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AbstratHidden Markovmodels (hmms) and partially observable Markov deision proesses (pomdps)provide a useful tool for modeling dynamial systems. They are partiularly useful for rep-resenting environments suh as road networks and oÆe buildings, whih are typial forrobot navigation and planning. The work presented here desribes a formal framework forinorporating readily available odometri information into both the models and the algo-rithm that learns them. By taking advantage of suh information, learning hmms/pomdpsan be made better and require fewer iterations, while being robust in the fae of dataredution. That is, the performane of our algorithm does not signi�antly deteriorate asthe training sequenes provided to it beome signi�antly shorter. Formal proofs for theonvergene of the algorithm to a loal maximum of the likelihood funtion are provided.Experimental results, obtained from both simulated and real robot data, demonstrate thee�etiveness of the approah.
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Chapter 1IntrodutionDynamial systems provide a formal mathematial framework for desribing many physialphenomena. Possible states of a physial system are represented as a set of verties or nodes,and the dynamial aspet of states hanging over time, as ars or transitions. Sine physialphenomena are seldom either fully observable or ompletely preditable, it is also desirablefor dynamial systems to model the inherent unertainty in observations and transitions.The work presented here is onerned with aquiring a partiular family of models fordynamial systems, namely, Hidden Markov models.1.1 HMMs and POMDP ModelsHidden Markov models (hmms) represent a variety of nondeterministi dynamial systemsas abstrat probabilisti state-transition systems with disrete states and observations. Thestates of the dynamial system are naturally mapped to the states of the model. The ob-servable aspets of eah state in the dynamial system, whih are often noisy and impreise,are mapped to probability distributions or density funtions over observations; eah state inthe model has assoiated with it a distribution, or a probability density funtion, over pos-sible observations. The unertain dynamis of the modeled system is represented throughprobabilisti transitions between the model's states; eah state is assigned a probabilitydistribution over the possible next states.Suh models are adequate for representing systems in whih external entities exeriseno ontrol over the dynamis of the system, and the stohasti behavior is ompletelyspei�ed by the states, transitions and probabilities. They are widely used in a variety ofareas suh as natural language understanding [Cha93℄, speeh reognition [Rab89, RJ93℄,1



2handwritten text analysis [CKZ94, BG95℄, and protein and DNA representation [Chu89,BCH+93, KBM+94℄.Hidden Markov models an be extended to model deision proesses in whih ontrolis exerised, by introduing ations into the model. The extended models are known aspartially observable Markov deision proess (pomdp) models. Like the basi hmm, a pomdpmodel has a set of states orresponding to the states of the modeled system. In addition, eahation has assoiated with it a set of transition probability distributions { one distributionper state. The distribution models the probabilisti transition resulting from exeuting theation in the state. Similarly, eah ation has a set of observation probability distributions,one distribution per state, modeling the probabilisti observation whih an be pereivedupon arrival at the state after exeuting the ation.pomdp models are useful for modeling proesses in whih the outome is unertain andthe state is not fully observable. Suh proesses arise in almost all aspets of life, from�nanial investments to medial deision making. A variety of other appliations is givenin work by Littman [Lit96℄ and Cassandra [Cas98℄.1.2 Models for Robot Navigationpomdp models have proven partiularly useful as a basis for robot navigation in buildings,providing a sound method for loalization and planning [SK95, NPB95, CKK96℄. Mostother approahes to modeling environments for robot navigation [ME85, Asa91, LDWC91,TBF98℄ are onerned with obtaining a geometrial desription of the environment, and areentered around �nding positions and loations in it, trying to determine exatly where inthe environment the robot is. In ontrast, hmms and pomdp models are entered aroundthe onept of state rather than that of loation.A state typially orresponds to a signi�ant landmark in the environment oupled withother important robot's attributes. Suh attributes may inlude the robot's orientation,its arm position, or its voltage level. This more general onept, naturally aptures robotbehaviors and properties that do not neessarily involve a hange in loation, suh as armmovement, piking or dropping an objet, amera positioning et. , thus providing a onsis-tent framework for planning and ating in the environment. By being onerned with thetopology indued by signi�ant landmarks, rather than with the omplete geometry of thespae, the models also tend to be more ompat and support eÆient planning.Muh previous work on planning using pomdp models has required that the model be



3provided, through manual spei�ation. This is a tedious proess and it is often diÆultto obtain orret probabilities. An ultimate goal is for an agent to be able to learn suhmodels automatially, both for robustness and in order to ope with new and hangingenvironments.1.3 Learning the ModelFrom a theoretial-omputational standpoint, hmms and pomdp models, an be viewed asprobabilisti �nite automata (pfa) and input/output pfa, respetively. In the general ase,the onjeture is that learning suh models is hard, based on Abe and Warmuth's [AW92℄non-approximability results with respet to probabilisti �nite automata, as desribed inSetion 2.1.2. Still, in pratie, the Baum-Welh algorithm [Rab89℄ is frequently used tolearn hmms. Sine pomdp models are a simple extension of hmms, they an, theoretially, belearned with a simple extension to the Baum-Welh algorithm. However, in the general ase,without strong prior onstraint on the struture of the model, the Baum-Welh algorithmdoes not perform very well: it is slow to onverge, requires a great deal of data, and is oftenstuk in loal minima.Typially, appliation domains in whih hmm learning has proven suessful providesome bias whih assists in the learning proess. For instane, due to the temporal natureof the speeh proess, it an be modeled using a spei� family of hmms, namely, left-to-right hmms [Rab89℄. In these models, transitions our in one diretion only, and there areno yles other than ones aused by self-transitions. That is, the states an be indexed,suh that the probability of transitions from state i to state j, where j < i, is 0. Thisonstraint determines many of the model parameters, leaving fewer model parameters thatatually need to be learned, thus making the learning problem signi�antly simpler. Asimilar onstraint applies to handwritten text, as well as to biologial strutures suh asproteins or DNA, due to their sequential nature. Suh onstraints do not usually holdin the navigation domain, sine in most real environments one an move bak and forth,repeatedly visiting the same states via various distint routes.Previous work, suh as Koenig and Simmons' [KS96b℄ used prior knowledge of theenvironment to bias the learning algorithm towards the orret model. Using their approah,a human provides a orret but inomplete topologial model of the environment, and theBaum-Welh algorithm is used to �ll in the details. One of the entral goals of the workpresented here is to explore ways in whih better models an be obtained, while using both



4less time and less data, without requiring a prior desription of the learned environment.1.4 A New ApproahThe approah taken in this work is based on utilizing a di�erent soure of informationwhih allows the Baum-Welh algorithm to learn good topologial models without the useof human-provided initial model. We propose to use readily available weak odometri in-formation to improve the results of the Baum-Welh algorithm.Most robots are equipped with wheel enoders that enable an odometer to reord thehange in the robot's position as it moves through the environment. This data is typiallyvery noisy and inaurate. The oors in the environment are rarely smooth, the wheelsof the robot are not always aligned and neither are the motors, a lot of the mehanis isimperfet, resulting in slippage and drift. All these e�ets aumulate, and if we were tomark the initial position of the robot, and try to estimate its urrent position based on along sequene of odometri reordings, we would �nd that our estimate is typially inorret.That is, the raw reorded odometri information is not an e�etive tool for determining theabsolute loation of the robot in the environment.The idea underlying our approah is that this weak odometri information, despite itsnoise and inauray, still provides geometrial ues that an help to distinguish betweendi�erent states as well as to identify revisitation of the same state. Hene, suh informationenhanes the ability to learn topologialmodels. However, the use of geometrial informationrequires areful treatment of geometrial onstraints and diretional data.We demonstrate how the existing models and algorithms an be extended in order to takeadvantage of the noisy odometri data and the geometrial onstraints. The geometrialinformation is diretly inorporated into the probabilisti topologial framework, produinga signi�ant improvement over the standard Baum-Welh algorithm, without the need forhuman-provided model. Although there are still a number of intriguing problems thatneed to be addressed, our experiments prove that this is a promising diretion in modelaquisition for robot navigation.As a possible generalization to the problem of hmm aquisition, outside the sopeof robotis, our approah demonstrates the merit of using domain-spei� onstraints toahieve high utilization of the data, and restrit the learning proess, direting it towardsaquiring better models. We believe that this approah an be put to use in other do-mains, suh as medial deision making and biologial modeling. In the medial domain,



5various onditions and symptoms exlude eah other, and temporal onstraints restrit thepossible transitions in the patient's state. In the moleular biology domain, one an ex-ploit 3-dimensional geometrial onstraints over moleular strutures, whih are likely tobe analogous to the onstraints arising when modeling environments for robot navigation.We expet that by using these onstraints, the spae of appropriate models whih may �ta data set an be redued, and the model aquisition proess an be made more aurateand eÆient.1.5 Thesis OutlineThe rest of the thesis is organized as follows: Chapter 2 provides a survey of previous workin the area of learning maps and automata; Chapter 3 presents the formal framework forthis work; Chapter 4 desribes the basi algorithm we have developed for using odometriinformation in the ontext of the Baum-Welh algorithm; Chapter 5 disusses speial issuesin handling diretional data within a probabilisti framework; Chapter 6 presents methodsfor hoosing an initial model from whih to start the algorithm, and introdues a newmethod we have developed for this purpose; Chapter 8 desribes ways to overome theproblem of umulative rotational errors, whih is another faet of the problems aused bythe presene of diretional data and angular hanges; In Chapter 10 we provide a way forenforing omplete geometrial onsisteny in the topologial model throughout the learningproess; Chapters 7, 9, and 11 present experimental results for eah variant of our learningalgorithm. The experiments demonstrate that our algorithm indeed onverges to bettermodels with fewer iterations than the standard Baum-Welh, and is robust in the fae ofdata redution. In Chapter 12 we summarize the results and onlude the work, as well aslist several diretions for future researh.
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Chapter 2Approahes to Learning Maps andModelsThe work presented in this doument lies in the intersetion between the theoretial area oflearning omputational models | in partiular learning automata from data sequenes |and the applied area of map aquisition for robot navigation. In the following we providea survey of results from both of these areas. The reinforement learning literature alsoaddresses some aspets of learning models for Markov deision proesses [Sut90, Thr92,Kae93℄. The latter an be viewed as a speial ase of learning probabilisti automata withfully observable states, and we briey review related work from this domain in Setion 2.1.3.2.1 Learning Automata from DataInformally speaking, an automaton onsists of a set of states, and a set of transitions whihlead from one state to another. In the ontext of this work, the automaton states orrespondto the states of the modeled environments, and the transitions, to the state hanges dueto ations performed in the environment. Eah transition of the automaton is tagged by asymbol from an input alphabet, �, orresponding to the ation or the input to the system,whih aused the state transition. An example of an automaton with three states and inputalphabet fa; bg is shown in Figure 2.1.Classial automata theory [HU79℄ distinguishes two types of speial states; a singleinitial state and a set of aepting states. If a sequene of ations starts from an initial stateand results in an aepting state, it is said that the automaton aepts the sequene. For7
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bbFigure 2.1:A 3-state automaton over the al-phabet fa; bg. Figure 2.2:An input-output automaton; theinput alphabet is fa; bg, the output alphabet isfJ;K;Lg.instane, in Figure 2.1, state 2 is depited as a double irle, denoting an aepting state.If state 1 is assigned to be the initial state, the sequenes hai; hb ai and ha b ai; are allaepted by the automaton, while the sequene ha bi is not.The basi struture desribed above an be further extended to model the generationof output sequenes [HU79℄. This is done by de�ning an output alphabet � and assigningto eah state a symbol in � that is emitted eah time the state is reahed. Suh extendedautomata are alled input-output automata. Figure 2.2 depits a 3-state automaton overthe input alphabet fa; bg and the output alphabet fJ;K; Lg. For instane, if the inputsequene is ha b ai and the initial state is 1, the generated output sequene is hJ K J Ki.There are various possible kinds of unertainty about the environment as well as theinteration with it, whih an be modeled through di�erent types of automata. First, statesin the environment an be either fully observable or partially observable. If the environmentis fully observable, one always knows its exat state in the environment. When states areonly partially observable or hidden, one does not know its state with ertainty. In addition,the results of eah ation taken in the environment an be either fully determined or uner-tain. At any given state (be it observable or hidden), the exeution of a fully deterministiation is guaranteed to lead to a single next state. The exeution of an ation with uner-tain results is not guaranteed to lead to a single next state and is modeled as a stohastitransition funtion. Given a pair onsisting of the urrent state and ation, the transitionfuntion assigns to eah state a probability of being reahed through the ation, from theurrent state. Based on these distintions, we an partition automata into four groups:� Fully observable states, deterministi transitions� Fully observable states, stohasti transitions� Hidden states, deterministi transitions� Hidden states, stohasti transitions



9Automata with fully observable states an be viewed as input-output automata in whihstates are distintly labeled, the output alphabet onsists of state labels, and eah stateemits its own label when visited. Automata with hidden states do not emit their statelabels, but might emit other output symbols (hene the term partially observable).We an imagine an agent moving through an environment while reording its pereivedobservations and ations. The problem of learning an automaton, is informally desribedas the problem of onstruting an automaton that aepts the reorded sequene of ations,and emits the reorded sequene of observations, if suh observations exist. In a settingwhere the automaton does not have a distint aepting state, the learning problem issimilar, but merely requires that the learned automaton has a direted path through itsstates, orresponding to the reorded input (and/or output) sequene.Ating in a fully observable and deterministi environment, orresponding to an au-tomaton of the �rst kind, we an reord the origin state in whih we start the exploration,as well as eah subsequently visited state. In terms of deision proess models, this an beviewed as ating within the framework of deterministi Markov deision proesses [Put94℄.After visiting all the states (and exeuting all possible ations - if we do have a hoie ofation), we obtain a omplete model of the environment. That is, we deterministially knowhow to get from eah state to all the other reahable states. Hene, learning a model ofsuh an environment is easy.The seond kind of automata orresponds a stohasti Markov deision proessmodel [Put94℄. Learning suh a model based on a sequene of reorded visited statesand exeuted ations, amounts to estimating transition probabilities under the exeutedations. It is a fairly simple task, under the assumption that the sequene of reordedstates is provided and we are not dealing with the problem of obtaining suÆient data forestimation purposes, and is disussed in Setion 2.1.3.Obtaining models of the third and the fourth kinds, orrespond to the problems oflearning a deterministi and a probabilisti �nite automaton, respetively. These problemsdo not have simple solutions in the general ase. The models and their respetive learningproblems are disussed in detail in Setions 2.1.1 and 2.1.2.It is also possible to have a fully deterministi environment in whih an agent withimperfet pereption reords its ations and observations. In this ase the agent may reordthe wrong states, ations or observations resulting in a noisy sequene from whih learningneeds to be done. In this ase, the learning proedure needs to take into aount that with



