; — z;,y; — y;,0; — 6;). If cumula-
tive rotational error is to be taken into account, the global mean relations z; — z;, y; — u;
need to be rotated to be expressed with respect to the heading 6; at state s;, as shown in

Section 10.2.

When learning the model, rather than look for N? odometric relation values along the
X, Y and 6 dimensions that maximize the log-likelihood function with respect to odometric
relations while satisfying additivity, we can reparameterize the problem. Specifically, we can
express each odometric relation as a function of two of the NV state positions, and optimize

an unconstrained log-likelihood function with respect to the N state positions. Then we
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can calculate the relations from the state positions, and obtain a geometrically consistent

optimal estimate.

Recall that in Sections 4.3.2 and 4.3.3 we introduced the function ) that we need to

optimize (or at least improve) in every iteration of reestimating the parameters, as follows:

N-—

—_

N-1

D
> QIR.R) , (10.1)
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m R R th 7/ ] log z,](rﬁ—l)) - IOg(Ez)) ’

and m € {z,y,0}. Due to the independence assumption and the form of the likelihood
function P(E|X) we can separate the optimization procedure into optimizing with respect
to each of z, y and # independently. In this section we discuss the reestimation of the state
positions along the z dimension only. For the y dimension the estimation is identical, while

0 is treated separately in Section 10.3. We therefore concern ourselves only with optimizing:

i, ) (log(e™ T —HE /20 _log(3T))
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In order to satisfy geometrical consistency of the means yj; for all ¢ and j, we need to find N
1-dimensional points, o, ..., N-1, such that x;; = z; — z;. These points should maximize

(or improve — for generalized EM) the expression:

N—-1N- 1T—2 N . s
(i, j)llog(e~ T ~(rime 257y og (7)) (10.2)
=0 5=0 t:O
with respect to zq,...,2xy_1. As in Section 4.2.2 we fix the standard deviation terms to

their current values, o, when reestimating the values Z; and 7 and then reestimate &7

157 ij

based on the reestimated 7;, rather than simultaneously reestimating both terms. This is

again an instance of the generalized EM algorithm.

Since all we are interested in is finding the best relationships between z; and z;, we can
fix one of the z;’s at 0, and only find optimal estimates for the other N —1 state positions.
Hence, we fix 29 = 0. By taking the derivative of equation 10.2 with respect to each of the
other z;, (1 < j < N-—1) and setting it to 0 we obtain a set of N —1 equations of the

form:
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The solution to these equations is an estimate for x1,...,xy_; that maximizes )%, where

x

i To show that this is indeed a mazimum and not a

1

o¥ are fixed at their current values.

minimum, we invoke the following theorems
Definition 10.1 A matriz A =(a;;) is said to be diagonally dominant if |a;;| > 374 |ail.

Definition 10.2 Given a matriz A =(a;;), the matric M[A] =(my;) is a matriz whose
entries are:

mi; = lai|, my; = —laij|, forj #i .

Theorem 10.1 [Fie86] Let A =(a;;) be a real square matriz. The following conditions

are equivalent:

o A is diagonally dominant.

o All the off-diagonal elements of M[A] are non-positive (m;; <0, for j # 1), and every

real eigenvalue of M[A] is positive.

Theorem 10.2 [Apo69] Let f be a scalar field with continuous second-order partial deriva-
tives D;;(f) in an n-ball B(a), and let H(a) denote the Hessian matriz at a stationary point

a. Then if all the eigenvalues of H(a) are negative, f has a relative mazimum at .

We now examine the Hessian matrix H(Q"), which is the matrix of the second derivatives

of Q% (after setting z¢ to 0). It is an (N —1) X (N —1) matrix of the following form:

'_N—l (1) (L), = &(2,1)  &(L,2) GV L) G(LN =) ]
; Z;( (071)? * (of;)? » tz:;( (63,)° (0f,)° o tz:;( (0192\7—1,1)2 (UfN_1)2 )
i#l
SERD G2 NRs G | G20, &N 1) G N-1)
H(Q") = Z;( (05,1)2 (Uf,2)2 , ; Z;( (0ﬁ2)2 * (Ug,i)2 b ;( (UJZV—l,2)2 (0'2z,N—1)2 )
= i#2
SN =11 &1L N = 1) LY S SN G L)
Z;( (sz\f_l,1)2 (any_1)2 ) Y Z:u: Z;( (Uz@,N—l)2 * (sz\f—l,i)2 )
I i#(N—1) .

'Thanks to Vasiliki Chatzi for pointing in the direction of diagonally dominant matrices.
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Under the assumption that all {’s are strictly positive, we note that H(Q¥) is diagonally
dominant, since all its diagonal elements are strictly larger in magnitude than the sum of
the other elements in their respective rows. Hence, by theorem 10.1 all the eigenvalues of
the matrix M[H (Q")] are positive. Note that M[H(Q*)] = —H(Q"), and that from the
definition of eigenvalues, k is an eigenvalue of —H (Q¥) if and only if —k is an eigenvalue of
H(Q%). Therefore all the eigenvalues of the Hessian H(Q7) itself are negative and therefore
by theorem 10.2, @* is indeed maximized when the locations for the states are chosen as

solutions to the above equations.

An estimate for each mean relation yj; is simply obtained as
Hij =5 — % (10.4)

and all the geometrical constraints are met. The procedure for y is identical. The process

for reestimating the variance remains as described in Section 4.2.2.

10.2 Additivity within a Relative Framework

In Section 8.2 we expressed the geometrical consistency constraints in the context of relative
coordinate systems. In this scenario, each state has associated with it a coordinate system
whose origin is at the state, its y axis is aligned with the heading associated with the state,

and its z axis is perpendicular to it (see, for instance, Figure 8.3).

To enforce the geometrical consistency constraints directly, we observe again that it is
sufficient to associate points (xq, yo, o), - - -, (TN—1, yn—1, On_1) With the states sq,...,Sn_1,
respectively, only that this time the relationships between states along the z and y dimen-

sions are interdependent through the change in headings between the states.