10some probability eah reorded item may be wrong. The model learned is deterministi,rather than stohasti, but it might ontain errors with respet to the true model, due tothe erroneous data from whih it was learned. Some results under this senario are alsodisussed in Setion 2.1.1.2.1.1 Deterministi AutomataA standard deterministi �nite automaton onsists of a �nite set of states Q, a �nite inputalphabet �, a transition funtion Æ : Q � � ! Q, and a set F 2 Q of aepting states.The basi problem of learning �nite deterministi automata from given data an be roughlydesribed as follows: Given two sets of positive and negative example strings, S and Trespetively, over alphabet �, and a �xed number of states k, onstrut a minimal deter-ministi �nite automaton with no more than k states that aepts S and does not aept T .This problem has been shown to be np-omplete [Gol78℄. Pitt and Warmuth [PW89℄ haveshown that even if we are not learning the minimal automaton of k states, but are willingto learn an automaton with a polynomial number of states f(k) with the same language,the problem is still np-omplete.Despite the hardness, positive results have been shown possible within various speialsettings. Angluin [Ang87℄ showed that if there is an orale to answer membership queries(assuming a reset operator of the automaton to its initial state), and to provide ounterex-amples to onjetures about the automaton, there is a polynomial time learning algorithmfrom positive and negative examples. Rivest and Shapire [RS87b, RS87a℄ provide an ef-fetive method for learning permutation automata, using distinguishing sequenes (alled\tests") for disambiguating states. Their method is guaranteed to �nd an automaton thatwith high probability is the orret one. In later work, [RS89℄, the authors use homingsequenes for the same purpose. They show that they an learn a orret permutation au-tomaton in polynomial time assuming there is a \teaher" whih provides ounterexamples,while a highly probable automaton an be learned even without the assumption of a teaher.All of the above work assumes deterministi, noise-free behavior of the learned automa-ton. As mentioned earlier, there are ases in whih the training sequene from whih theautomaton is learned may be noisy. Basye, Dean and Kaelbling [BDK95℄ presented severalalgorithms that, with high probability, learn input-output deterministi automata whenvarious forms of noise are present in the training data. They show that when the transi-tions (ations) are deterministi but output emissions (observations) are noisy, a polynomialtime algorithm exists, that learns a orret deterministi model with high probability. The



11algorithm does not learn a distribution over the observations, but rather assumes that alikely observation exists for eah state and this observation is the one learned. Thus thelearned model is ompletely deterministi rather than probabilisti. Similar results holdwhen the transitions are noisy and the observations are deterministi. (Again, the automa-ton learned is a deterministi one and does not model the transitions as probabilisti). Forthe ase where both transitions and observations are noisy, a polynomial time algorithmfor learning a probably orret deterministi automaton is given under strong assumptions,whih inlude unique labeling of states.2.1.2 Probabilisti AutomataProbabilisti automata are ones in whih a probability distribution governs the transitionsbetween states on any given input. In addition, in the ase of input-output automata, aprobability distribution is de�ned over the output emissions as well. The basi learningproblem in this ontext is to �nd an automaton that assigns the same distribution as thetrue one to data sequenes, from training data S generated by the true automaton. Anotherform of a learning problem is that of �nding a probabilisti automaton � that assigns themaximum likelihood to the training data S, that is, an automaton that maximizes Pr(Sj�).Abe and Warmuth [AW92℄ show that �nding a probabilisti automaton with 2 states,even when small error with respet to the true model is allowed with some probability (theProbably Approximately Corret learning model), annot be done in polynomial time witha polynomial number of examples, unless np = rp. They also show the equivalene of theproblem of learning an automaton in the pa sense to that of approximating the maximumlikelihood automaton. This means that approximating a solution to any of the two learningproblems stated above, for a probabilisti automaton, is equivalently hard. From theirwork arises a broader onjeture, whih has not yet been proven, that the general problemof learning probabilisti automata with any number of states, even under the pa learningmodel, is hard. A similar broadly aepted onjeture stemming from the same work is thatlearning hidden Markov models (the kind of probabilisti automata formally introdued inSetion 3.1) is hard even in the pa sense.Two ways of addressing this hardness are presented in the rest of this setion. One usesrestritions on the lass of probabilisti models learned, and the other learns an unrestritedhidden Markov model with good pratial results but with no pa guarantees on the qualityof the result.



12 Restriting the Learning Problem: In their above mentioned paper, Abe and War-muth suggest that an interesting open problem is to �nd sublasses of probabilisti automatathat are both pratially useful and polynomially pa learnable.Work by Ron et al. [RST94, RST95, RST98℄ pursues suh an approah. The authorspresent two lasses of probabilisti automata that are useful in the area of natural languageunderstanding, in partiular for ursive hand writing reognition, speeh reognition andprinted text analysis. One suh lass onsists of ayli probabilisti �nite automata, andthe other of probabilisti �nite suÆx automata. Both of these lasses an be learned inpolynomial time (in all the parameters) within the pa framework.Learning with Restrited Guarantees: Another approah, the one predominantlytaken in this work, is to learn a model for the data from the omplete unrestrited lass ofhidden Markov models. Only weak guarantees exist about the goodness of the model, butthe learning proedure may be direted to obtain pratially good results.This approah is based on guessing an automaton (model), and using an iterative pro-edure to make the automaton �t the training data better. One algorithm ommonly usedfor this purpose is the Baum-Welh algorithm [BE67, BS68, BPS+70℄, whih is presentedin detail by Rabiner [Rab89℄. The iterative updates of the model are based on gatheringsuÆient statistis from the data given the urrent automaton, and the update proe-dure is guaranteed to onverge to a model that loally maximizes the likelihood funtionPr(datajmodel). Sine the maximum is loal, the model might not be lose enough to theautomaton by whih the data was generated, and a hallenging problem is to �nd ways tofore the algorithm into onverging to higher maxima, or at least to make it onverge faster,failitating multiple guesses of initial models, thus raising the probability of onverging tohigher maxima. Suh an approah is the one taken in this work.Throughout this work we assume that the number of states in the model we are learningis given as input. This is not a very strong assumption, sine there exist methods for learningthe number of states. A natural generalization of the algorithm presented here is to applysuh methods to diretly learn the number of states from the data. Obviously, without anybound on the number of states, one an designate a state for eah data point in the inputsequene, thus perfetly �tting the data. Suh an approah is a trivial example of over�tting;the model indeed �ts the data well but is not general enough for modeling other dataobtained from the same modeled environment. Regularization methods are used in orderto avoid over�tting, direting the learning proess towards models that �t both the urrenttraining data as well as yet-unseen data. One suh tehnique is ross-validation [Sto74,



13Sha93, ET93℄. Its basi idea is to use only parts of the available data to learn models ofvarying number of states, while saving some of the data for testing purposes. One severalmodels are learned, the likelihood (or some other measure of goodness) that they assign tothe part of the data not used for learning is ompared. The number of states for the modelthat has the highest measure of goodness, is taken to be the orret number of states, andis �xed. A �nal model is then obtained by learning from the omplete data under the �xednumber of states. Other regularization methods suh as the minimum desription lengthprinipal for deiding on the number of states and other model parameters, are disussedin Vapnik's book [Vap95℄. Another similar riterion suggested by Akaike is desribed in abook by Sakamoto et al. [SIK86℄. In Setion 6.2 we suggest another possible heuristi forestimating the number of states as part of an initialization algorithm.2.1.3 Models for Markov Deision ProessesMuh of the work on reinforement learning [Kae93, Sut90, Thr92, BBS95, MB98℄ is on-erned with ating optimally within the ontext of fully observable Markov deision pro-esses. The Markov model onsists of states and ations that transition an agent from onestate to the other, where every suh transition has assoiated with it a reward. The goalof the agent is to optimize its reward. The transitions between states are usually stohas-ti, and the agent does not always know either the probability distribution governing thetransition or the reward assoiated with eah state-ation pair. In suh ases, where theparameters are unknown to the agent, it tries to obtain knowledge about them via explo-ration. The main idea behind exploration is that by taking ations at eah state, the agentobtains ounts of the number of times it ended up in every state. It uses the ounts to al-ulate suÆient statistis and estimate the transition probabilities whih it does not knowa priori. Given a sequene of states reorded during exploration, learning the model is astraightforward statistial estimation problem [Bil59℄. The more involved issue is that ofdeiding on strategies to explore the environment in order to obtain the data [Mar67℄.This form of model learning is di�erent from the problem we are addressing, sine in thehmm and pomdp ase the state itself is hidden and one an not diretly obtain transitionounts between states and alulate statistis. Another aspet of the learning in a partiallyobservable environment is that of learning the observation distribution assoiated with eahstate, as desribed in Chapter 3. This aspet does not exist in the fully observable ase.



142.2 Learning Maps and Models for Robot NavigationThe other area whih losely relates to the work presented here is that of modeling envi-ronments for robot navigation. A distintion is usually made between two prinipal kindsof maps: geometri and topologial. Geometri maps desribe the environment as a olle-tion of objets or oupied positions in spae, and the geometri relationships among them.The topologial framework is less onerned with the geometry, and models the world as aolletion of states and their onnetivity, that is, whih states are reahable from eah ofthe other states and what ations lead from one state to the next.We draw an additional distintion, between world-entri1 maps that provide an \ob-jetive" desription of the environment independent of the agent using the map, and robot-entri models whih apture the interation of a partiular \subjetive" agent with theenvironment. When learning a map, the learning agent needs to take into aount its ownnoisy sensors and atuators and try to obtain an objetively orret map that other agentsould use as well. Similarly, other agents using the map need to ompensate for their ownlimitations in order to assess their position aording to the map. When learning a modelthat aptures interation the agent aquiring the model is the one who is also using it.Hene, the noisy sensors and atuators spei� to the agent are reeted in the model. Adi�erent model is likely to be needed by di�erent agents. Most of the related work desribedbelow, espeially within the geometrial framework, is entered around learning objetivemaps of the world rather than agent-spei� models. We shall point out in this survey thework that is onerned with the latter kind of models.Our work fouses on aquiring purely topologial models, and is less onerned withlearning geometrial relationships between loations or objets, or objetive maps, althoughgeometrial relationships do serve as an aid in our aquisition proess. The onept of astate used in this topologial framework is more general than the onept of a geometrialloation, sine a state an inlude information suh as the battery level, the arm positionet. Suh information, whih is of great importane for planning, is non-geometrial innature and therefore an not be readily aptured in a purely geometrial framework. Thefollowing provide a survey of both work done within the geometrial framework and withinthe topologial framework as well as ombinations of the two approahes.1I thank Sebastian Thrun for the terminology.



152.2.1 Geometri MapsGeometri maps provide a desription of the environment in terms of the objets plaedin it and their positions. For example, grid-based maps are an instane of the geometriapproah. In a grid-based map, the environment is modeled as a grid (an array), whereeah position in the grid an be either vaant or oupied by some objet (binary valuesplaed in the array). This approah an be further re�ned to reet unertainty about theworld, by having grid ells ontain oupany probabilities rather than just binary values.A lot of work has been done on learning suh grid-based maps for robot navigation, throughthe use of sonar readings and their interpretation, by Movare and Elfes and others [ME85,Mor88, Elf89, Asa91℄.An underlying assumption when learning suh maps is that the robot an tell where it ison the grid when it obtains a sonar reading indiating an objet, and therefore an plae theobjet orretly on the grid. A similar loalization assumption underlies other geometrimapping tehniques [LDWC91, SSC91, TGF+98℄, even when an expliit grid is not partof the model. This assumption an be hard to satisfy. Leonard and Cox [LDWC91℄ andSmith et al. [SSC91℄ address this issue through the use of geometrial beaons to estimatethe loation of the robot. A probability distribution is used to model the robot's possibleurrent loation, based on observations olleted up to the urrent point.Reent work by Thrun et al. [TBF98℄, uses a similar probabilisti approah for obtaininggrid-based maps. This work is re�ned [TGF+98℄ to �rst learn the loation of signi�antlandmarks in the environment and then �ll in the details of the omplete geometrial grid,based on laser range sans. The latter work extends the approah of Smith et al. , by usingobservations obtained both before and after a loation has been visited, in order to derive aprobability distribution over possible loations. To ahieve this, the authors use a forward-bakward proedure similar to the one used in the Baum-Welh algorithm [Rab89℄, (seeChapter 4 of this work), in order to determine possible loations from observed data. Theapproah resembles ours both in the use of the forward-bakward estimation proedure, andin its probabilisti basis, aiming at obtaining a maximum likelihood map of the environment.It still signi�antly di�ers from ours both in its initial assumptions and in its �nal results.The data assumed to be provided to the learner inludes both the motion model and thepereptual model of the robot. These onsist of transition and observation probabilitieswithin the grid. Both of these omponents are learnt by our algorithm, although not ina grid ontext but in a topologial, oarser-grained, framework. The end result of theiralgorithm is a probabilisti grid-based map, while ours is a probabilisti topologial model.



16 In addition to being onerned only with loations, rather than with the riher notionof state, a fundamental drawbak of geometrial maps is their �ne granularity and highauray. Geometrial maps, partiularly grid-based ones, tend to give an aurate anddetailed piture of the environment. In ases where it is neessary for a robot to knowits exat loation in terms of metri oordinates, metri maps are indeed the best hoie.However, many planning tasks do not require suh �ne granularity or aurate measures,and are better failitated through a more abstrat representation of the world. For example,if a robot needs to deliver a bagel from oÆe a to oÆe b, all it needs to have is a mapdepiting the relative loation of a with respet to b, the passageways between the twooÆes, and perhaps a few other landmarks to help it orient itself if it gets lost. If it has areasonably well-operating low-level obstale avoidane mehanism to help it bypass owerpots and hairs that it might enounter on its way, suh objets do not need to be part ofthe environment map. Just as a driver traveling between ities needs to know neither itslongitude and latitude oordinates on the globe, nor the loation of the spei� houses alongthe way, the robot does not need to know its exat loation within the building nor theexat loation of various items in the environment, in order to get from one point to another.Hene, the e�ort of obtaining suh detailed maps is not usually justi�ed. In addition themaps an be very large, whih makes planning | even though planning is polynomial inthe size of the map | be ineÆient.2.2.2 Topologial Maps and ModelsAn alternative to the detailed geometri maps are the more abstrat topologial maps.Suh maps speify the topology of important landmarks and situations (states), and routesor transitions (ars) between them. They are less onerned with the physial loation oflandmarks, and more with topologial relationships between situations. Typially, they areless omplex and support muh more eÆient planning than metri maps. Topologial mapsare built on lower-level abstrations that allow the robot to move along ars (perhaps bywall- or road-following), to reognize properties of loations, and to distinguish signi�antloations as states; they are exible in allowing a more general notion of state, possiblyinluding information about the non-geometrial aspets of the robot's situation.There are two typial strategies for deriving topologial maps: one is to learn the topo-logial map diretly; the other is to �rst learn a geometri map, then to derive a topologialmodel from it through some proess of analysis.A nie example of the seond approah is provided by Thrun and B�uken [TB96a,



17TB96b, Thr99℄, who use oupany-grid tehniques to build the initial map. This strategyis appropriate when the primary ues for deomposition and abstration of the map aregeometri. However, in many ases, the nodes of a topologial map are de�ned in terms ofother sensory data (e.g. labels on a door or whether or not the robot is holding a bagel).Learning a geometri map �rst also relies on the odometri abilities of a robot; if they areweak and the spae is large, it is very diÆult to derive a onsistent map.In ontrast, our work onentrates on learning a topologial model diretly, assumingthat abstration of the robot's pereption and ation abilities has already been done. Suhabstrations were manually enoded into the lower level of our robot navigational software,as desribed in Chapter 7. Work by Piere and Kuipers [PK97℄ disusses an automatimethod for extrating abstrat states and features from raw pereptual information.Kuipers and Byun [KB91℄ provide a strategy for learning deterministi topologial maps.It works well in domains in whih most of the noise in the robot's pereption and ation isabstrated away, learning from single visits to nodes and traversals of ars. An underlyingassumption for this strategy is that the urrent state an be reliably identi�ed based onloal information, or based on distane traversed from the previous well-identi�ed state.It is unable to handle situations in whih long sequenes of ations and observations areneessary to disambiguate the robot's state.Engelson and MDermott [EM92℄ learn \diktiometri" maps (topologial maps withmetri relations between nodes) from experiene. The unertainty model they use is interval-based rather than probabilisti, and the learned representation is deterministi. Ad horoutines handle problems resulting from failures of the unertainty representation.We prefer to learn a ombined model of the world and the robot's interation with theworld; this allows robust planning that takes into aount likelihood of error in sensing andation. The work most losely related to ours is by Koenig and Simmons [KS96b, KS96a℄,who learn pomdp models (stohasti topologial models) of a robot hallway environment.They also reognize the diÆulty of learning a good model without initial information;they solve the problem by using a human-provided topologial map, together with furtheronstraints on the struture of the model. A modi�ed version of the Baum-Welh algo-rithm learns the parameters of the model. They also developed an inremental version ofBaum-Welh that an be used on-line. Their models ontain very weak metri information,representing hallways as hains of one-meter segments and allowing the learning algorithmto selet the most probable hain length. This method is e�etive, but results in large mod-els with size proportional to the hallways length, and strongly depends on the provision of



18a good initial model.The rest of the work desribes our approah to learning topologial models. We showthat by using weak odometri information diretly, we an avoid the use of human-provideda priori models and still learn stohasti maps eÆiently and e�etively.