We denote by (uf;)° = 29 — 27 and (1) =y — y) the mean odometric relation from
state s; to state s; with respect to the global coordinate system whose origin is at state sg,
along the global x and y axes, respectively. If state s; has mean heading ,ugﬂ» with respect

to the heading at state sg, then with respect to state s;,
()" = cos(pg ) (i)° — sin (115,3) (1))° = cos(pg ;) (2 — ) — sin(pg 1) (45 — v) -

Similarly,

(1f)' = sin(pd ;) (29 — @) + cos(ud ;) (v — 7)) -
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We note that the recorded relations rf, r{ are also expressed with respect to the heading at

time t. Thus, we are left with the following expression for maximization:

CURE =33 S &) (;(—)“) — log(o}) — % —logw%))

i=0 5=0 t=0 v

_ Nz_:lN_sz:_Z&(i 5) (_(rtx+1 - (COS(N(G)J)(Z’? - l’?) - sin(ﬂ&i)(y? - 3/?)))2

2(07;)?

py_ (i = (sin(pd,;) (xf — 29) + cos(ug ;) (v] — v)))?

2(c?)? ’ log(oi{j)) . (10.5)

Differentiating equation 10.5 according to each x? and each y;) where j # 0, and equating
each partial derivative to 0, results in a set of 2N—2 linear equations in 2N—2 unknowns.
(The derivatives and the equations are given in Appendix B.2.) The solution, obtained as
part of each EM iteration, is a set of coordinates z,...,znx_1, ¥1,...,YN_1, for the states

$1,...,SN-1, respectively. As before, s is set to be at (0, 0).

The mean state relationships, pj;, ,u?j are recovered through the equations:

Note that the underlying assumption used here is that an estimate for the mean angle ,ugﬂ»
is already calculated. Obtaining geometrically consistent heading angles is discussed in the

following section.

10.3 Additive Heading Estimation

The method demonstrated so far suggested that finding optimal state coordinates and de-
ducing the relationships between them rather than directly finding optimal relationships is
a good way to address the additivity constraint. Unfortunately, this approach is hard to fol-
low in the case of heading change estimation, due to the von Mises distribution assumption

of the heading measures.

Recall that the von Mises density function has the form:

1 e cos(0—p)

fu,m(e) - m 3

> 1,1
where Iy(k) is the modified Bessel function of the first kind and order 0, Ip(k) = Z ?(55)2”.
!
Hence, by substituting yu;; by 6; — 6; and applying a procedure similar to the one discussed
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in Section 10.1 we obtain a set of N —1 trigonometric equations with terms of the form

cos(#;) sin(#;) which do not lend themselves to simple solution.

One possible way to address the hardness of solving these equations, suggested by
Michael Sever [GSD98], is through the direct optimization of the auxiliary function, @,
using an iterative method such as gradient descent. This is an interesting approach to
pursue as future research. However, we preferred to look for a stricter method that is not
iterative, given that the EM algorithm itself is already an iterative method. It seems prefer-
able, if possible, to have a (small) fixed bound on the amount of work performed within

each EM iteration.

Hence, rather than solve the equations or try to iteratively optimize the auxiliary func-
tion, we use the anti-symmetric reestimation procedure presented in Section 5.4, and follow
it by a perpendicular projection operator, which maps the headings vector of length (N-1)2,
<,ufj>, 1 <4,5 < N-1,4 # j, which does not satisfy additivity, onto a vector of headings
within an additive linear vector space. (Note that all entries in which ¢ = j are fixed to 0

already, and therefore we do not need to project them.)

The projection operator P maps each current mean estimate, ,ugj, to a real number
P(ub;). Each pf; where i # 0 is mapped to P(ud;) — P(ub;). An orthogonal projection
operator P is constructed as described by Saad [Saa95], by taking P = VV’T where V
is a matrix whose columns are an orthonormal basis of the linear space of vectors that
satisfy additivity. Obtaining such an orthonormal basis is done through the Gram-Schmidt

procedure.

Our experience shows that this form of projection is still not satisfactory within our
setting, since it simply looks for the additive vector closest to the non-additive one, ignoring
the fact that some of the entries in the non-additive vector are based on a lot of observations,
while others are based on hardly any data at all. Intuitively, we would like to keep the
estimates that are well accounted for intact, and adapt the less accounted for estimates in
order to meet the additivity constraint. More precisely, we would like to project the non-
additive heading estimates vector onto a subspace of the additive vector space, in which the
vectors have the same values as the non-additive vector in all entries that are well-accounted
for. Unfortunately, this set of vectors is not a linear vector space (for instance, it does not
satisfy closure under scalar multiplication), and the projection operator as defined above
can not be applied directly. However, this set of vectors does form an affine vector space,
and we can project onto it using a special technique from linear algebra. We describe the

complete procedure below.
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10.3.1 Selecting Fixed Entries

We start by picking the maximum number, n, of heading estimates that we would like to

preserve. A typical choice we have made is for n to be the number of states in the model.

Using the heap data structure over all expected counts of transitions between states, we
select a list of the n ordered pairs of states (s;, s;) that have the largest expected transition
counts, Y_,(&;), from s; to s;. The list is kept sorted according to the number of the
expected counts. Note that we can’t just fix these values and proceed to the projection

stage, since:
1. There may be inconsistencies between these topmost values themselves;

2. By fixing certain relationships, other relationships are also enforced through the geo-

metrical consistency requirement.

Therefore fixing the entries that should not be projected requires examining and propagating
dependencies within the heading relationship vector. To allow for easy expression of the
interdependencies, we choose to take “8717 .. .,,ug n_p as independent variables, and express

the rest of the relationships H?,j as ,ugJ - ,ugﬂ».

Building the fixed-values vector proceeds as follows. We pick the most accounted for
relationship ,u?l ji» and assume its estimated value is ¢;. Fixing it implies that the vector
entry for ,ugl i, is set to —f0;. Note that once the entry is fixed it does not change any more.
That is, if later in the list of sorted state pairs there is a contradicting assignment to ,ugl i
we discard this item in the sorted list without using it to fix any of the values, and move
down to the next item in the list. However, we do not add any more items to the list; thus

we may, in practice, use less than the n most accounted for values.

We also note that fixing ,ugl i, implicitly forces the relationship between ,u&il and ,ugm
to be u&il = ,ugm +0;.

Once all the implicit relationships are determined, the next most accounted for item on
the list is examined. As said before, if it is inconsistent with the already fixed values, it
is discarded. Else, it is used for fixing all the implicit dependents. We proceed until all n

items in the sorted list are treated.

At the end of this phase we have entries that are completely determined, with a numerical
value assigned to them, as well as entries that are inter-related such as u&il above which
depends on ,ugm through the equation: ,u&il = ,ugm + 61. Since, obviously, ,u&il and

,ug ;, depend on one another, we adopt the convention that the item with the higher index
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depends on the the item with the lower index, and the item with the lower index is viewed

as a free variable. The following example demonstrates the process.

Example 10.1 Suppose our model has 3 states. Hence our estimated symmetric vector of

heading relationships, excluding self-transitions values which are always 0, has 6 entries.