Chapter 3Models and AssumptionsThis hapter desribes the basis of the formal framework for our work. It starts by in-troduing the lassi hidden Markov model. The model is then extended to aommodatenoisy odometri information in its simplest form, ignoring information about the robot'sheading and orientation. In hapters 5 and 8, the model is further extended and re�ned toaommodate heading information and address the problems that arise as a result.We onentrate here on desribing models and algorithms for learning hmms, ratherthan pomdps. The extension to omplete pomdps is through learning an hmm for eah ofthe possible ations, and is straightforward although notationally more umbersome. Webriey disuss it in Setion 3.3.3.1 HMMs { The BasisA hidden Markov model onsists of states, transitions, observations and probabilisti be-havior. We provide here a more formal de�nition of this basi model. In the next setionwe elaborate the de�nition to aount for odometri information.A hidden Markov model is a tuple � = hS;O;A;B; �i, where� S = fs0; : : : ; sN�1g is a �nite set of N states;� O = fo1; : : : ; oMg is a �nite set of M possible observation values;� A is a stohasti transition matrix, with Ai;j = Pr(qt+1 = sj jqt = si); 0� i; j�N � 1;qt is the state at time t; for every state si, N�1Xj=0Ai;j = 1.19



20 Ai;j holds the transition probability from state si to state sj .� B is a stohasti observation matrix, with Bj;k =Pr(vt= ok jqt= sj); 0 � j � N � 1;1 � k �M ; vt is the observation reorded at time t; for every state sj , MXk=1Bj;k = 1.Bj;k holds the probability of observing ok while being at state sj .� � is a stohasti initial distribution vetor, with �i = Pr(q0 = si); 0 � i � N � 1;N�1Xi=0 �i = 1. �i holds the probability of being in state si at time 0, when starting toreord the observations.This model orresponds to a world in whih the atual state of matters at any given time t,qt 2 S, is hidden and not diretly observable, but some observation, vt 2 O, is deteted andreorded at the state when it is visited at time t. An agent moves from one hidden stateto the next aording to the probability distribution enoded in matrix A. The observedinformation in eah state is governed by the probability matrix B.Given a stohasti system with an unknown model, one an gather sequenes of observa-tions in the system. By alulating suÆient statistis from the observed data, estimates forthe states and the observations of the system are obtained. Using these estimates, one maybe able to reonstrut a plausible model of the system, as demonstrated by the followingsimple example.Example 3.1 Consider a system onsisting of a single biased oin that is being tossed. Itan be viewed as a system with a single state, in whih one an observe, either a head, H,or a tail, T , with some unknown probability.A sequene of observations an be reorded by tossing the oin several times. For in-stane, H T T T H T T , is suh a sequene. By ounting the number of times H was observed(2), and the number of times T was observed (5), we obtain the estimate 27 for the proba-bility of observing a head, and the estimate 57 for the probability of observing a tail. Theseprobabilities onstitute a plausible model of the tossed oin.The learning problem for hmms an be roughly stated as follows: Given a sequene ofobservations gathered from a stohasti system, reonstrut a plausible hidden Markov modelof the system. A more aurate measure of \plausibility" will be given in Setion 4.1.



213.2 Adding Odometry to Hidden Markov ModelsThe world is omposed of a �nite set of states. The states do not neessarily orrespond di-retly to loations of the robot; they may inlude other state information, suh as orientationor battery level. The dynamis of the world are desribed by state-transition distributionsthat speify the probability of making transitions from one state to the next. There is a�nite set of observations that an be made in eah state; the frequeny of suh observa-tions is desribed by a probability distribution and depends only on the urrent state. Inour model, observations are multi-dimensional; an observation is a vetor of values, eahhosen from a �nite domain. It is assumed that these observation values are onditionallyindependent, given the state.In addition to the set of possible observations, eah state is assumed to be assoiatedwith a position in a metri spae. Whenever a state transition is made, the robot reords anodometry vetor, whih estimates the position of the urrent state relative to the previousstate. For the time being we assume that the odometry vetor onsists of readings of x and yoordinates in a global oordinate system, and that these readings are orrupted with inde-pendent normal noise (extension to dependent noise is possible, and requires onsiderationof the omplete ovariane matrix). We extend the odometry vetor to inlude informa-tion about the heading of the robot, and relax the global oordinate system assumption inChapters 5 and 8, respetively.There are two important assumptions underlying our treatment of odometri relationsbetween states: First, that there is an inherent \true" odometri relation between theposition of every two states in the world; Seond, that when the robot moves from one stateto the next, there is a normal, 0-mean noise around the orret expeted odometri readingalong eah odometri dimension. This noise reets two kinds of odometri error soures:{ The lak of preision in the disretization of the real world into states (e.g. there is arather large area in whih the robot an stand whih an be regarded as \the doorwayof the AI lab").{ The lak of preision of the odometri measures reorded by the robot, due to slippage,frition, disalignment of the wheels, impreision of the measuring instruments, et.To formally introdue odometri information into the hidden Markov model framework, wede�ne an augmented hidden Markov model as a tuple � = hS;O;A;B;R; �i, where� S = fs0; : : : ; sN�1g is a �nite set of N states;



22 � O = Qli=1Oi is a �nite set of observation vetors of length l; the ith element of anobservation vetor is hosen from the �nite set Oi;� A is a stohasti transition matrix, with Ai;j = Pr(qt+1 = sj jqt = si); 0� i; j�N � 1;qt is the state at time t;Ai;j holds the transition probability from state si to state sj .� B is an array of l stohasti observation matries, with Bi;j;o = Pr(Vt[i℄ = ojqt= sj);1 � i � l; 0 � j � N � 1; o 2 Oj ; Vt is the observation vetor at time t; Vt[i℄ is its ithomponent.Bi;j;k holds the probability of observing ok along the ith omponent of the observationvetor, while being at state sj .� R is a relation matrix, speifying for eah pair of states, si and sj , the mean and vari-ane of the D-dimensional1 odometri relation between them; �(Ri;j [m℄) is the meanof the mth omponent of the relation between si and sj and �2(Ri;j [m℄), the vari-ane; furthermore, R is geometrially onsistent: for eah omponent m, the relation�m(a; b) def= �(Ra;b[m℄) must be a direted metri, satisfying the following propertiesfor all states a, b, and :� �m(a; a) = 0;� �m(a; b) = ��m(b; a) (anti-symmetry); and� �m(a; ) = �m(a; b) + �m(b; ) (additivity) :This representation of odometri relations reets the two assumptions, previouslystated, regarding the nature of the odometri information. The \true" odometrirelation between the position of every two states is represented as the mean. Thenoise around the orret expeted odometri relation, aounting for both the lakof preision in the real-world disretization and the inauray in measurement, isrepresented through the variane.� � is a stohasti initial probability vetor desribing the distribution of the initial state;for simpliity it is assumed here to be of the form h0; : : : ; 0; 1; 0; : : : ; 0i, implying thatthere is one designated initial state, si, in whih the robot is always started.1For the time being we onsider D to be 2, orresponding to (x; y) readings.



23This model extends the standard hidden Markov model, as presented in Setion 3.1, in twoways:� It allows for observations to be fatored into independent omponents (given thestate), and represented as vetors. Fatoring the observations into omponents andassuming onditional independene between them allows for the alulation of theprobability of an observation vetor from the probability of its omponents. It there-fore results in fewer probabilisti parameters in the learnt model than if we were toview eah observation vetor as a single \atomi" observation.� It introdues the odometri relation matrix R and onstraints over its omponents.The use of R and the onstraints over it have proven useful for learning the othermodel parameters, as demonstrated in Chapters 7, 9 and 11.3.3 Extending POMDP ModelsWe briey review the de�nition of partially observable Markov deision proess models(pomdp models), and desribe their adaptation for supporting odometri information. Amore detailed desription of standard pomdps an be found in work done by Cassandra,Littman and Kaelbling [CKL94, CKK96, Cas98℄.Traditionally, a pomdp model onsists of:� S = fs0; : : : ; sN�1g is a �nite set of N states;� O = fo1; : : : ; oMg is a �nite set of M possible observation values;� a = fa1; : : : ; aKg is a �nite set of K possible ations;� fA1; : : : ; AKg are stohasti transition matries, one for eah possible ation;Ali;j = Pr(qt+1 = sj jqt = si; t = al); 0� i; j�N � 1; 1� l�K; qt is the state at timet; t is the ation taken at time t; for every state si and ation al, N�1Xj=0Ali;j = 1.� fB1; : : : ; BKg are stohasti observation matries, one for eah possible ation;Blj;k=Pr(vt=ok jqt=sj ; t�1 = al); 0 � j � N � 1; 1 � k �M; 1 � l � K; vt is theobservation reorded at time t; t�1 is the ation taken at time t � 1, whih ausedthe transition from the previous state to state sj ; for every state sj and ational; MXk=1Blj;k = 1.



24 � � is a stohasti initial probability vetor desribing the distribution of the initialstate of the model; �i = Pr(q0 = si); N�1Xi=0 �i = 1.The above is a straightforward extension of the basi hmm desribed in Setion 3.1 to adeision proess model that inludes ations2. This de�nition implies that a pomdp modelan be viewed as a olletion of K hmms, where K is the number of ations. As suh, itan be learned through a simple extension to any algorithm aimed at aquiring hmms.We extend the de�nition to aommodate multi-dimensional observation vetors as follows:O = Qli=1Oi is a �nite set of observation vetors of length l; the ith element of an observa-tion vetor is hosen from the �nite set Oi.As in the ase of hmms, we introdue the odometri relation matrix. However, there is stillonly one matrix R that is ommon for the whole pomdp, as opposed to one matrix peration. The reason is that usually a single ation type does not allow us to gather enoughinformation about the odometri relation among a group of neighboring states, in orderto dedue reliable mean and standard deviation. By onsidering all odometri transitionsombined over all the exeuted ations we an obtain better estimates regarding the odo-metri relations between states. Moreover, typially, odometri measures between statesare not e�eted by the ations, and any possible e�et that a spei� ation, responsiblefor a transition, has on the odometri error is reeted in the variane around the meanodometri relation.We have introdued the basi formal model that we use for representing environments andthe robot interation with them. The rest of the formal framework, namely, a statement ofthe learning problem and the basi algorithm for learning the model from data, is desribedin the following hapter.
2We do not disuss here the reward omponent of pomdp models sine rewards are usually assoiatedwith tasks and goals that the planner has to aomplish, and is not always an \objetive" part of theworld in whih the robot moves.



Chapter 4Learning HMMs with OdometriInformationThis hapter introdues the learning problem for hmms, and disusses the standard learningalgorithm and the basis of our odometri extension to it. Convergene proofs for theresulting algorithm are also provided. The augmented hmm learned by the algorithm is ofthe most restrited type, as given in Chapter 3. As we elaborate the model in the followinghapters, the learning algorithms are also extended, as desribed in Chapters 5, 8 and 10.4.1 The Learning ProblemThe learning problem for hidden Markov models an be generally stated as follows: Givenan experiene sequene E sampled from a model whih is assumed to be a hidden Markovmodel, �nd a hidden Markov model that ould have generated this sequene and is \useful"or \lose to the original" aording to some riterion. Clearly this broad de�nition laks aformal notion of what it means for the learned model to be lose to the original model, oruseful. We provide more rigorous riteria in the following paragraphs.One ommon statistial approah is to look for a model � that maximizes the likelihoodof the data E given the model. Formally stated it maximizes: Pr(Ej�). Another approahis to �nd a model that maximizes the posterior probability of the model given the dataPr(�jE). This model is known as the Maximum Aposteriori Probability model (MAP).Note that the latter probability is typially more ompliated to diretly ompute thanthe former. Moreover, by applying Bayes rule, it is easy to see that under the assumption25



26that a priori all models are equally likely, the model that maximizes the likelihood alsomaximizes the posterior probability, hene the two riteria are equivalent. However, giventhe ompliated landsape of typial likelihood funtions in a multi-parameter domain,obtaining a maximum likelihood model is not feasible. All known pratial methods anonly guarantee a loal-maximum likelihood model.Another way of evaluating the quality of a learned model is by omparing it to the truemodel. We note that stohasti models (suh as hmms) indue a probability distributionover all observation sequenes of a given length. The Kullbak-Leibler [KL51℄ divergene ofa learned distribution from a true one is a ommonly used measure for estimating how gooda learned model is. Obtaining a model that minimizes this measure is a possible learninggoal. The ulprit here is that in pratie, when we learn a model from data, we do not haveany ground truth to ompare the learned model with. However, we an evaluate learningalgorithms by measuring how well they perform on data obtained from known models. It isreasonable to expet that an algorithm that learns well from data that is generated from amodel we do have, will perform well on data generated from an unknown model, assumingthat the models we use indeed form a suitable representation of the true generating proess.We disuss the Kullbak-Leibler (kl) divergene in more detail in Setion 7.2 in the ontextof evaluating our experimental results.It is shown by Abe and Warmuth [AW92℄, that maximizing the likelihood and minimizingthe kl-divergene is a related proess, sine a model that maximizes the likelihood of thetraining data also minimizes the kl-divergene of the distribution indued by the modelwith respet to the training data distribution. Ideally speaking, if the data is a faithfulrepresentative of the true model, �nding a maximum likelihood model for the data and�nding a minimum kl-divergene model with respet to the true model should amountto the same thing. More preisely, as the amount of training data tends to in�nity, thetraining data distribution approahes the one indued by the true generating proess, andthe kl-divergene of the maximum likelihood model with respet to the true generatingproess tends to 0.An evaluation sheme based on the kl-divergene, has a similar underlying idea to thatof using ross-validation [Sto74, GHW79℄ for assessing how good a model is. When learninga model from given training data, we would like the model to be general enough to modeldata outside the training set, that is generated by the same proess. When using ross-validation, parts of the available data are held out during the training proess, and are onlyused for assessing the learned model, thus verifying that the model is indeed general enough