<:ug,17 :ug,Zv H?,Ov H?,Zv Hg,Ov :ug,1> = <907 1107 _907 57 _1107 _5> .

We note that ,ugJ + ,u?z 15 currently not equal to “8,2' Now, suppose that our ezpected

supporting counts of transitions between every pair of states are as follows:

0 1 2
0| 0.01|001] 001
0.02 | 0.01 | 3.97
21001 2941 0.08

Suppose we are only going to preserve the relationships for the 2 most accounted for state
transitions. Hence our sorted list contains is ,u?z, ,u%l. By fizing ,u?z to 5 we fix ,u%l to
-5, and ,u(";’2 = ,ugJ + 5. (Through symmetry we have ,u?o = —,ugJ and ,u%o = —,ugJ -5.)
The second most-supported value is ,u%l, but since it was already fized by the previous step

— we are done. The geometrically consistent partially-fized vector is now:

[ [ [ [
(10,15 Ho1+5s —Ho1s By —pos — B, —5) .
The final step left is to project the inconsistent values currently assigned to the unfized

entries (90,110, —90, —110) onto a space of the form (x,z+5, —x,—x—>5).

We emphasize again, that vectors of the form (x,z+45, —2,—2 —5) do not constitute
a linear vector space. In contrast, vectors of the form (z,z,—=z, —z) do constitute a lin-
ear space. An affine transformation maps between these two spaces; adding/subtracting
the vector (0,5,—0,—5) is the appropriate transformation. Hence, vectors of the form
(z,2+45,—x, —x—5) constitute an affine space of vectors. The following section explains
how to project onto such a space.

10.3.2 Projection onto an Affine Space 2

Perpendicular projection onto a linear space was described earlier in this chapter. An affine

space A is defined as follows:

2This section is almost completely based on material 1 learned through conversations with John Hughes,
to whom I am most grateful.
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Figure 10.1: Projecting v onto an affine space

Definition 10.3 A C R" is an n-dimensional affine space if for all vectors v, € A, the set

def . .
of vectors: A — v, = {ug — va|u, € A} is a linear space.

Hence, we can pick a vector v,, € A and define the translation 7, : A = V, where V is a

linear space, V.= A — v,,. This translation is trivially extended for any vector v’ € R",
by defining T,(v') = v' — vg,. In order to project a vector v € R™ onto A, we apply the
translation Ty, to v and project T, (v) onto V', which results in a vector P(T,(v)) in V. By

applying the inverse transform 7! to it, we obtain the projection of v on A.

This process is demonstrated in Figure 10.1, in which the linear space is the two di-
mensional vector space {(z,y)| y = —a}, and the affine space is {(z,y)| y = —z + 4}. The
transform T}, in this case consists of subtracting the vector (0,4). The solid arrow in the
figure corresponds to the direct projection of the vector v onto the point P(v) of the affine
space. The dashed arrows represent the projection via translation of v to T,(v), the pro-
jection of the latter onto the linear vector space, and the inverse translation of the result,

P(T4(v)), onto the affine space.

By applying this projection process, we obtain the values that replace the entries in the
heading relations vector that were not yet fixed by the previous stage of the algorithm, and
did not satisfy additivity. We plug these values into their correct entries in the vector and
obtain a heading vector that satisfies additivity. We note that it is sufficient to project
only the entries corresponding to undefined values of g1, .. ., fio,n—1; the rest of the values
can be deduced through the expression: p;; = po; — fto,;. We conclude this section by

completing the example provided earlier.
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Example 10.1 (Cont.) We needed to project the values (90,110, —90, —110) onto a space
of the form {(x,x + 5, —x,—x — 5). It is sufficient to project the entries (90,110) onto the
space {x,x + b), and the rest of the values are obtained through anti-symmetry. The linear
space {(x,x) is obtained from the affine space (x,x + 5) through the transform of subtracting
the vector (0,5). Applying this transform to the vector (90,110} results in (85,105). The
space {x,z) is spanned by the orthonormal basis b = <%, %> The projection obtained by
taking b7b applied to the vector (85,105) results in the vector (95,95). We apply the inverse

translation, adding (0,5) and obtain the vector (95,100).

The complete vector obtained by plugging (95,100, —95, —100) into the yet undetermined

entries of the heading relations vector gives us the following additive heading reestimate:

(95,100, —95,5, —100, —5) .

Although the procedure for preserving additivity over headings is not proven to preserve
monotone convergence of the likelihood function towards a local maximum, our experiments
have shown that monotone convergence is preserved. However, under the current form of
additivity enforcement, the quality of the results, as demonstrated in the next chapter,
compared with those obtained when only symmetry is enforced, does not clearly justify the

additional effort involved.
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Chapter 11
Experiments Enforcing Additivity

Similar to the experiments presented in previous chapters, we test the algorithm both within
a global framework under the perpendicularity assumption, and within a relative coordinate
framework, where the perpendicularity assumption is relaxed. Again, we use both real robot

data and data obtained from the same simulated model as before.

As before, we provide both qualitative results in terms of plots of the models, and statis-
tical evaluation. Section 11.1 demonstrates the effects of additivity enforcement under the
perpendicularity assumption, while Section 11.2 demonstrates its effects when the perpen-
dicularity assumption is relaxed. Note that there is a significant difference between the two
settings. The reason is that when the perpendicularity assumption is dropped, obtaining
the correct headings is crucial, since the evaluation of both z and y measurements depend
on the heading. Through the use of projection over the heading we compromise the quality
of the heading, and possibly harm z and y estimates. Another problem with the additivity
enforcement is its reliance on pg; as a basis for the constraints. A bad estimate for the pg;’s

can result in a bad estimation of all the geometrical parameters.

Section 11.3 describes some experiments designed specifically for studying the effects of

odometry and additivity on the quality of the topology and the geometry of learnt models.

11.1 Results within a Global Framework

We applied the algorithm described in Section 10.1 to the same robot-gathered and simu-
lated sequences described and used in Chapter 7. The same evaluation methods are applied
here as well.
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Figure 11.1:Learned model of the corridors
Ramona traversed. Initialization is Tag-based.
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Figure 11.3:Learned model of the corridors
Ramona traversed. Initialization is k-means
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Figure 11.2:Learned model of the corridors
Ramona traversed. Initialization is k-means

based.
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Figure 11.4:Learned model of the corridors
Ramona traversed. Initialization is random.

Figures 11.1 — 11.4 show some of the models obtained by applying our algorithm en-

forcing the complete geometrical consistency while using the various initialization methods.

Bold dashed arrows denote transitions whose probability is very close to the probability of

the most likely transition from the state. The most accurate map is learned using the tag-

based initialization technique. There is very little fluctuation in the quality of the models

across multiple runs since the initialization is close to deterministic (up to the random noise

superimposed on the data). However, this model is not very different from the one depicted
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in Figure 7.3 which was learned without enforcing additivity, using the same initialization

algorithm.

The two examples of the learned geometry starting from k-means initialization demon-
strate that geometrically consistent models can still vary in quality. Moreover, although
the geometry looks almost accurate in Figure 11.2, note that the topology is still not as
good, given that we don’t have two states at each of the top two corners to denote change
of headings during turns, and that there is a back and forth transition between states
13 and 16. The variability in the geometrical outline of the models across multiple runs,
when starting with k-means initialization is smaller when additivity is enforced, than when
only anti-symmetry is enforced. That is, we get more consistently good models and the

dependence on the initial clustering seems to be reduced.

It is interesting to note that even when starting from a random initial model, the algo-
rithm did converge several times to models with geometry that is close to the true one, as
shown in Figure 11.4. Again, this behavior appears to occur more consistently than when

only anti-symmetry is enforced.

Figures 11.5 — 11.8 show some of the models obtained by applying our algorithm to the
simulated sequences, enforcing the complete geometrical consistency while using the various
initialization methods. The most accurate map, shown in Figure 11.5 is learned using the
k-means based initialization technique. Using a global framework allows this method to
be effective. There is still, however, a lot of variability across multiple runs and training
sequences, in the quality of the results under this initialization method, due to its random
starting point. A much worse model, geometrically speaking, which does not represent the
true environment well, despite its geometrical consistency, is shown in Figure 11.6. When
using the tag-based initialization, we get more uniformity in the quality of the results across
multiple runs, but there is still diversity when running over different data sequences. We
show one of the better geometrical models in Figure 11.7, and not as good a model in
Figure 11.8. A possible explanation to the diversity in quality of the learned simulated
model, under tag-based initialization, as opposed to the models learned from robot data,
is that the simulated environment is much larger. This causes the global relations between
remote states, which are reflected in the geometrical consistency constraints, to be harder

to learn.

For the purpose of quantitatively evaluating the learning algorithm we provide in Ta-
ble 11.1 a summary of the results of running the algorithm under each of the 3 initialization

settings, 10 times for each sequence. The results of the runs without odometric information
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Figure 11.5:Learned model of the simulated
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Figure 11.6:Learned model of the simulated
environment. Initialization is k-means based.
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Figure 11.8:Learned model of the simulated
environment. Initialization is tag-based.

are listed here again for comparison. The KL divergence with respect to the true model for

models learned using odometry, starting from either a biased or a random initial model, is

about 5-6 times smaller than for models learned without odometric data. The standard

deviation around the means is about 0.2 for KL distances for models learned with odom-

etry using biased initialization and about 0.1 for models learned from a random starting

point. The two-sample t-test still verifies that the odometric models are better than the

non-odometric ones with a very high statistical significance.

In addition, the number of iterations required for convergence when learning using odo-

metric information is roughly 4-5 times smaller than that required when ignoring such
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Seq. Tag-based k-means Random No Odo
# KL ‘ Iter.# KL ‘ Iter. # KL ‘ Iter. # KL ‘ Iter. #

0.981 | 16.70 1.149 29.90 1.061 28.40 6.351 124.1
1.290 | 20.90 1.037 27.80 1.037 27.70 4.863 126.0
1.115 | 22.30 1.085 20.40 1.110 21.50 5.926 113.0
1.241 | 12.70 1.144 26.60 1.055 19.90 6.261 107.4
1.241 | 27.50 1.442 20.40 1.028 29.20 4.802 122.9

QU = | W N

Table 11.1: Average results of four learning settings with five training sequences.

information. Again, the t-test verifies the significance of this result. As before, the num-
ber of iterations required for convergence when starting from a tag-based initial model is

statistically significantly lower than when starting with any other initialization method.

Under all three initialization settings, the models learned are topologically somewhat
inferior (and this is with high statistical significance), in terms of the KL divergence, to
those learned without enforcing additivity. This is likely to be a result of the very strong
constraints enforced during the learning process, which prevent the algorithm from searching
better areas of the learning-space, and restrict it to reach poor local maxima. The geometry
looks superior in some cases, but it is not significantly better. However, there seems to be
less variability in the quality of the geometrical models across multiple runs when additivity

is enforced.

11.2 Results within a Relative Framework

We applied the algorithm described in Section 10.2 to the same robot-gathered and sim-
ulated sequences described and used in Chapter 9. The evaluation methods also stay the
same. Figure 11.9 shows a typical model obtained by applying the algorithm enforcing the
complete geometrical consistency, to the robot data shown in Figure 9.3, using tag-based
initialization. The enforcement of consistency constraints resulted in a better preservation
of the rectangular geometry of the environment. We notice that state 0 still does not par-
ticipate in the loop. The main reason for this is that due to the relatively large number of
states that are close together in the corresponding area of the true environment, it was not
recognized that we ever returned to this particular state during the loop. Therefore, there
was only one transition recorded from state 0 to state 1 according to the expected transition
counts calculated by the algorithm. When projecting the angles to maintain additivity, the

angle from state 0 to 1 was therefore compromised, allowing geometrical consistency to
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Figure 11.9: Learned model of the corridors Ramona traversed. Initialization is tag-based.

Seq. Tag-based k-means Random No Odo
# KL ‘ Iter.# KL ‘ Iter. # KL ‘ Iter. # KL ‘ Iter. #
1 1.462 | 11.80 1.066 | 36.50 1.076 35.50 6.919 113.3
2 1.184 | 36.80 1.051 30.20 1.097 | 32.00 9.926 113.1
3 1.195 | 30.70 1.270 | 45.00 1.116 31.00 10.030 102.0
4 1.025 | 24.60 1.216 | 40.80 1.043 30.40 9.539 104.2
5 1.223 | 33.30 1.100 | 40.80 1.083 35.90 12.431 112.5

Table 11.2: Average results of four learning settings with five training sequences.

maintain the rectangular geometry among the more regularly visited states.

Figures 11.10 — 11.11 show two of the models obtained by applying our algorithm to
the simulated sequences, enforcing the complete geometrical consistency while using the
tag-based initialization methods. The geometry of rectangular combination is clear, but,
obviously, these are highly inaccurate geometrical representations of the simulated environ-

ment.