27to aount for data outside the training set. The kl-divergene ompares the learned modelwith the true one based on newly generated sequenes of the true model that were not usedduring the training phase. Thus, it enables the assessment of the learned model's generality,without the need to hold-out any of the training data. In the general ase, when the truemodel is not available, ross validation may prove useful for omparing the goodness ofvarious learned models.To summarize, the learning problem as we address it in this work, is that of obtaininga model by attempting to (loally) maximize the likelihood, while evaluating the resultsbased on the kl-divergene with respet to the true underlying distribution, when suh adistribution is available.4.2 The Learning AlgorithmThe learning algorithm for a hidden Markov model starts from an initial model �0 and isgiven an experiene sequene, E; it returns a revised model �, with the goal of maximizingthe likelihood Pr(Ej�). The experiene sequene E is of length T ; eah element is a pairEt = hrt; Vti, where rt is the observed odometri relation between qt�1 and qt and Vt is theobservation vetor at time t.Our algorithm is a straightforward extension of the Baum-Welh algorithm to deal withthe odometri information and the fatored observation sets. The Baum-Welh algorithmis an expetation-maximization (em) algorithm [DLR77℄; it starts with an initial model �0and alternates between� the E-step: omputing the state-oupation and state-transition probabilities,t(i) = Pr(qt = sijE; �) and �t(i; j) = Pr(qt = si; qt+1 = sj jE; �), respetively, at eahtime t in the sequene, given E and the urrent model �, and� the M-step: �nding a new model � that maximizes Pr(Ej�; ; �).An em algorithm is guaranteed to provide monotonially inreasing onvergene of Pr(Ej�).The Baum-Welh has been proven to be an em algorithm [DLR77℄; it has also been prov-ably extended to real-valued observations [Lip82, Jua85℄. Our algorithm, as desribedthroughout the rest of this setion, uses the additional matrix, R, and enfores the �rst twogeometri onsisteny onstraints on the M-step, but like the standard Baum-Welh it isstill guaranteed to onverge to a loal maximum of the likelihood funtion. The proof is



28along the lines of the one presented by Juang et al. [JLS86℄ for the standard Baum-Welhalgorithm, and is given in Setion 4.3.4.2.1 Computing State-Oupation ProbabilitiesFollowing Rabiner [Rab89℄, we �rst ompute the forward (�) and bakward (�) matries.When all measurements are disrete, �t(i) is the probability of observing E0 through Et andqt = si, given �; �t(i) is the probability of observing Et+1 through ET�1 given qt = si and�. Formally: �t(i) = Pr(E0; : : : ;Et; qt = sij�) ;�t(i) = Pr(Et+1; : : : ;ET�1jqt = si; �) :When some of the measurements are ontinuous (as is the ase with R), these matriesontain probability density values rather than probabilities.The forward proedure for alulating the � matrix is initialized with�0(i) = 8<: b0i if �i = 10 otherwise ;and ontinued for 0 < t � T � 1 with�t(j) = N�1Xi=0 �t�1(i)Ai;jf(rtjRi;j)bjt : (4.1)f(rtjRi;j) denotes the density at point rt aording to the normal distribution representedby the means and varianes in entry i; j of the relation matrix R, and bjt is the probabilityof observing vetor vt in state sj ; that is, bjt = Qli=0Bi;j;vt[i℄ .The bakward proedure for alulating the � matrix is initialized with�T�1(j) = 1 ;and ontinued for 0 � t < T � 1 with�t(i) = N�1Xj=0 �t+1(j)Ai;jf(rt+1jRi;j)bjt+1 : (4.2)Given � and �, we now ompute the state-oupation and state-transition probabilities, and �. The state-oupation probabilities are omputed as follows:t(i) = Pr(qt = sijE; �) = f1(qt = si;Ej�)f2(Ej�)



29= �t(i)�t(i)N�1Xj=0 �t(j)�t(j) ; (4.3)where f1; f2 are density funtions. Similarly, the state-transition probabilities are omputedas: �t(i; j) = Pr(qt = si; qt+1 = sj jE; �)= �t(i)Ai;jbjt+1f(rt+1jRi;j)�t+1(j)N�1Xi=0 N�1Xj=0 �t(i)Ai;jbjt+1f(rt+1jRi;j)�t+1(j) : (4.4)We note that the numerator and the denominator in the frations are both density funtions,but the quotient is a disrete probability funtion. These are essentially the same formulaeappearing in Rabiner's tutorial [Rab89℄, but they also take into aount the density of therelational observation.4.2.2 Updating Model ParametersAt this phase of the algorithm, the goal is to �nd a new model, �, that maximizes Pr(Ej�; ).Generally, this is simply done using maximum-likelihood estimation of the probability dis-tributions in A and B by omputing expeted transition and observation frequenies. Itis more diÆult in our model than in regular hmms, beause we must also ompute a newrelation matrix, R, under the onstraint that it remain geometrially onsistent. Throughthe rest of this hapter we use the notation y to denote a reestimated value, and y to denotethe urrent value.The A and B matries an be straightforwardly reestimated; Ai;j is the expeted numberof transitions from si to sj divided by the expeted number of transitions from si:Ai;j = T�2Xt=0 �t(i; j)T�2Xt=0t(i) : (4.5)Bi;j;o is the expeted number of times o is observed along the ith dimension when in sjdivided by the expeted number of times of being in sj :Bi;j;o = T�1Xt=0I(Vt[i℄ = o)t(j)T�1Xt=0t(i) ; (4.6)



30where I() is an indiator funtion with value 1 if  is true and 0 otherwise.If we were not enforing geometrial onsisteny, the R matrix would be reestimated by:�mi;j def= �(Ri;j [m℄) = T�2Xt=0rt[m℄�t(i; j)T�2Xt=0 �t(i; j) (4.7)�mi;j def= �2(Ri;j [m℄) = T�2Xt=0 (rt[m℄� �mi;j)2�t(i; j)T�2Xt=0�t(i; j) ; (4.8)where m 2 fx; yg.However, the geometrial onstraints indue interdependenies among the optimal meanestimates as well as between optimal variane estimates and mean estimates. Parameter es-timation under this form of onstraints is almost untreated in main-stream statistis [Bar84℄and we found no previous existing solutions to the estimation problem we are faing. Asan illustration onsider the following onstrained estimation problem of 2 normal means.Example 4.1 Suppose we are given two sample sets of points P = fp1; p2; : : : ; png andQ = fq1; q2; : : : ; qkg. We are told that they were independently drawn from two distintnormal distributions with means �P ; �Q and varianes �2P ; �2Q, respetively. We are askedto �nd maximum likelihood estimates for the two distribution parameters. Moreover, we arealso told that the means of the two distributions are related, suh that �Q = ��P . Thissetting is shown in Figure 4.1.If not for the latter onstraint, the task is simple [DeG86℄, and we have:�P = Pni=1 pin ; �Q = Pkj=1 qjk ; �2P = Pni=1(pi � �x)2n ; �2Q = Pkj=1(qj � �y)2k : (4.9)However, the onstraint �P = ��Q fores us to �nd a single mean value � and set the otherone to its negated value, ��. Intuitively speaking, when hoosing suh a maximum likelihoodsingle mean, the sample that is more onentrated should have more e�et and the samplethat varies more should be more \submissive". This way the overall sample deviation fromthe means would be minimized and the likelihood of the data maximized. Thus, there existsmutual dependene between the estimation of the mean and the estimation of the variane,as opposed to the estimation given in formulae 4.9, in whih the optimal mean estimationdepends solely on the sampled values.
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QFigure 4.1: Examples of two sets of normally distributed points with onstrained means,in 1 and 2 dimensions.Sine the samples are independently drawn, their joint likelihood funtion is:f(P;Qj�P ; �Q; �2P ; �2Q) = nYi=1 e�(pi��P )22�2Pp2��P � kYj=1 e�(qj��Q)22�2Qp2��Q :The log of the joint likelihood funtion under the onstraint �Q = ��P is therefore:nXi=1 �(pi � �P )22�2P � log(p2��P )!+ kXj=1 �(qj + �P )22�2Q � log(p2��Q)! : (4.10)By taking the derivatives of expression 4.10 with respet to �P , �P and �Q and equatingthem to 0, while using the onstraint �Q = ��P , we obtain the following set of mutualequations for maximum likelihood estimators:�P = �2Q nXi=1pi � �2P kXj=1qjn�2Q + k�2P ; �Q = ��P ; �2P = nXi=1(pi � �P )2n ; �2Q = kXj=1(qj + �P )2k :By substituting the expressions for �P and �Q into the expression for �P , we obtain a ubiequation whih is umbersome, hene is not given here, but still solvable (in this simplease). The solution provides a maximum likelihood estimate for the mean and varianeunder the above onstraint.In the ase where the two samples are assumed to have the same variane, the varianefators in the expression for �P above anel out, and the estimate for �P is simply:�P = ��Q = nXi=1pi � kXj=1qjn + k ;



32whih agrees with the intuitive solution to the problem. Under this assumption, the maxi-mum likelihood estimate for �2Q; �2P needs to take into aount the equality onstraint, andan be expressed as: �2P = �2Q = nXi=1(pi � �P )2 + kXj=1(qj + �P )2n + k :We now proeed to the update of the relation matrix under onstraints. For larity, wedisuss only the �rst two geometrial onstraints at this stage. Enforing the additivityonstraint is disussed in Chapter 10.Zero distanes between states and themselves are trivially enfored, by setting all thediagonal entries in the R matrix to 0, with a small variane, along the x and y dimension.Anti-symmetry is enfored by using the data from sj to si as well as from si to sj whenreestimating �(Ri;j). However, we note that the variane has to be taken into aount, andwe obtain the following set of mutual equations:�mi;j = T�2Xt=0 "rt[m℄�t(i; j)(�mi;j)2 � rt[m℄�t(j; i)(�mj;i)2 #T�2Xt=0 "�t(i; j)(�mi;j)2 + �t(j; i)(�mj;i)2 # ; (4.11)(�mi;j)2 = T�2Xt=0 [�t(i; j)(rt[m℄� �mi;j)2℄T�2Xt=0�t(i; j) : (4.12)For the x and y dimensions we get a ompliated but still solvable equation of the 3rd degree.However, for the more general ases involving information regarding the orientation of therobot (see Chapters 5, 8), as well as when omplete additivity is enfored (see Chapter 10)there are no suh losed form reestimation formulae.Hene, rather than have very ompliated reestimation formulae, we use a lag-behindupdate rule; the yet-unupdated estimate of the variane is used for alulating a new es-timate for the mean, and the newly updated mean estimate is then used to update thevariane. Thus, the mean is updated using a variane parameter that lags behind it in the



33update proess, and the reestimation formula 4.11 needs to use �mi;j rather than �mi;j :�mi;j = T�2Xt=0 "rt[m℄�t(i; j)(�mi;j)2 � rt[m℄�t(j; i)(�mj;i)2 #T�2Xt=0 "�t(i; j)(�mi;j)2 + �t(j; i)(�mj;i)2 # : (4.13)A possible alternative to our lag-behind approah is to update the mean as though theassumption �j;i = �i;j indeed holds. Under this assumption, the variane terms in equa-tion 4.11 anel out, and the mean update is independent of the variane one again. Thenthe varianes are updated as stated in equation 4.12, without assuming any onstraints overthem. This approah was taken in earlier stages of this work [SK97b, SK98℄. We experimen-tally studied various update poliies for learning onstrained Gaussian parameters1. Theexperimental results under the restrited experimental settings suggest that the lag-behindstrategy is superior to the others and very lose to the atual maximum likelihood estima-tion method. Moreover, a similar approah was taken by other researhers when using emin highly non-linear optimization problem, termed one step late update [MK97℄. It turnsout, as we also show in Setion 4.3.3, that this update approah falls under the generalizedem family of algorithms, whih have similar properties to the em algorithms.The omplexity of the above algorithm per iteration is still O(TN2), like the standardBaum-Welh method. Note that the onstants are signi�ant here, sine the alulation offormulae 4.1 and 4.2 requires the evaluation of exponential terms, whih is a time onsumingoperation. This ost an be signi�antly redued through the use of lookup-tables, althoughthis is not urrently implemented in our ode.4.2.3 Stopping CriterionAs stated in the beginning of this setion, and proved in Setion 4.3, our algorithm is anem algorithm and as suh it is guaranteed to onverge to a loal maximum of the likelihoodfuntion. Moreover, a loal maximum is reahed if and only if the model parameters havereahed a �xed point and are no longer hanged by the reestimation proedure.To pratially determine that the algorithm has indeed onverged, we an ompare thevalue of the likelihood funtion between onseutive iterations. When the hange in the1I am grateful to Luis Ortiz for lending his ode and expertise, as well as for onduting these experimentswith me.