For the purpose of quantitatively evaluating the learning algorithm we provide in Ta-
ble 11.2 a summary of the results of running the algorithm under each of the 3 initialization
settings, 10 times for each sequence. For comparison the results of the runs without odo-
metric information are repeated here. As before, the KL divergence with respect to the
true model is significantly smaller when odometric information is used. The standard devi-

ation around the means is about 0.2 for KL values of models learned with odometry using
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Figure 11.10:Learned model of the simu- Figure 11.11:Learned model of the simu-
lated environment. lated environment.

tag-based initialization and about 0.1 for models learned from a random or k-means-based

starting point.

The standard deviation around the number of iterations is about 10 for models started
from either a random or a tag-based model and about 20 for models whose initialization
was based on k-means. The number of iterations when additivity is enforced in the relative
coordinate setting is consistently higher, with high statistical significance, than when only
anti-symmetry is enforced, in the case of k-means based initialization. An explanation for
this is that in the relative setting, the bad initialization starting from k-means leads to low
likelihood values, which in turn causes numerical instability in the process of solving the set
of equations required for enforcing additivity. This causes a slowdown in the convergence
of the EM algorithm. An increase in the number of iterations, which is not as dramatic
and not as statistically significant, also exists when using any of the other two initialization

methods.

11.3 Studying the Effects of Odometry and Additivity

To better understand the impact of enforcing geometrical consistency in particular and
that of odometric information in general, we study two small examples. We designed two
models; One that intuitively does not require additivity in order to be learned, and the other
which seemingly does require the enforcement of the complete geometrical consistency. We
sampled data from both models, and applied our algorithms to it. The models, and the

results analysis are described throughout the rest of this section.
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Figure 11.12:A model of a simulated en- Figure 11.13:A learned model. Initializa-
vironment. The distances between states are tion is Tag-based. Distances are drawn to
drawn to scale. Initial state is distinct. scale.
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Figure 11.14:A learned model. Initializa- Figure 11.15:A learned model. Initializa-

tion is k-means based. tion is k-means based.
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Experiment 11.1 To examine the effects of odometric information on learning a model,
we used a small cyclic model, for which the initial state has a distinct tuple of observations,
while all other states look alike observation-wise, but can be distinguished by their geomet-
rical placement in the environment. Figure 11.12 shows a geometric layout of the model
as a probabilistic state-transition diagram. Note that the states are placed in different dis-
tances from each other. This placement is significant, and represents the geometry of the
state space; all the states lie on the same line, with diminishing distances from one state to
the next. The distances between the states in the figure are drawn to scale. Edges denote
transitions with probability greater than 0.2. The numbers on the edges correspond to the
actual transition probabilities. At each state, the observations consist of the view on the
front, left and right, which can be either a door, D, a wall, W, or and open area (. The
most likely observations are shown in the diagram. These observations are typically seen

80-90 percent of the times when a state is visited.

Using Monte-Carlo sampling we generated two sequences of 300 observations and learned
5 models from each of them under each of the four learning settings, enforcing only anti-

symmetry during the learning process.

Figure 11.13 shows a typical model learned using tag-based initialization. Again, the
states are placed according to the relation matrix learned. It is clear that there is an almost
perfect correspondence between both the geometry and the topology under this learning

setting. All models learned using this algorithm look almost identical to this one.
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Figure 11.16:A learned model. Initializa- Figure 11.17:A learned model. Initializa-

tion is random. tion is random.

Figure 11.18:A learned model. No odome- Figure 11.19:A learned model. No odome-
try used. State placing is arbitrary, try used. State placing is arbitrary.

Figures 11.14 and 11.15 demonstrate the results of learning using k-means based ini-
tialization. The figure on the left shows a typical good result, where both topology and
geometry almost exactly fit the true model. However, when starting from a poor clustering,
the model is not as good; although it is still topologically correct, the initial state is not

correctly identified. This is shown in Figure 11.15.

Figures 11.16 and 11.17 show the results of learning starting from a randomly initialized
model. The figure on the left shows the less frequent case in which the algorithm managed to
learn a good model despite the random initialization. The figure on the right demonstrates
one of the less well-learned models, in which the geometry is clearly not as good as in
all the other odometric model. The two leftmost states are actually placed in the same
position according to the relation matrix, and are placed one above the other for the sake
of readability only. These two states correspond the initial state in the original model. The
cyclicity is still present and the observations are still the same as in the original model, but

both the topological and the geometrical structure is different from the true one.

Figures 11.18 and 11.19 show the results of learning without the use of odometry. It
is important to note that the placement of the states here has no geometrical significance,
and the layout is imposed in order to clarify the plot. Figure 11.18 depicts one of the
better models, in which the observation distribution corresponds well to that of the original
model although the topology is different. In Figure 11.19, we see that in state 1, the triple
(D, O, W) that is highly unlikely in the original model was learned as a likely observation
triple, although, in an unlikely-to-be-reached state.
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Seq. Tag-based k-means Random No Odo
# Mean | StD || Mean | StD || Mean | StD || Mean | StD
1 0.073 | 0.019 || 0.641 | 0.766 || 0.699 | 0.101 || 0.609 | 0.198
2 0.032 | 0.006 || 0.091 | 0.067 || 0.805 | 0.239 || 0.987 | 1.117

Table 11.3: Average results of four learning settings with two training sequences.

We can see that under this setting, odometry greatly helps to distinguish the states from

each other, and the tag-based initialization ensures consistently good results.

To verify these results we also used the Kullback-Liebler divergence, evaluated based on
generating 50 sequences of length 20 each from the true model and measuring the difference
between their likelihood with respect to the true model and the likelihood with respect
to the learned model (averaging over the total number of data points — 1000 in this case).
Table 11.3 lists the means and standard deviations of the Kullback-Leibler measure for each
of the sequences averaged over the 5 different learning experiences. The KI divergence for
models learned using tag-based initialization are much smaller than for those learned using
any other initialization method, or not using odometry at all. Using k-means based initial-
ization typically gives very good results in this setting, but due to two severe outliers when
starting from bad initial clustering, the mean is not much lower than when using random
initialization or no odometry in the case of the first sequence. Note that the geometrical
setting of the model is such that there are no turns, and therefore cumulative rotational
error does not interfere with the effectiveness of the k-means based initialization. (Still,
the algorithm used here does take into account cumulative rotational errors, as described

in Chapter 9.)