34likelihood value is less than a predetermined small �, we an assume that onvergene hasbeen reahed, and stop the algorithm.Alternatively, we an ompare the amount of hange in the model parameters themselvesbetween iterations, and when the hange in eah parameter is less than a predetermined �,deide that a �xed point has been reahed, whih implies the onvergene of the algorithm.Note that the odometri data and the odometri relation matrix are used as an aid to-wards obtaining the transition and observation matries, and therefore, a stopping riterionneed only take into onsideration the transition and observation matries or the likelihoodof the observation data, rather than the relation matrix or the likelihood of the odometridata.The latter of the two stopping riteria an be viewed as more onservative. The reason isthat the likelihood funtion expression involves a produt of the model's parameters [Rab89℄.Sine these parameters are all probabilities (as we are only taking into aount the transitionand observation distribution matries), they are all numbers between 0 and 1. Therefore,when the hange in eah of them is less than �, the hange in the likelihood value is typiallymuh smaller.In our implementation of the algorithm, we use this seond riterion, and determinethat the algorithm has onverged when the hange in eah of the entries of the transitionmatrix, A, and the observation matrix, B, from one iteration to the next does not exeed aprede�ned �. (We set � = 0:001 in our implementation). By omparing only the hange inthe transition and observation matries, we also enable a fair omparison of the number ofiterations required for onvergene with and without the use of odometri information, asdesribed in Chapters 7 and 9 of this work.4.2.4 Extending the Algorithm for Learning POMDPsTo extend the algorithm given above to learn a omplete pomdp, eah item in the experienesequene E ontains, in addition to the observation and the odometri relation, the ationthat aused the transition assoiated with the odometri relation.For eah ation there is a separate pair of matries A and B. Hene, the forward-bakward proedure as desribed in Setion 4.2.1, and in partiular Equations 4.1 and 4.2,must take into aount at eah time t the transition probabilities Aij and the observationprobabilities bj that are assoiated with the spei� ation taken at time t. Furthermore,the update proedure for the A and B matries, (formulae 4.5 and 4.6), for a partiular



35ation a, only takes into aount the estimated state transitions and observations that area result of a in the data sequene. The update of the relation matrix R does not need totake any ation information into aount sine R is a single ommon matrix for the wholemodel.The time omplexity of learning a pomdp ompared with that of learning an hmm isnot signi�antly di�erent sine the forward-bakward proedure desribed in Setion 4.2.1,whih is the most omputationally-intensive part of the algorithm, does not require anyadditional omputational steps. The only di�erene in this proedure is the one mentionedabove. Only the �nal update of the A and B matries, needs to be performed separately foreah ation, but this stage is not a omputational bottlenek. Therefore, the overall timerequirements remain almost unhanged, under the assumption that the number of possibleations is typially muh smaller than the number of states in the model. A fator that islikely to make learning a pomdp more time onsuming, and needs to be taken into aount,is the larger number of model parameters introdued due to the multiple ations. In order tofailitate the learning of useful models, longer data sequenes, and therefore proportionallymore omputation time, may be required.4.3 Corretness Proof of the Reestimation FormulaeFor the kind of iterative reestimation algorithms that we use, proving the orretness of thereestimation formulae means proving that through repeated reestimation, the likelihooddoes not derease, and that the algorithm onverges to a �xed-point model �, whih isa loal maximum of the likelihood funtion P (Ej�), where E is the observed experienesequene. We formalize this in the following theorem:Theorem 4.1 Let �0 be the urrent model, E be the experiene sequene, and � be thereestimated model aording to the reestimation formulae 4.5, 4.6, and either 4.7 and 4.8,or 4.13 and 4.12. Then Pr(Ej�0) � Pr(Ej�), and �0 = � if and only if �0 is a loal maximumof Pr(Ej�) as a funtion of �.Proof: There are several proof tehniques for the orretness of the reestimation for-mulae for the standard Baum-Welh algorithm (under various kinds of observation matrixB) [BPS+70, DLR77, LRS83, Jua85, JLS86℄. Our proof uses the same approah as thelatter two. It is straightforward to show that maximization of the likelihood funtion withrespet to eah of the parameters separately is equivalent to its maximization with respet



36the omplete model. Hene, we break up the proof, and prove that eah of the reestimationformulae indeed improves the likelihood funtion with respet to the assoiated reestimatedparameter. Sine the likelihood funtion with respet to the A and B matries is a disreteprobability distribution, it is bounded from above, and the onvergene of the proess isguaranteed. For the relation matrix reestimation proedure, onvergene is also guaran-teed through a more ompliated ondition given by Wu [Wu83℄, and whih holds for theexponential family of distributions [MK97℄. Hene onvergene is guaranteed.4.3.1 Transitions and ObservationsTo prove the orretness of formulae (4.5) and (4.6), we use the entral theorem of Baumand Sell [BS68℄, whih states2 that for x = fxijg s.t. xij > 0; 0 � j � N � 1, andPN�1j=0 xij = 1, given a homogeneous polynomial P in the variable xij, with nonnegativeoeÆients, the transformation xij = xij �P�xijN�1Xk=0xik �P�xik (4.14)satis�es P (x) � P (x), and x = x if and only if x is a loal maximum of P .The density expression Pr(Ej�) = PN�1i=0 �T�1(i) = PN�1i=0 �T�1(i)�T�1(i) , whih wewant to maximize, is indeed a homogeneous polynomial in Aij and in Bijo. Both Aij andBijo are disrete probability distributions, therefore are positive and satisfy PN�1j=0 Aij = 1and Po2Oi Bijo = 1 . Hene, aording to the above theorem the reestimation formula forAij , that leads to a loal maximization of P (EjAij) is:Aij = Aij �P (Ej�)�AijN�1Xk=0Aik �P (Ej�)�Aik : (4.15)We now need to show that the right-hand side of formula (4.15) is equal to that of (4.5).To do this we need to show that:�P (Ej�)�Aij = T�2Xt=0�t(i)bjt+1f(rt+1jRi;j)�t+1(j) : (4.16)By substituting the right hand side expression into (4.15), and using equations (4.3,4.4) weget the desired equality.2Baum and Sell's theorems are atually somewhat stronger and the statement given here is just oneonsequene.



37By indution on k; 0 � k � T � 1, it is easy to show that:N�1Xi=0 ��k(i)�Aij �k(i) = k�1Xt=0�t(i)bjt+1f(rt+1jRi;j)�t+1(j) :For k = T � 1 we get (4.16), whih onludes the proof of formula (4.5). The proof for Bijo(formula (4.6)) is almost idential.4.3.2 Odometri RelationsWe note that the density expression, Pr(Ej�), is not a polynomial in �(Ri;j [m℄) and�2(Ri;j [m℄). Hene the theorem by Baum and Sell an not be applied here. Still, sine weassume that the odometri relations along the x and y dimensions are normally distributed,in the unonstrained ase, their reestimation proedure is an instane of the exponentialfamily reestimation, disussed by Dempster et al [DLR77℄. However, for the sake of om-pleteness and for an easier disussion of the onstrained ase, we provide a omplete proof,using the tehnique of maximizing Baum's auxiliary funtion, following Setion 4 of thepaper by Baum et al. [BPS+70℄. We denote by ��, where � is some relation matrix , themodel whose A and B matries are the same as those of �, but whose relation matrix R isreplaed by the matrix �.We start by making the observation that if S is the set of all state sequenes of length T ,i.e. S = fsg where s = s0; : : : ; sT�1 is a sequene of states of length T , the density P (Ej�)an be expressed as P (Ej�) =X
s2S P (E; s j�) =X

s2S P (Ejs ; �)P (s j�) :We an rewrite P (Ejs ; �) and P (s j�) asP (Ejs ; �) = T�1Yt=0 bstt T�1Yt=1 f(rtjRst�1;st) and P (s j�) = �s0 T�1Yt=1 Ast�1;st :Thus, P (Ej�) an be expressed asX
s2S �(s ) T�1Yt=1 f(rtjRst�1;st) ;where �(s ) is a produt of initial, transition and observation probabilities. Realling thatf(rtjRi;j) denotes the density of rt aording to the D-variate independent normal distri-bution with the parameters stored in Ri;j, we rewrite it asf(rtjRi;j) = DYm=1 fmij (rmt )p2��mij ; (4.17)



38where rmt def= rt[m℄ and fmij (rmt ) def= e�(rmt ��mij )2=2(�mij )2 . We also use the notation:fmij (rmt ) def= e�(rmt ��mij )2=2(�mij )2 and fij(rt) def= QDm=1 fmij (rmt ).Baum et al. [BPS+70℄ introdue an auxiliary funtion, Q, and prove that maximizing itis the same as inreasing the likelihood. More formally, the R that maximizes the auxiliaryfuntion Q(R;R) def= X
s2S P (E; s j�) log(T�1Yt=1 f(rtjRst�1;st))= X
s2S P (E; s j�) T�1Xt=1 log(f(rtjRst�1;st))also satis�es P (Ej�R) � P (Ej�R).Sine the R that maximizes Q(R;R) also maximizes the same expression in whihp2�fmij (rmt ) is substituted for fmij (rmt ), we an ignore the p2� fator in (4.17) and rewriteQ as Q(R;R) =X

s2S P (E; s j�) T�1Xt=1 DXm=1[log(fmst�1;st(rmt ))� log(�mst�1;st)℄ : (4.18)Sine the normal distribution is stritly log-onave, a slight adaptation to the proof of The-orem 4:1 in [BPS+70℄ is suÆient for showing that Q above has a unique global maximumas a funtion of �mij and �mij , whih is the unique point in whih the partial derivatives of Qaording to �mij and �mij are 0. We now show that the reestimation formulae (4.7) and (4.8)indeed �nd the maximizing �mij and �mij .For a pair of states i; j and an odometry omponent m 2 fx; yg we an express the re-strition of the auxiliary funtion Q to transitions from i to j and to the mth odometriomponent, m, asQmij (R;R) =X
s2S P (E; s j�) Xt s.t.st�1=ist=j (log(fmst�1;st(rmt ))� log(�mst�1;st)) :Observing that �t�1(i; j) = X

s2S s.t.st�1=ist=j P (E; s j�) allows us to rewrite Qmij (R;R) asQmij (R;R) = T�2Xt=0 �t(i; j)(log(fmi;j(rmt+1))� log(�mij )) : (4.19)Sine �Q��mij = �Qmij��mij and �Q��mij = �Qmij��mij , showing that the partial derivatives of Qmij with respetto �mij and �mij are 0 whenever equations (4.7) and (4.8) are satis�ed, onludes our proof.The di�erentiation is straightforward and is provided in Appendix B.1 .



394.3.3 Constrained Odometri RelationsThe orretness of formulae 4.13 and 4.12, under our lag-behind update poliy, is proved byshowing that these update rules are instanes of generalized em. Dempster et al. [DLR77℄introdued this notion, and it is explained in detail by MLahlan and Krishnan [MK97℄.The idea is that by merely improving the auxiliary funtion Q, rather than maximizing it,at eah iteration, we are still guaranteed to improve the likelihood funtion. Therefore, itis not neessary to �nd an update rule that maximizes Q but simply one that improves it.The proof tehnique presented here uses diret enforement of the anti-symmetry onstraintin the expression for Q. This is in ontrast to the use of Lagrange multipliers in earlierwork [SK97a℄.From equations (4.18) and (4.19) we have:Q(R;R) = N�1Xi=0 N�1Xj=0 DXm=1Qmij (R;R) : (4.20)By isolating all terms in whih i = j we an rewrite this expression as:Q(R;R) = N�1Xi=0 DXm=1Qmii (R;R) + N�1Xi=0 N�1Xj=(i+1) DXm=1[Qmij (R;R) + Qmji(R;R)℄ : (4.21)In order to inrease the sum in (4.21), under the onstraint �mij = ��mji , with respet tothe parameters �mij and �mij , it is suÆient to inrease the sum of eah pair (Qmij (R;R) +Qmji(R;R)) with respet to these parameters, sine all other pairs do not ontain them.Thus, we are left with the following expression:Lmij (�mij ; �mji ; �mij ; �mji )= T�2Xt=0 264�t(i; j)0B�log(e� (rmt ��mij )22(�mij )2 )� log(�mij )1CA + �t(j; i)0B�log(e� (rmt ��mji )22(�mji )2 )� log(�mji)1CA375 :We enfore the anti-symmetry onstraint by substituting �mji by ��mij in the above expres-sion, and obtain the following expression whih we need to inrease with respet to �mij , �mijand �mji :



40Lmij (�mij ; �mij ; �mji)= T�2Xt=0 264�t(i; j)0B�log(e� (rmt ��mij )22(�mij )2 )� log(�mij )1CA+ �t(j; i)0B�log(e� (rmt +�mij )22(�mji )2 )� log(�mji)1CA375= T�2Xt=0 "�t(i; j) �(rmt � �mij )22(�mij )2 � log(�mij )!+ �t(j; i) �(rmt + �mij )22(�mji)2 � log(�mji)!# :Let �mij ; �mij and �mji be the urrent values of the parameters. To inrease Lmij we do thefollowing:1. Temporarily �x �mij ; �mji to be the urrent �mij ; �mji . Denote by bLmij (�mij ) the funtionobtained from Lmij through this instantiation of the � parameters. Formally stated:bLmij (�mij ) def= Lmij (�mij ; �mij ; �mji ) :2. Find the value b�mij that maximizes bLmij (�mij ).3. Set �mij in Lmij to the value b�mij found in step 2. Denote by bbLmij (�mij ; �mji) the funtionobtained from Lmij through this instantiation of �mij . Formally stated:bbLmij (�mij ; �mji) def= Lmij (b�mij ; �mij ; �mji) :4. Find values b�mij ; b�mji that maximize bbLmij .5. Set �mij ; �mji to be b�mij ; b�mji .Sine b�mij maximizes bLmij (�mij ) we have:Lmij (b�mij ; �mij ; �mji ) � Lmij (�mij ; �mij ; �mji ) :Sine b�mij ; b�mji maximize bbLmij (�mij ; �mji) we have:Lmij (b�mij ; b�mij ; b�mji ) � Lmij (b�mij ; �mij ; �mji ) :By transitivity: Lmij (b�mij ; b�mij ; b�mji ) � Lmij (�mij ; �mij ; �mji ) :Hene, setting �mij ; �mij ; �mji aording to the above proedure does not derease Lmij . If itdoes not stritly inrease Lmij , then aording to the generalized em algorithm a maximumof the likelihood funtion is reahed.It is now left to obtain expressions for b�mij ; b�mij , and b�mji .