Models learned using odometry, starting from a random initialization, are not much
better than those learned without odometric information at all, although, at times the
former still does very well, while the latter sometimes performs much worse. (Specifically,
when using the second sequence the difference between the two settings is apparent). It
is important to note that the example uses a small model which is not very peaked, and
that there was an abundance of data provided from it. Hence, even the non-odometric
learning performed quite well, if all we are concerned about is the probability distribution

over sequences.

Experiment 11.2 To examine the effects of enforcing additivity on the learning process,
it takes a model in which not only is odometry needed to distinguish between seemingly

similar states, but also, odometry helps to tell that a state reached via two distinct routes
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Figure 11.22:Log-likelihood as a function of Figure 11.23:Log-likelihood as a function of
the number of iterations. Learning from se- the number of iterations. Learning from se-
quence 2. quence 3.

is still the same state. This is where we expect geometrical consistency to play a major
role. We use a small model as shown in Figure 11.20. State 5 is reachable from state 0
both by going north, turning east, and then turning north again, (the state sequence in this
case is: (0, 1,2, 3,4,9,5)) and also by first going east then north (the state sequence is
(0, 6, 7, 10, 8, 5)). From state 5 we can go directly to state 0, and also, from state 2 we can
go with equal probability either to state 3 or to state 8.

Using Monte-Carlo sampling we generated three sequences of 600 observations and
learned 5 models from each of them under all learning settings, with and without the
enforcement of additivity. One of these sequences is plotted in Figure 11.21. The results
presented here are only concerned with the value of enforcing additivity. Therefore, we
limit our discussion to using the tag-based initialization which is the superior initialization

method according to all of our experiments, in the presence of cumulative rotational error.

Typically when the model is small, tag-based initialization performs well and plays a

significant role in capturing the geometry of the model. However, the iterative learning
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Figure 11.26:Model learned from sequence Figure 11.27:Model learned from sequence
2. Additivity is enforced. 2. Only anti-symmetry is enforced.

procedure still contributes a lot to learning the model parameters and improving the likeli-
hood. This is demonstrated by the plots in Figures 11.22 and 11.23. The figures show the
log-likelihood, as it increases during the learning process, as a function of the number of
iterations, for two typical runs of the learning algorithm. The likelihood at iteration 0 is
the likelihood of the data given the initial model. There is always a significant increase in
the likelihood function following the first iteration of the algorithm, which shows that the
initialization stage is not sufficient, in and of itself, to account for the quality of the learned

models.

Figures 11.24 — 11.28 depict models that were learned from each of the three sequences
using the enforcement of additivity, while Figures 11.25 — 11.29 depict models learned with
only anti-symmetry enforced. The variability around these example models is very small,
due to the almost-deterministic nature of the initialization method. The bold dashed arrows

correspond to transitions that are very close in probability to the most likely one.

Figure 11.24 demonstrates that even though the model is learned very well from the
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Figure 11.28:Model learned from sequence Figure 11.29:Model learned from sequence
3. Additivity is enforced. 3. Only anti-symmetry is enforced.

data sequence without the enforcement of additivity (Figure 11.25), our attempt to pre-
serve geometrical consistency has compromised some of the angular relationships between
states. States 3 and 4, which should have been aligned with states 1 and 5, are not placed
exactly where they should be. It can be explained as a side-effect of the dependency on
the relationship of each state to state 0 when enforcing global consistency between every
pair of states (see Section 10.2). If the relations to state 0 are not substantiated by data,
it is likely that the estimates obtained from the constrained equations are compromised.
Future research will examine the possibility to change the reference system when enforcing
geometrical consistency to be with respect to state transitions that are estimated to have

been traversed the most.

Figures 11.26 and 11.27 demonstrate a case in which the results are very similar with

and without enforcing additivity.

Figures 11.28 and 11.29 demonstrate a case in which the enforcement of additivity
actually makes a significant difference in the quality of the learned model. Here we see that
an almost correct model is obtained by the use of additivity (aside for state 10, which is
unreachable and probably should have corresponded to state 10 in the true model). Without
additivity, the model learned (Figure 11.29) is not geometrically consistent. State 6 is placed
as shown in the figure when drawn with respect to state 7, while it should be close to state
5 if drawn with respect to state 5. Note that the returning edge to the initial state is from

state 7 rather than from state 5.

There is no significant difference in the Kullback-Leibler divergence between the sym-

metric and the additive case.
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In summary, to obtain models that are good both geometrically and topologically, it is
crucial to start with a good initial model. The tag-based method we have developed proves
useful in many cases. It is particularly effective for small models in which the accumulated
variance calculated and used when filling the relations table is not too big. An important
research direction is that of learning small pieces of a large model and then combining the

small models into one large model of the complete environment.

The enforcement of geometrical consistency throughout the model can be helpful at
times, but is not, in its present form, guaranteed to be significantly advantageous over the
simpler anti-symmetry enforcement. In addition, it may increase the number of iterations
required for convergence. By strongly constraining the learning process, it may even result
in topologically inferior models, as demonstrated by our larger simulated experiments in
Sections 11.1 and 11.2. It is possible that enforcing anti-symmetry at the early stages
of the learning process, and the complete geometrical consistency only towards the end,
would allow the algorithm to converge to better models. As for the consistency-enforcement
process itself, an alternative choice of the basis for the consistency constraints may rely on
the estimated state transitions counts, choosing as a basis the transitions that have the

most estimated counts.



Chapter 12

Conclusions and Future Work

In this work we introduced a way in which readily available information is used to improve
the quality of acquired models for robot navigation, as well as to reduce the resources

required for obtaining such models.

We have shown that the separation commonly made between geometrical and topological
models as mutually exclusive entities, (see an extensive discussion by Thrun [Thr99]), is not
necessary. Not only can it be bridged, as done by Thrun in a two-tiered fashion by learning
first a geometrical model and then a topological one from it, but rather, geometrical-in-
nature odometric information can be directly incorporated into the topological realm, and
used to improve the acquisition process of a topological model. This section summarizes

the contributions of the thesis, and surveys several directions for future work.

12.1 Contributions

The theoretical contributions of the thesis are as follows:

o Extension of the formal hidden Markov models framework to accommodate odometric

information.

e Extension of the Baum-Welch algorithm to use odometric information for learning
hidden Markov models, providing proof of convergence for most of the algorithmic

extensions.

e Pointing out several special issues in handling directional data in the context of robot
navigation. In particular, the need for directional distributions such as the von-Mises

113
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distribution, and the associated estimation procedures.

e Providing a basis for maintaining geometrical consistency throughout the system,
both in terms of projection and in terms of direct optimization under geometrical
constraints. Such statistical estimation under constraints is hardly treated in the

main-stream statistical literature [Bar84].
The practical contributions are:

e Implementation of the learning algorithm for both POMDPs and HMMs, as well as the
supporting packages for parsing, testing, comparing, sampling sequences from these

models, and for plotting HMMs.

e Empirical tests showing that through the use of odometric information better models

can be learned, while requiring fewer iterations and shorter data sequences.

e Application of the algorithm to real robot data gathered from a globally ambiguous
environment which contains loops. Learning models for environments with loops is

considered one of the hardest problems in model acquisition for robot navigation.

e A new heuristic for finding an initial model, based on odometric information. The
algorithm is robust in the presence of cumulative rotational error, and may also serve

as a possible basis for estimating the number of states in the model.

12.2 Future Work

Learning topological maps through the use of odometric information is by no means a solved
problem. First, we stress that the reduction in the number of iterations does not currently
translate to a reduction in the expected run time, since the computation of the normal
and von-Mises distribution for each data point and each pair of states in each iteration is
an expensive operator. Through the use of lookup-tables, caching, and exploitation of the
symmetries in the relations table, this cost should be reduced, allowing us to take advantage
of the fewer iterations. Qur current naive implementation does not benefit much from the
fewer iterations, aside from the fact that the run time would have been much greater if
to achieve the same quality of models as our algorithm achieves, we would have needed as

many iterations as in the non-odometric case.

As demonstrated in Chapter 11, the geometrical-consistency maintenance suffers from

two main drawbacks. It is more complicated due to the need to solve a potentially large set
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of linear equations, and it depends on obtaining good estimates for the values of pg; along all
dimensions. Despite the relatively complicated reestimation procedure, having to solve a set
of equations is not a computational bottleneck of the algorithm. However, it may still prove
beneficial to use advanced techniques for treating sparse matrices for solving the equations.
Such techniques may also prove effective for addressing the numerical instabilities occurring
while solving the equations. An important direction to explore, addressing the dependency
on the means with respect to state 0, is that of choosing the expressions for geometrical
constraints to be based on the transitions which have the most support. This may be done
in a way similar to the one taken for treating the projection of heading estimates. Such
an approach might complicate the algorithm on one hand, but may make it much more

accurate on the other.

The value of enforcing complete geometrical consistency is not fully determined. It may
be an effective learning procedure to enforce anti-symmetry rather than complete geomet-
rical consistency for several learning iterations, enforcing complete geometrical consistency
only in the last stages of the learning process. An additional alternative is to enforce addi-
tivity over the 2 and y dimensions, while enforcing only anti-symmetry along the heading

dimension.

Another important issue is the understanding of the effects of the parameters that are
currently provided to the algorithm. These include the number of states, the initial default
variance, and the weight assigned to sines and cosines when calculating the distance between
odometric measures. Our experience has shown that all of the latter parameters effect the
results of the initialization (both the k-means and the tag-based), and although it is feasible
to adjust these few parameters manually according to the problem at hand, it is desirable to
have definite guidelines in choosing them, or a fully automated procedure that does it based
on the magnitude of the input data. We stress that all the experiments reported in this
work were conducted under the same fixed set of constants. The only varying parameter

was the number of states in the model, as explicitly stated.

An additional direction we have started to explore is that of combining learning the
model and planning within it into a unified framework, based on reinforcement learning.
The basic idea behind this possible extension, is to take the current learned model of a
POMDP and augment each state with a reward that is ¢nvertly proportional to our confidence
in the accuracy of the probability distributions currently associated with the state. That
is, states whose distributions are believed to be well supported by the data sequence from

which the model was learned, are assigned low rewards while states whose distributions
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are unsupported by enough data are assigned high rewards. The robot, moving in the
environment according to its current model, trying to maximize its expected reward, would
concentrate on arriving at those states about which it knows the least, thus obtaining more
data about them. It can then improve the current model based on the newly obtained
data. As a consequence — both the model and the reward assignment change. The process
then continues under the updated model and reward function. Such “ignorance rewards”
can potentially be combined with the standard POMDP rewards, thus enabling the tasks of

planning within a POMDP environment [CKL94, Cas98] and learning it to be combined.

12.3 Beyond Robotics

Hidden Markov models serve as useful modeling tools in a variety of domains other than
robot navigation, from natural language understanding [Cha93] to computational molecular
biology [BCH*93, KBM194].

Our work demonstrates that through the use of domain-specific information and con-
straints, automatic model acquisition is made more effective while requiring fewer iterations
and less gathered data. We strongly believe that this idea can be applied for learning HMMs

and POMDP models in areas other than robotics.

One appealing application domain is medical decision support. Probabilistic models
such as Bayesian networks and POMDP models have been recently introduced as aids for
diagnostics and decision making in medicine [SDLT93, SOA97, HF98]. The patient’s state
and symptoms that evolve through time as a result of treatment, can be naturally modeled
as a POMDP. Various conditions that the patient may be in are mutually exclusive and time
dependent. Thus there are many potential constraints on the change in the patient’s condi-
tion. These constraints can be exploited in order to learn models both for the development
of the disease and for the expected change in the patient’s state as treatment is applied.
Such models can be of great value for predicting the results of possible treatments, and for

assisting physicians in deciding on such treatments.

Another area that is rapidly developing is computational biology [KBMT94, GM96,
FMG'97, KSB197]. Hidden Markov models are already successfully used for modeling
proteins and DNA sequences. Such large molecules have an intricate 3-dimensional geomet-
rical structure. It is likely that by enforcing geometrical constraints, similar to the ones
discussed throughout this work, acquiring models for proteins and DNA sequences can be

made better and faster.
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In both the medical and the biological domain, the ability to learn from relatively small
quantities of data is particularly important. There are medical treatments that are rarely
applied due to their high cost or high risk, as well as medical conditions that are rarely
encountered. Similarly, some families of proteins, for which models need to be learned,
have only a few instances that are fully analyzed. In order to obtain models from the
existing data in these cases, it is important to be able to take advantage of the available
data to the fullest. As demonstrated by the experiments described in previous chapters,
our algorithm retains its good performance even when the amount of data available to it
is significantly reduced. This capability is expected to be of great value if our approach is

applied in the bio-medical domain.
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Appendix A

An Overview of the Odometric
Learning Algorithm for HMMs

The algorithm takes as input an experience sequence E = (r, V'), consisting of the odometric

sequence r and the observation sequence V.