41To �nd b�mij , we take the derivative of bLmij (�mij ) with respet to �mij and equate it to 0.� bLmij��mij = T�2Xt=0 [�t(i; j)(rmt � �mij )(�mij )2 � �t(j; i)(rmt + �mij )(�mji )2 ℄ :By equating to 0 we get: �mi;j = T�2Xt=0 [rmt �t(i; j)(�mi;j)2 � rmt �t(j; i)(�mj;i)2 ℄T�2Xt=0 [�t(i; j)(�mi;j)2 + �t(j; i)(�mj;i)2 ℄ ;whih is idential the reestimation expression for �mi;j given in 4.13. It is easy to hek thatthe seond derivative of bLmij (�mij ) with respet to �mij is negative, and therefore this is indeeda maximum rather than a minimum.Similarly, to obtain b�mij , we take the derivative of bbLmij (�mij ; �mji) with respet to �mij , andequate it to 0, and a similar proess is done for �nding b�mji . The obtained expressions are:(�mi;j)2 = T�2Xt=0 [�t(i; j)(rt[m℄� �mi;j)2℄T�2Xt=0 �t(i; j) (�mj;i)2 = T�2Xt=0 [�t(j; i)(rt[m℄ + �mi;j)2℄T�2Xt=0 �t(j; i) :whih agree with the update formulae 4.12. Again, the seond derivative is negative, whihensures that this is indeed a maximum point. This onludes our proof. 2For the speial ase where i = j , the value �mij is 0, whih shows that the update formulaindeed satis�es the �rst two of the three geometrial onsisteny onstraints.
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Chapter 5Diretional Data and Distributions5.1 MotivationThroughout our disussion so far, we have onsidered only two omponents of the odometriinformation gathered by the robot, namely, the x and y oordinates. However, an additionalmeasure that is usually reorded is the hange of the robot's heading, �, as it moves fromone state to the next. If a robot is standing in one position and takes the ation of turningleft or right, a respetive hange of heading of approximately �90Æ is reorded between thestate prior to the turn and the state following the turn. Obviously, there is noise around thismeasure, as is the ase for the x and y measures. In previous work [SK97b, SK97a℄, we didtreat the hange in heading as though it were simply normally distributed. However, thehange in heading is di�erent from that in x and y, in the sense that angular measurementsare yli. That is, a hange in heading of 90Æ is the same as a hange of 450Æ or of �270Æ.If we knew in advane, for every two states, the approximate hange in heading (��)that the robot goes through when moving from one of them to the other, we ould stillhave modeled it as though it were approximately normal with a mean ��, and some smallvariane �2 [AC82℄. We ould adopt a onvention of having all angles normalized to bewithin a yli range, e.g. [�180Æ; 180Æ℄, (similarly we may use radians or other units),and always hoose to take as the angular hange between two points min(j�j; 360Æ � j�j),and assign it the orret sign. However, we do not know in advane the angular hangebetween every two states. We have a sequene of angular measurements and we estimatethe probabilities of the states in whih they were reorded, and take a weighted mean of themeasurements in order to estimate the angular hange between every two states. Thus, weare faing the following problem: What is the interpretation of a \mean angle"?43
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baFigure 5.1: Robot hanges heading from state a to state b.As an example, onsider the transition from state a to state b, as depited in Figure 5.1.Suppose that we adopt the onvention that angles are expressed as numbers between �180Æand 180Æ. Also, suppose we have two (noisy) measurements of the angular distane fromstate a to state b: �169Æ and 185Æ. The simple average between these two measurementsgives us an estimate of the mean heading hange of 8Æ. Obviously this is not the value thatreets even remotely the hange of heading between the two states. A similar problemarises if we use a onvention for expressing angles between 0Æ and 360Æ. The problem lies inthe fat that angles that are about 180Æ away from the mean angle greatly deviate from thismean, while angles that are about 360Æ away from the mean are atually very lose to it.To apture this idea, the onept of irular distribution is required. Angular data plays asigni�ant role in various aspets of both theory and mehanis of robotis, as well as otherareas of omputer siene (e.g omputer graphis). Sine distributions over suh data arenot widely known to researhers in this area, (although the problemati aspet of suh datahas long been realized by statistiians), we provide here a brief introdution to the basionepts and tehniques used for handling irular data. In partiular we onentrate onthe von Mises distribution, whih is a irular version of the normal distribution. Furtherdisussion an be found in several statistial publiations [GGD53, Mar72, KJ82a, KJ82b℄.Setion 5.4 returns to show how the theory is applied in our model and learning algorithm.5.2 Statistis of Diretional DataDiretional data in the 2-dimensional spae an be represented as a olletion of 2-dimensionalvetors, fhx1; y1i; : : :hxn; ynig, on the unit irle, as shown in Figure 5.2. The 2-dimensionalpoints an also be represented as the orresponding angles between the radii from the enterof the unit irle and the x axis, (�1; : : : ; �n), respetively. The relationship between thetwo representations is:xi = os(�i); yi = sin(�i); (1 � i � n) :The vetor mean of the n points, hx; yi, is alulated as:
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46Applying this derivation to the normal distribution results in a irular version of the normaldistribution, but estimating its parameters from sample data an be problemati [GGD53,Mar72℄.An easier-to-estimate irular version of the normal distribution was derived by vonMises [GGD53, Mar72℄, in a way analogous to the way Gauss derived the linear normaldistribution | whose maximum-likelihood parameter estimates are the sample mean andvariane. This irular distribution is the one we are using to model the robot heading inthis work, and is desribed below.5.3 The von Mises DistributionA irular random variable, �, 0 � � � 2�, is said to have the von Mises distribution withparameters � and �, where 0 � � � 2� and � > 0, if its probability density funtion is:f�;�(�) = 12�I0(�)e� os(���) ;where I0(�) is the modi�ed Bessel funtion of the �rst kind and order 0:I0(�) = 1Xr=0 1r!2 (12�)2r :Similar to the linear normal distribution, this is a unimodal distribution, symmetrialaround �. The mode is at � = � while the antimode is at � = � + �. We observe that theratio of the density at the mode to the density at the antimode is e2�, whih indiates thatthe larger � is, the more onentrated the density is about the mode. Figure 5.3 shows an\unwrapped" plot of the von Mises distribution for various values of � where � = 0.We now desribe how to estimate the parameters � and � given a set of heading samples,angles �1; : : :�n, from a von Mises distribution. We are looking for maximum likelihoodestimates for � and �. The likelihood funtion for the data generated by a von Misesdistribution with parameters � and � an be expressed as:L�;� = nYi=1 f�;�(�i) = e(�Pni=1 os(���i))(2�)nI0(�)n :Hene the log likelihood islog(L�;�) = � nXi=1 os(�� �i)� log((2�)nI0(�)n) :
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�Figure 5.3: The von Mises distribution with mode 0 and various � values.To �nd the maximum likelihood estimate for � we take � log(L�;�)�� , equate it to 0, and obtainthe estimate � for �: � = artan(yx) ; (5.3)where y, x are as de�ned in equation 5.1.The maximum likelihood estimate for � is obtained by taking � log(L�;�)�� and equating itto 0. We note that dI0(�)d� = I1(�), where I1(�) is the modi�ed Bessel funtion of the �rstkind and order 1: I1(�) = 1Xr=0 1r!(r+ 1)!(12�)2r+1 :Hene the maximum likelihood estimate for � is the � that solves the equation:I1(�)I0(�) = 1n nXi=1 os(�i � �) : (5.4)If we do not know � and are only interested in estimating � with respet to the estimated�, � (as de�ned in 5.3), we an use the identity:1n nXi=1 os(�i � �) = 1nvuut( nXi=1 os(�i))2 + ( nXi=1 sin(�i))2 ; (5.5)and the de�nition of a, as given in Equation 5.2, to dedue that the maximum likelihoodestimate for � is the � that satis�es: I1(�)I0(�) = a :



48However, if we do have a given � and we want to �nd a maximum likelihood estimate forthe onentration � of the sample data around that spei�ed �, the identity 5.5 annot beused (see also Upton [Upt73℄). We need to use as a maximum likelihood estimate for �, the� that satis�es:I1(�)I0(�) = max[ 1n nXi=1 os(�i��); 0℄ = max24 1nvuut( nXi=1 os(�i))2 + ( nXi=1 sin(�i))2 � ( nXi=1 sin(� � �i)); 035 :The above estimation formulae agree with the intuition that the sample is more onentrated(� is larger) about the sample mean, �, than about the true distribution mean, �.5.4 Handling Angular Odometri ReadingsIt is now left to explain how we use the von Mises distribution to model the heading readingsobtained by the robot as part of its odometri information. Through the rest of this setionwe explain how the parameters of the von Mises distribution are inorporated into thehidden Markov model and how the learning algorithm desribed in Chapter 4 is adapted tolearn these parameters.To model the heading di�erene between eah pair of states, the relation matrix R,desribed in Setion 3.2, beomes 3-dimensional rather than 2-dimensional, onsisting of theomponents hx; y; �i rather than just hx; yi. The omponent Ri;j[�℄ represents the headinghange when moving from state si to sj , and is assumed to onsist of the two parameters ofthe von Mises distribution governing this hange. The notation ��i;j def= �(Ri;j [�℄) representsthe mean of the distribution for this heading hange, while ��i;j def= �(Ri;j[�℄) represents theonentration parameter around the mean. The three onstraints stated in Setion 3.2 forthe omponents of R, hold for the � omponent as well.Similarly, every observed relation item, rt, in the experiene sequene E, has a heading-hange omponent, �, whih reords the hange in heading of the robot between the stateat time t, qt, and the state qt+1.The reestimation formula for the von Mises mean and onentration parameters of theheading hange between states si and sj is the solution to the equations:��i;j = artan0BBBBB� T�2Xt=0 [sin(rt[�℄)(�t(i; j)�i;j � �t(j; i)�j;i)℄T�2Xt=0 [os(rt[�℄)(�t(i; j)�i;j + �t(j; i)�j;i)℄1CCCCCA



49I1[��i;j ℄I0[��i;j ℄ = max"PT�2t=0 [�t(i; j) os(rt[�℄� ��i;j)℄PT�2t=0 �t(i; j) ; 0# : (5.6)Note here that the larger �ij is, the more onentrated the sample is around the mean, andthe more weight we give to the estimated ounts �t(i; j) of observing this mean. Also notethat the denominator ontains a sum rather than a di�erene, sine os is an even funtionand os(�rt[�℄) = os(rt[�℄).Rather than try to solve these hard mutual equations, we take advantage of generalizedem as we did in Setion 4.3.2, and use the \lag-behind" update. We update the mean usingthe urrent estimates of the onentration parameters, �i;j ; �j;i, as follows:��i;j = artan0BBBBB� T�2Xt=0 [sin(rt[�℄)(�t(i; j)�i;j � �t(j; i)�j;i)℄T�2Xt=0 [os(rt[�℄)(�t(i; j)�i;j + �t(j; i)�j;i)℄1CCCCCA ;and then alulate the new onentration parameters based on the newly updated mean,as the solution to equation 5.6. Finding ��i;j that satis�es this equation is done through theuse of a lookup table, listing values of the quotient I1[x℄I0[x℄ .The above reestimation formulae agree with the maximum likelihood estimator formulaegiven in equations (5.3, 5.4). The onvergene of the estimation proess is guaranteed dueto the von Mises being a member of the exponential family [Mar72℄, and the monotoneimprovement of the likelihood through their use an be proved along the lines of the proofprovided in Setion 4.3.3.
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Chapter 6Choosing an Initial ModelIt is typial in instanes of the Baum-Welh algorithm to simply initialize the model atrandom, perhaps trying multiple initial models to �nd di�erent loal likelihood maxima.Conretely, to hoose an N -state model uniformly at random, we �rst hoose N disreteprobability distributions over N events, from the set of all possible N -dimensional proba-bility distributions, uniformly at random1, in order to onstrut the transition-distributionmatrix A; similarly, we hoose N distributions over observations for the observation matrixB; �nally we populate the relation matrix with random means, while enforing onsistenyonstraints.It is important to note that when ontinuous distributions are estimated, arbitrary ini-tialization of means and varianes an ause numerial instability throughout the algorithm.For instane, if an odometri relation between state i and state j is initially assigned a dis-tribution with an arbitrary mean that is far from any of the atual odometri readings, withonly a small variane around it, the density mass assigned to any odometri data aord-ing to this distribution is very small, and an exeed the mahine's preision, ausing anunderow to our. It is espeially severe in a multi-dimensional odometri readings set-ting, like the one we are dealing with, sine when numbers are multiplied by one another,even plausible density values rapidly derease. Moreover, very small probability values ex-lude plausible state transitions between states i and j from being onsidered sine theyare assigned a density mass whih is arbitrarily lose to 0.We may try to hoose an initial large variane for the odometri distribution, thus1See Cassandra's Ph.D. thesis [Cas98℄ for details on hoosing distributions at random.51



52avoiding the underow problem. Suh an approah results in highly inaurate mean rees-timation; if the odometry from state i to state j is initially estimated at a value with highvariane, many transitions that do not go from i to j still get a reasonably high densityunder the distribution from i to j. When the mean is reestimated, all these transitionswould partiipate in the alulation. Thus the model redues to having arbitrary meansthat roughly aommodate all the data points due to the large variane around them.This problem has long been realized by Rabiner et al. [RJL+85℄, and they make twosuggestions for a solution:� When events have very low density mass, add some small onstant to it.� Start from a good initial model.The �rst suggestion is lose in pratie to the Bayesian approah, with a uniform prior overall events. This approah is adopted in our implementation, as we add a small onstantto the estimated transition and oupation probabilities � and , to avoid 0 probabilities.However, as Rabiner et al. point out, it is not suÆient, sine without good estimates formost of the parameters, all the data has low probability whih is ompensated for by theadded onstants, resulting in a very at model. The overall e�et is similar to that of havinga large variane around arbitrary means.The seond suggestion is not easily met, sine we rarely have enough prior knowledgeto provide a good initial model, and as stated earlier, our goal is to automate as muh aspossible the learning proess, avoiding the hard work of manually obtaining a good initialmodel.We have ome up with three initialization strategies. One is to use random initial distri-butions for the transition and observation matrix, and random relation means from withinthe range of odometri readings, assigning large initial variane. All three geometrial on-straints are enfored on the relation means through dependeny propagation. For instane,one we pik the mean �xij at random, the mean �xji is set to ��xij rather than hosenat random itself. This method still often leads to numerial instability of the algorithm,and results in very at models, both in the sense of being lose to uniform transition andobservation distributions and in terms of inaurate odometri mean estimates with highvariane around them.The two other initialization strategies are biased by the odometri data. One of themwas briey desribed in earlier publiations [SK97b, SK97a℄, and is based on lustering



53states aording to their odometri loations in a global oordinate system. This methodis not robust in the fae of umulative rotational errors, whih are disussed in Chapter 8.We also developed another initialization algorithm, based on lustering odometri rela-tions rather than positions, and on tagging eah odometri relation by its estimated originand destination states. The algorithm is only onerned with odometri relations betweenstates, and therefore is not sensitive to umulative rotational errors. It also has the poten-tial advantage that it may assist in determining the number of states in the model when allwe have is a rough overestimate for this number.In the following we present both algorithms. They both take as input the sequenes Eof observations reorded at states and odometri relations reorded between states, as wellas the number of states N .6.1 K-Means-Based InitializationGiven a sequene of observations and odometri readings E, we begin by assigning globalmetri oordinates to eah element in the sequene. This is done by aumulating theobserved odometri relations between onseutive pairs of odometri readings, as demon-strated in the following example.Example 6.1 Suppose we have the following 8 onseutive odometri readings:h2 94 92i; h1994 0 88i; h3 �93 86i; h�1999 �1 94i; h�4 102 91i;h1998 �5 90i; h�2 �106 91i; h�2003 7 87i :These an be viewed as the hange in heading from one state to the next measured within aglobal oordinate system.By aumulating these measures, assuming that the initial position is h0 0 0i we get thefollowing sequene of global position assignments:h0 0 0i; h2 94 92i; h1996 94 180i; h1999 1 �94i; h0 0 0i; (6.1)h�4 102 91i; h1994 97 �179i; h1992 �9 �88i; h�11 �2 �1i :The angles here are taken to be in the interval [�180Æ; 180Æ℄. The set of global oordinates,as demonstrated above, ignoring any other observation information, is fed into a k-meanslustering algorithm (see, for instane, the disussion on simple isodata in Duda and Hart'sbook [DH73℄) , yielding a partition of the data into N lusters.