LeAarRN OpoMmETRIC HMM(E)
Initialize matrices A, B, R (See Chapter 6)

1
2
3
4
5
6
7
8
9

10
11
12

13

maz_change + oo

while ( maz_change > €)

do

Calculate Forward probabilities, a (Formula 4.1)
Calculate Backward probabilities, (Formula 4.2)
Calculate state-occupation probabilities, v  (Formula 4.3)
Calculate State-transition probabilities, £,  (Formula 4.4)
Old.A «+ A, Old.B « B

A  Reestimate (A) (Formula 4.5)

B <+ Reestimate (B) (Formula 4.6)

RY + Reestimate (RY) (Formulae 5.4 and 5.6)

(R*, RY) <« Reestimate(R", RY), using either
e Formulae 4.13 and 4.12 (within a global framework), or
e Formulae 8.3, 8.4 and 4.12 (within a relative framework)
maz_change < MAX(GET_MAX_CHANGE(A, Old_A ),
GET_MAX_CHANGE(B, Old_B))

If additivity is enforced, step 13 is followed by a projection of the reestimated R? onto an

additive affine space, as described in Section 10.3. In addition, step 12 is substituted by
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the procedure described in either Section 10.1 or 10.2. That is, if we are operating within
a global framework, the equations denoted by Formula 10.3 are solved and the means are
calculated from the solution according to equation 10.4. If we are operating within a state-
relative framework, the system of equations B.1, B.2 is solved, and the means are calculated

according to equations 10.6 and 10.7.

GET_MAX_CHAGE is a function that takes two matrices and returns the maximal element-

wise absolute difference between them.



Appendix B

Differentiation Details

We provide here two differentiations whose details were omitted earlier.

B.1 Unconstrained Odometric Reestimation Formulae

In Section 4.3.2, Formula 4.19, we rewrote Baum’s auxiliary function, @), restricted to a

pair of states 7, j, and for a single odometric dimension, m, as:

m R R th 7/ ] log z,](rﬁ—l)) _IOg(EZ)) ’

. . . . .. QT QT .
and claimed that by setting its partial derivatives, % and ag,’,{ to 0, we obtain the
¥ ¥

unconstrained reestimation formulae 4.7 and 4.8:
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By setting this derivative to 0, we obtain the equation:

T-2
Z &(d,7)(r" — 1))
t=0

@5 |

121



122

T—2
Z (4, )y
T—2

Zj &(i, )

whose solution is indeed: ;7 =

The derivative of Qj} with respect to 7] is:

MU)
8Qm B 82 ft 7 ] < 57)° log( )> B T—2 o (T‘;n _ m?)z 1
o o7 =Y &(i,4) A

Setting it to 0 results in the equation:

(ri _NU)Z_L o
thlj (W Em)—07

T-2
> &Gt —m)?

whose solution is indeed:  (771)? = £=0—— . ]

Z gt(lvj)
t=0

B.2 Enforcing Additivity within a Relative Framework

In Section 10.2, Formula 10.5, we rewrote Baum’s auxiliary function, @), restricted to the
odometric dimensions z, y, as a function of the locations, (z8, 0}, ... (z%_,, y%_,), of states

S0, ..., SN—1, along the global  and y coordinate system, as follows:

L)

Q™Y (R, R) Z z:szf& (i, ) ( (rfyy — (cos(uf ) (29 — &) — sin(uf ;) (4? — 17)))?

2
i=0 j=0 t=0 2(e;)

 log(ory) - e b)) — ) oo )] — D) bg(ay.)) |

The location (z§, yJ) is assumed to be the origin, (0, 0). Rotations according to the heading
changes with respect to the origin, ,ugp, .. .,,ug n_1, are applied in order to account for the
representation of the odometric relation within a state-relative framework.

We stated that by differentiating this expression according to each x?

where j # 0, and equating each derivative to 0 we obtain a set of (2N — 2) linear equations

and each y;)

n (2N — 2) unknowns. These equations are solved at each iteration of the EM algorithm

when additivity in a relative framework is enforced.
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We give here the explicit expressions for the derivatives and the resulting equations that
are solved at each iteration.

For each 29 and y), where 0 < k < N —1:
Q™Y (R, R)

dz) -
N-1 T-2 x 0 0 : 0 0 0 0
oy | 20 = cos(ug ) (g — #7) + sin(po,) (Y — 7)) (= cos(pa )
7k ) ) )
12:0: ( t=0 b [ (05%)?
itk

ot st o oo B
(o
R T = cos(u) o — of) o sinlud) (o — ) costy)
. ik | (oF?

(rf = s ) () = ) = cos(u )42 =

( wwﬁm%y]) N
GAE /

3@%@/(1{7 _)
8y2 B
[ cos(ug ) (@R — @)+ sin(ug ) (v — 7)) sin(f ;)
th(%k) (0% )2
=0 t=0 ik
itk
(1 = sin(ud,) (2 — 29) — cos(uf ) (9 — y?)) (= cos(s
T-2

o O,i))] N
Tk
th(kvi) [_(r 0

F — cos(puf ) (29 — af) +sin(uf ) (4P — yP) (= sin(uf ;)
(o7;)?
(r} — sin(ug ) (2 — ) — cos(uf ) (v

- yﬁi))cos(ug,w] )
(UIZi)Z
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By equating all these partial derivatives to 0, we get for each k, where 0 < k < N — 1, two

equations as follows:

Nz_:l [Tzzzft 8 (rt COS(NZOz) N r{ sin(ud ;) ) Z €k, i (T‘f CoS(Nzg,k) n r{ Siny(ﬂg,k))] =

i—o (o) (0;1.)? (%) (ok;)?
itk
= COSZ(Hg,i) Sinz(ﬂg,z)
§ o [Z& " h) ( CACRRN AT )*
& (o8t () | sin®(ug ) \]
2 &k, 1) ( (07.)2 + (o7 )2 )]
N-1 T-2 1 1
Z (ylg - yz) [ gt(iv k) Sin(:ug,i) COS(Hg,i) (TZ - ] 2) +
i=0 t=0 (Uzk) (Uzk)

= 1 1
>t psntibal oot (s~ o )| B.1)

o l i (11520 _ e ) e cos(uy) i sin<uz,k>)] _

= Lliz (05.)? (%) (04;)? (0%:)?
. = = 1 1
> (af -t [Z 603, ) sin(if ) cos(u, ) ((Ufk)z - (Uiyk)z) n
. = 1 1
> &k, ) sin(ug 1) cos(ug 1) ((Ui&)z - (Uféz)z)] —
i [ (S0 08,
itk

T-2 sin2 [% C082 [%
th(k,z)( (Uiﬂ)oz,k) v (yﬂo,k))] ‘ (B.2)
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