54 The k-means algorithm is an iterative proedure that starts by arbitrarily hoosing kluster seeds, where a seed is just a point of the same dimension as the data. The numberof lusters that we are looking for, k, orresponds in our ase to the number of states in themodel, N . Eah data point is assigned to the luster whose seed is losest to it. Then themean of eah luster is alulated from its points, and these means are used as the lusterseeds for the next iteration. The algorithm halts when a �xed-point is reahed, and thereis no more transition of elements between the lusters.To use this algorithm, we need to de�ne a proedure for alulating the means as wellas a distane metri between elements, in order to �nd the elements losest to eah mean.Sine our odometri loations are of the form hx; y; �i where � is an angle, we use themean angle as de�ned in Setion 5.2, and de�ne the mean of a set of odometri loationsfhxi; yi; �iig as: h�x; �y; ��i = �Pi xin ; Pi yin ; artan�Pi sin(�i)Pi os(�i)�� :A simple way to overome the yliity of the heading omponent when alulating thedistane between an odometri loation hx; y; �i and a luster mean h�x; �y ; ��i is to take theEulidean distane between the vetors hx; y; sin(�); os(�)i and h�x; �y; sin(��); os(��)i.However, sine x; y; �x; �y are expressed in entimeters, and sine and osine are alwaysnumbers between �1 and 1, the latter's e�et on the distane is negligible, even when theatual heading di�erene between the mean and the point is very large. To overome thisphenomenon, we hoose a onstant, C, to sale the sine and osine omponents of theEulidean distane to the same order of magnitude as the x and y omponents. In our ase,where x and y are measured in entimeters, the saling onstant C = 200 proved to be agood hoie throughout all our experiments. It is however possible to alulate C from theorder of magnitude of the typial hanges in x and y rather than provide it as a onstantto the program.Example 6.1 (Cont.)If the k-means algorithm works well, and the number of states isknown to be 4, we would expet to obtain the following lustering assignment to the se-quene 6.1 (perhaps with a di�erent hoie of distint luster numbers):h0; 1; 2; 3; 0; 1; 2; 3; 0i :One lustering is done, eah distint luster orresponds to a state. The experiene se-quene an be mapped diretly onto a state sequene, suh as the one shown in the exampleabove. The state sequene, in turn, is used as though it were the atual state transition



55sequene through whih the experiene sequene, E, was generated. We then ompute ou-pation and transition probabilities, ( and � values, respetively), with the  values being 0or 1, due to the deterministi nature of the lusters (it might be bene�ial to use stohastilusters, using an algorithm suh as Autolass [CKS+90℄ as an alternative to k-means).The A, B, and R matries are all estimated from  and � as desribed in Setion 4.2.2.Finally, an ad ho proess is used to adjust R to satisfy the additivity onstraint. Themain drawbak of this algorithm is that in the presene of umulative rotational error (tobe disussed in Chapter 8), the odometri loation assignment within a global oordinatesystem an be highly inaurate, resulting in lustering together unrelated state positionsand in separation of positions that are physially lose together.6.2 Tag-Based InitializationWe have developed an alternative initialization algorithm whih assigns states to the reordedobservations, based diretly on the reorded relations between states { rather than on statesloation within a global oordinate system. This algorithm is muh more robust to hangesin the oordinate system and an aommodate rotational errors. For the sake of larity,the desription given here still assumes that the relation between states is reorded withrespet to a global oordinate system. In Chapter 8 we show how this assumption is relaxed.Given a sequene of observations and odometri readings E, we begin by lustering theodometri readings into bukets. The number of bukets is bounded from above by thepossible number of distint state transitions that are aounted for in the sequene, whihis min(N2; T � 1), where T is the length of the observation sequene (hene ontainingT �1 odometri reords of state transitions). The idea in the buketing proess is that eahbuket will ontain all the odometri readings that are lose to eah other along all threedimension.To ahieve this, we start by �xing a small standard deviation value (again, a predeter-mined onstant), along the x, y, and � dimensions. Denote these standard deviation values�x; �y; �� respetively, where typially �x = �y . The proess is initialized by assigning the�rst odometri reading to buket 0 and setting the mean of this buket to be the value ofthis reading. The rest of the proess onsists of examining the next odometri reading. If itis within 1:5 standard deviations along eah of the three dimensions from the mean of someexisting non-empty buket, add it to the buket and update the buket mean aordingly.If not, assign it to an empty buket and set the mean of this buket to be this reading. Note
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< -2003, 7, 87 >Figure 6.1: The buket assignment of the example sequene.that the number of bukets is suÆient to aount for all state transitions or elements of thesequene (the largest of the two). Therefore, under the assumption that the relations areindeed normally distributed, with a reasonable hoie of standard deviations for populatingthe bukets, there is always a buket found for plaing eah of the readings.This algorithm guarantees that all the odometri readings in eah buket are within arange of 1:5h�x; �y; ��i from the buket mean. Sine the atual sample standard deviationof eah buket is guaranteed to be no larger than the predetermined standard deviationused during the buketing proess, intuitively eah buket is tightly onentrated aroundits mean. Obviously, this does not guarantee that all readings that are within this predeter-mined range from eah other are indeed plaed in the same buket (although this is whatwe ideally hope to ahieve when applying the algorithm.) We note that other lusteringalgorithms ould be used at the buketing stage. (See, for instane, Duda and Hart's bookfor a variety of suh algorithms.)Sine here eah buket holds only readings lose to its mean, it is reasonable to use astandard deviation even for the heading information and treat it in this ontext as thoughit were normal, as long as we keep the representation onsistent.Example 6.2 Suppose we want to learn a 4-state model from a sequene whose odometriomponent is as given in the previous example:h2 94 92i; h1994 0 88i; h3 �93 86i; h�19991 94i; h�4 102 91i; h1998 �5 90i; h�2 �106 91i; h�2003 7 87i :As a �rst stage we plae these readings into bukets. Suppose the standard deviationonstant is 20. Then the plaement into bukets is as shown in Figure 6.1. The mean valueassoiated with eah buket is shown as well.One buketing is done, eah odometri reading has a buket to whih it has been assigned,



57and the next phase of the algorithm starts. It onsists of state-tagging eah odometrireading. Eah odometri reading, rt, is assigned a pair of states, si; sj , orresponding tothe origin state (from whih the transition took plae) and the destination state (to whihthe transition led), respetively. In onjuntion with this proess the mean entries, �ij , ofthe relation matrix R are populated.Example 6.3 Returning to the sequene used in example 6.2, the proess is demonstratedin Figure 6.2. We assume that the reording starts at state 0, and that the odometri hange
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58This is shown on part A of the �gure.Sine the �rst element in the sequene, h2 94 92i is more than two standard deviationsaway from the mean �[0℄[0℄ and no other entry in the relation row of state 0 is populated wepik 1 as the next state and populate the mean �[0℄[1℄ to be the same as the mean of buket 1,to whih h2 94 92i belongs. To maintain geometrial onsisteny the mean �[1℄[0℄ is set to be��[0℄[1℄, as shown in part B of the �gure. We now have 2 non-diagonal entries populated inthe matrix and the state sequene is h0; 1i. The entry [0℄[1℄ in the matrix beomes assoiatedwith buket 1, and this information is kept for helping with tagging future odometri readingswhih were assigned the same buket.The next odometri reading, h1994 0 88i, is also several standard deviations from anypopulated mean in row 1 (where 1 is the urrent believed state) of the relation matrix. Hene,we pik a new state 2, and set the mean �[1℄[2℄ to be �2 | the mean of the buket 2 |to whih the odometri reading belongs. For symmetry preservation, �[2℄[1℄ is set to be��[1℄[2℄. We reord that entry [1℄[2℄ in the matrix beomes assoiated with buket 2. Forpreserving additivity we also set �[0℄[2℄ to be the sum of �[0℄[1℄ and �[1℄[2℄. �[2℄[0℄ is setto ��[0℄[2℄. Similarly, �[2℄[3℄ is updated to be the mean of buket 3, ausing the setting of�[3℄[2℄, �[1℄[3℄, �[0℄[3℄, �[3℄[1℄, and �[3℄[0℄. Buket 3 is assoiated with �[2℄[3℄.At this stage the odometri table is fully populated, as shown in part D of Figure 6.2.Sine the mean alulation is based on aumulation, the standard deviations grow as well,as the square root of the aumulated varianes, although this is not shown in the �gure.The state sequene at this point is: h0; 1; 2; 3i. The next reading, h�1999 �1 94i, iswithin one standard deviation from �[3℄[0℄ and therefore the next state is 0. Entry [3℄[0℄is assoiated with buket 4, (the buket to whih the reading was assigned), and the statesequene beomes: h0; 1; 2; 3; 0i.The next reading, being from buket 1 is assoiated with the relation from state 0 thatis tagged by buket 1, namely, state 1. By repeating this for the last two readings the �nalstate transition sequene beomes h0; 1; 2; 3; 0; 1; 2; 3; 0i.Figure 6.3 provides a pseudo-ode version of this algorithm. The input to the algorithm isthe odometri reading sequene, Eo, of length T�1, together with the buketing information.For 0 � i � T � 1 , Bukets[i℄ ontains the number of the buket to whih the ith odometrireading in the sequene is assigned. The algorithm produes a sequene S of the statesbelieved to have been traversed when the data sequene E was produed, as well as aninitial estimate for the mean of eah entry in the relation matrix R.
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Populate-and-Tag(E0; T; Bukets)1 for i 0 to n2 do3 �[i℄[i℄ 04 Dev[i℄[i℄ �5 for j  0 to n; j 6= i6 do7 �[i℄[j℄ EMPTY89 S[0℄ 010 Current tag  011 for i 0 to T � 112 do Find j s.t. �[ Current tag ℄[j℄:Buket = Bukets[i℄13 if not found14 then Find j s.t. �[ Current tag ℄[j℄ is within 1.5 standard deviations from Eo[i℄:15 if not found16 then Find j s.t. �[ Current tag ℄[j℄ is still unde�ned17 if found18 then �[ Current tag ℄[j℄ Bukets[i℄:mean:19 �[ Current tag ℄[j℄:Buket Bukets[i℄20 Propagate update to maintain symmetry and additivity.2122 else Find j s.t. j 6= Current tag23 and �[ Current tag ℄[j℄ is losest to Eo[i℄:242526 Current tag = j:27 S[i + 1℄ = j:2829 return S Figure 6.3: The state tagging algorithm.



60 It is possible that by the end of the tagging algorithm, some rows or olumns of therelation matrix are still unpopulated. This happens when there is too little data to learnfrom or when the number of states provided to the algorithm is too large with respet to theatual model. In suh ases we an either \trim" the model, using the number of populatedrows as the number of states, or pik random odometri readings to populate the rest ofthe table, improving these estimates later. Note that the �rst approah suggests a methodfor learning the number of states in the model when this is not given, starting from a grossover-estimate of the number, and trunating it to the number of populated rows in theodometri table after initialization is performed.One the state-transition sequene is obtained, the rest of the algorithm is the sameas before, deriving state-transition ounts from the state-transition sequene, assigning theobservations to the states under the assumption that the state sequene is orret, andobtaining the state-transition and observation statistis.The omplexity of this algorithm is worst-ase bounded by the omplexity of a singleBaum-Welh iteration, namely TN2. To roughly estimate its run time, we observe thatthe algorithm has to �nd for eah of the T � 1 odometri readings in the sequene Eo, anassignment of a destination state from within N possible assignment and update the rest ofthe odometri relationships that are a�eted by this assignment. If with eah assignmentwe would have had to update N2 entries, we would have had a omplexity of TN2. Notethat the relation matrix an only be fully populated one, hene altogether the omplexityfor the tagging stage is TN +N2.The preliminary buketing stage requires an assignment of a buket to eah of theT � 1 odometri readings. We take as the maximal number of bukets min(N2; T � 1),that is, at most every reading has its own buket. In this ase, however, no two readingsreet the same state-transition. The maximal number of possible distint state transitionsover N states is N2. Therefore, in any ase, the omplexity of buketing is bounded bymin(TN2; T 2).Thus, the initialization phase does not inur muh overhead on the algorithm, and isequivalent to performing a single additional iteration of the Baum-Welh proedure. Judgingby the improvement in the results due to the initialization, it is well justi�ed.



Chapter 7Experiments within a GlobalFrameworkThe goal of the work desribed so far is to use odometry to improve the learning of topolog-ial models, while using fewer iterations and less data. We tested our algorithm in a simplerobot-navigation world. Our experiments onsist of running the algorithm both on dataobtained from a simulated model and on data gathered by our mobile robot, Ramona. Theamount of data gathered by Ramona is used here as a proof of onept but is not suÆientfor statistial analysis. For the latter, we use data obtained from the simulated model.Signi�ant assumptions underlying all the experiments desribed in this hapter are thatthe orridors in the environment are all perpendiular to eah other, and that the agent |both in the real robot ase and in the simulated ase | is aware of this1. Hene, after eahturn the agent assumes that its new heading is almost perpendiular to its previous heading.This assumption is used when the agent is gathering its data sequene, E. The assumptionis satis�ed in most oÆe buildings, but is violated in a lot of other environments. We relaxthe perpendiularity assumption starting in Chapter 8.7.1 Robot DomainThe robot used in our experiments, Ramona, is a modi�ed RWI B21 robot. It has aylindrial synhro-drive base, 24 ultrasoni sensors and 24 infrared sensors, situated evenlyaround its irumferene. The infrared sensors are used mostly for short-range obstale1Thanks to Sebastian Thrun for expliitly expressing this assumption61



62avoidane. The ultrasoni sensors are longer ranged, and are used for obtaining (noisy)observations of the environment. In the experiments desribed here, the robot follows apresribed path through the orridors in the oÆe environment of our department.Low-level software2 provides a level of abstration that allows the robot to move throughhallways from intersetion to intersetion and to turn ninety degrees to the left or right.The software uses sonar data to distinguish doors, openings, and intersetions along thepath, and to stop the robot's urrent ation whenever suh a landmark is deteted. Eahstop | either due to the natural termination of an ation or due to a landmark detetion| is onsidered by the robot to be a \state".At eah stop, ultrasoni data interpretation allows the robot to pereive, in eah of thethree ardinal diretions, (front, left and right), whether there is an open spae, a door, awall, or something unknown.The robot also has enoders on its wheels that allow it to estimate its pose (positionand orientation) with respet to its pose at the previous intersetion. After reording boththe sonar-based observations and the odometri information, the robot goes on to exeutethe following presribed ation. The next ation ommand is issued manually by a humanbeing. Of ourse, both the ation and pereption routines are subjet to error. The pathRamona followed onsists of 4 onneted orridors in our building, whih inlude 17 states,as shown in Figure 7.1.In our simulation, we manually generated an hmm representing a presribed path of therobot through the omplete oÆe environment of our department, onsisting of 44 states,and the assoiated transition, observation, and odometri distributions. The transitionprobabilities reet ation failure rate of about 5� 10%. That is, the probability of movingfrom the urrent state to the orret next state in the environment, under the predeterminedation is between 0:85 and 0:95. The probability of self transition is typially between 0:05and 0:15. Some small probability (typially smaller than 0:02) is sometimes assigned toother transitions. Our experiene with the real robot proves that this is a reasonabletransition model, sine typially the robot moves to the next state orretly, and the onlyerror that ours with some signi�ant frequeny is when it does not move at all, dueto sonar interpretation indiating a barrier when there is atually none. One the ationommand is repeated the robot usually performs the ation orretly, moving to the expetednext state. The observation distribution typially assign probabilities of 0:85� 0:95 to thetrue observation that should be pereived by the robot at eah state, and probabilities of2The low-level software was written by James Kurien.
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65represents the initial state. Solid arrows represent the most likely non-self transitions be-tween the states. Dashed arrows represent the other transitions when their probability is0:2 or higher. Typially, due to the predetermined path we have taken, the onnetivity ofthe modeled environment is low, and therefore the transitions represented by dashed arrowsare almost as likely as the most likely ones. Note that the length of the arrows, within eahplot, is signi�ant and represents the length of the orridors, drawn to sale.It is important to note that the �gures do not give the omplete piture of the models.First, they lak observation distribution and orientation information. Seond, in the �gureswe an only position eah state one, and geometrial inonsistenies are not visible. Forinstane, state 16 in Figure 7.4 is plaed aording to its geometri relationship to state5, whih plaes it to the left of the initial state, 9. However, its geometri relationshipwith respet to state 9 is simply perpendiular, that is, aording to our odometri modelone merely needs to turn right to reah from state 16 to state 9, whih agrees well withthe true model. We also omitted states 18 and 41 in �gure 7.6 sine their relation to therest of the model was not learned orretly; they are unreahable from all other states andhave a uniform transition distribution into all the other states, and therefore have no wellde�ned position in the model. We stress the fat that the �gures serve more as a visualaid than as a plot of the true model. We are looking for a good topologial model ratherthan a geometrial model. The �gures provide a geometrial embedding of the topologialmodel. However, even when the geometry, as desribed by the relation matrix, is di�erent,the topology, as desribed by the transition and observation matries, an still be valid.Traditionally, in simulation experiments, the learned model is quantitatively omparedto the atual model that generated the data. Eah of the models indues a probabilitydistribution on strings of observations; the asymmetri Kullbak-Leibler divergene [KL51℄between the two distributions is a measure of how good the learned model is with respetto the true model. Given a true probability distribution P = fp1; :::; png and a learned oneQ = fq1; :::; qng, the kl divergene of Q with respet to P is:D(P jjQ) def= nXi=1 pi log2 piqi :We report our results in terms of a sampled version of the kl divergene, as desribedby Juang and Rabiner [JR85℄. It is based on generating sequenes of suÆient length (5sequenes of 1000 observations in our ase) aording to the distribution indued by thetrue model, and omparing their log-likelihood aording to the learned model with thetrue model log-likelihood. The total di�erene in log-likelihood is then divided by the totalnumber of observations, aumulated over all the sequenes, giving a number that roughly
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Figure 7.7:A data sequene gathered by Ra-mona. Figure 7.8:A data sequene generated by oursimulator.measures the di�erene in log-likelihood per observation. Formally stated, let M1 be thetrue model and M2 a learned one. By generating K sequenes S1; : : : ; SK, eah of lengthT , from the true model, M1, the sampled kl-divergene, Ds is:Ds(M1jjM2) = KXi=1[log(Pr(SijM1))� log(Pr(SijM2))℄KT :We ignore the odometri information when applying the kl measure, thus allowing om-parison between purely topologial models that are learned with and without odometry.7.3 ResultsWe let Ramona go around the path depited in Figure 7.1 and ollet a sequene of about300 observations. Figure 7.7 plots the sequene of metri oordinates, projeted on hx; yi,obtained by aumulating onseutive odometri readings (as desribed in Setion 6.1). Weapplied the learning algorithm to the data 30 times. 10 of these runs were started froma k-means-based initial model, 10 started from a tag-based initial model, and 10 startedfrom a random initial model. In addition we also ran the standard Baum-Welh algorithm,ignoring the odometri information, 10 times. (Note that there is non-determinism evenwhen using biased initial models, sine the k-means lustering starts from random seeds,and low random noise is added to the data in all algorithms to avoid numerial instabilities,thus multiple runs give multiple results).
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68 For obtaining statistially suÆient information, we generated 5 data sequenes, eah oflength 1000, using Monte Carlo sampling from the hidden Markov model whose projetionis shown in Figure 7.2. One of these sequenes is depited in Figure 7.8. The �guredemonstrates that the noise model used in the simulation is indeed ompatible with thenoise pattern assoiated with real robot data.We used four di�erent settings of the learning algorithm:� starting from a biased, tag-based, initial model and using odometri information;� starting from a biased, k-means-based, initial model and using odometri information;� starting from an initial model piked uniformly at random, while using odometriinformation;� starting from a random initial model without using odometri information (standardBaum-Welh).For eah sequene and eah of the four algorithmi settings we ran the algorithm 10 times.In all the experiments, N was set to be 44, whih is the \orret" number of states; forgeneralization, it will be neessary to use ross-validation or regularization methods to seletmodel omplexity. Setion 6.2 also suggests one possible heuristi for obtaining an estimateof the number of states.Figures 7.5 and 7.6 show essential versions of a learned model (obtained from the se-quene of Figure 7.8) for a representative run using eah of the biased initialization methods.Due to the perpendiularity assumption applied when olleting the data, the K-means al-gorithm performs well enough in this ontext. We note that some of the states whoseloations overlap in the true model (e.g. 12,13) beome separated in the learned model(e.g. states 16,17,28 at the top left orner of Figure 7.5). This is even more notieable forstates 17,18 in the original model whih orrespond to states 21,31,35, and 20 in Figure 7.5.Similarly, separated states (e.g. 34,35,36,37,38,39,40) that are geometrially lose togetherin the true model are lustered together and overlap in the learned model (e.g. 10,12,43 ofFigure 7.5), due to noise in the odometry readings and observations, ombined with thelimitations of the initialization tehniques. However, there is an obvious orrespondenebetween groups of states in the learned and true models, and most of the transitions (aswell as the observations, whih are not shown) were learned orretly.Table 7.1 lists the kl divergene between the true and learned model, as well as thenumber of runs until onvergene was reahed, for eah of the 5 sequenes under eah



69Seq. Tag-based k-means Random No Odo# kl Iter.# kl Iter. # kl Iter. # kl Iter. #1 1.027 23.7 1.023 30.0 0.954 23.4 6.351 124.12 1.006 41.3 0.994 31.4 0.953 25.8 4.863 126.03 0.984 16.9 1.029 21.9 1.035 26.6 5.927 113.04 1.124 15.8 1.021 25.9 1.017 23.6 6.261 107.45 1.029 8.8 1.142 27.2 1.035 32.4 4.802 122.9Table 7.1: Average results of four learning settings with �ve training sequenes.of the 4 learning settings, averaged over 10 runs per sequene. We stress that eah kldivergene measure is alulated based on new data sequenes that are generated from thetrue model, as desribed in Setion 7.2. The 5 sequenes from whih the models were learneddo not partiipate in the testing proess. From the table it is lear that the kl divergenewith respet to the true model for models learned using odometry, starting from either abiased or a random initial model, is about 5 times smaller than for models learned withoutodometry data. The standard deviation around the KL-divergene means was about 1.5 forthe no-odometry setting and about 0.1 (often lower) for the odometri settings. To hekthe signi�ane of our results we used the simple two-sample t-test. The models learnedusing odometri information have statistially signi�antly (p � 0:9995) lower average kldivergene than the others.The models learned using random initialization seem slightly better in terms of the klmeasure than the ones learned with biased initialization and this di�erene is statistiallysigni�ant. A lose look at the obtained models reveals that the models based on biasedinitialization are more peaked (that is, have more probabilities very lose to 0 and to 1)than the ones based on random initialization3 . Sine the true model is slightly less peakedthan the ones learned using biased initialization, it oasionally generates, when we exeutethe kl routine, sequenes that are quite unlikely aording to its own distribution andhighly unlikely aording to the learned model distribution. This results in a larger kl-divergene for the models learned from biased initialization with respet to the true model.To avoid this di�erene in peakedness it might be desirable, during the learning stage, touse the Bayesian approah, biasing the learning proess towards models that do not haveas sharp a distribution over transitions and observations. This will ensure that the modelswould aommodate even the least likely events in the true environment. It is also possibleto post-proess learned models, adding a �xed small onstant to near-0 probabilities and3The relative atness of odometri models learned from a random starting point was disussed in Chap-ter 6.



70subtrating a small onstant from near-1 probabilities.The number of iterations required for onvergene when learning using odometri infor-mation is roughly 1=4 of that required when ignoring suh information. Again, the t-testveri�es the signi�ane (p > 0:9995) of this result. The standard deviation around themean iteration number is about 10 for models learned from biased initial points (lower thanthat when the number of iterations is low and higher than that when the number of itera-tions is high). In the ase of random initialization the standard deviation is also typiallyaround 10. When no odometri information is used the standard deviation is about 30. Thenumber of iterations is statistially signi�antly lower (p > 0:95) when using the tag-basedinitialization than when using any other initialization strategy.It is important to point out that the number of iterations, although muh lower, doesnot automatially imply that the algorithm works faster or runs in less time. The majorbottlenek is the fat that we need to alulate within the forward-bakward alulations,as desribed in Setion 4.2.1, the values of the normal and the von-Mises densities. Theserequire the alulation of exponent terms rather than simple multipliations, slowing downthe runs onsiderably, under the urrent na��ve implementation. However, we an solve thisby augmenting the program with look-up tables for obtaining the relevant values ratherthan alulating them. In addition, we an take advantage of the symmetry in the relationstable to ut down on the amount of alulation required. It is also possible to use the fatthat many odometri relations remain unhanged (partiularly in the later iterations of thealgorithm) from one iteration to the next, and therefore values an be ahed and sharedbetween iterations rather than be realulated at eah iteration.The initial lustering strongly biases the outome of learning; it is important to un-derstand whether this bias is useful. When the entire model is initialized at random, theresulting models are usually lose, in terms of the kl-divergene, to the true model. This isdue to two fators; �rst, by being typially atter than the other models, they give reason-able likelihood to any data sequene, and seond, by starting from an odometri model thatis typially bad with respet to the data, the algorithm ends up not learning muh of thegeometri setting of the environment. Therefore it an learn topologies that may aountfor the probabilisti distribution of the data but do not agree with the true topology. Thisis demonstrated in more detail in Setion 11.3.When starting from a tag-based initial model, the number of iterations is typiallylower than when using any other setting. The models obtained when starting either from a



71Seq. Tag-based k-means Random No Odolength Mean Std. Mean Std. Mean Std. Mean Std.KL Dev. KL Dev. KL Dev. KL Dev.1000 0.984 0.049 1.029 0.111 1.035 0.063 5.927 1.956900 1.173 0.351 1.176 0.162 1.027 0.077 7.852 1.446800 1.108 0.094 1.220 0.102 1.068 0.045 9.624 1.755700 1.185 0.160 1.329 0.111 1.116 0.104 10.504 2.774600 1.346 0.249 2.575 1.922 1.250 0.237 14.576 3.498500 1.205 0.066 2.049 0.717 1.270 0.137 19.649 4.975400 1.279 0.050 2.558 1.827 1.285 0.214 26.341 4.357300 1.737 0.428 2.447 0.369 1.599 0.508 33.252 4.444200 14.047 11.635 2.781 0.406 3.946 2.704 52.780 4.147100 63.438 1.482 20.606 10.807 12.770 11.987 78.982 6.394Table 7.2: Average results of three learning settings with 10 inrementally longer se-quenes.k-means based or from a tag-based initialization are about equivalent in quality, both topo-logially and geometrially. However, sine the tag-based algorithm is almost deterministithe results obtained by using it are more onsistent, and are less prone to hange due tovarying initial onditions. Typially, when the initialization is good, most of the work is al-ready done and the em algorithm quikly �lls in the details. However, if the initial k-meanslustering is bad, it is often lose to a poor loal maximum and the algorithm is unable toadjust it well. It may be best to run the algorithm multiple times, taking the model withthe highest likelihood as the �nal result.To examine the inuene of the amount of data on the quality of the learned models,we took one of the 5 sequenes (Seq. #3) and used its pre�xes of length 100 to 1000 (theomplete sequene), in inrements of 100, as individual sequenes. We ran eah of the fouralgorithmi settings over eah of the 10 pre�x sequenes, 10 times repeatedly. We then usedthe kl-divergene as desribed above to evaluate eah of the resulting models with respetto the true model. For eah pre�x length we averaged the kl-divergene over the 10 runs.Table 7.2 summarizes the results of this experiment. It lists the mean kl-divergeneover the 10 runs for eah of the pre�xes, as well as the standard deviation around this mean.The plot in Figure 7.11 depits the kl-divergene as a funtion of the sequene length foreah of the three settings. Both the table and the plot demonstrate that, in terms of thekl-divergene, our algorithm, whih uses odometri information, is robust in the fae ofdata redution. In ontrast, learning without the use of odometry is muh more sensitiveto redution in the amount of data.Again, we applied the two-sample t-test to verify the statistial signi�ane of these
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NoOdoFigure 7.11: Average kl-divergene as a funtion of the sequene length.results. For example, the kl-divergene being greater for models learned from a sequeneof length 800 than from a sequene of length 1000, without the use of odometry, is highlystatistially signi�ant (p > 0:999). In ontrast, the kl-divergene is usually not highlystatistially signi�antly greater when the odometry is used, for either biased or randommodels. The kl-divergene of the learned biased model utuates somewhat sine shortersequenes tend to have less aumulated error on their readings, thus lustering may performbetter, resulting in better learned models despite the fewer data points available (see forinstane the hange from 600 to 500 observations).We note that the data sequene is twie as \wide" when odometry is used than whenit is not; that is, there is more information in eah element of the sequene when odometrydata is reorded. However, the e�ort of reording this additional odometri information isnegligible, and is well rewarded by the fat that fewer observations and less exploration arerequired for obtaining a data sequene suÆient for adequate learning.



Chapter 8State-Relative Coordinate SystemsThroughout the disussion so far, we have assumed that there is a single global oordinatesystem within whih the robot operates. Moreover, we assumed that the robot olletsits data within a perpendiular orridor framework and that it is taking advantage of thisperpendiularity and the single framework while reording odometri information. Thisassumption an be troublesome in pratie. This hapter disusses the potential prob-lems, and presents our way for relaxing the assumption and addressing the problems. Ademonstration of the e�etiveness of our solution is presented in Chapter 9.8.1 MotivationWe tend to think about an environment as onsisting of landmarks �xed in a global oor-dinate system and orridors or transitions onneting these landmarks. However, this viewof the environment may be problemati when robots are involved.Coneptually, a robot has two levels in whih it operates; the abstrat level, in whih itenters itself through orridors, follows walls and avoids obstales, and the physial level inwhih motors turn the wheels as the robot moves. In the physial level many inauraiesan manifest themselves: wheels an be unaligned with eah other resulting in a drift to theright or to the left, one motor an be slightly faster than another resulting in similar drifts,an obstale under one of the wheels an ause the robot to rotate around itself slightly, oruneven oors may ause the robot to slip in a ertain diretion. In addition, the measuringinstrumentation for odometri information may not be aurate in and of itself. At theabstrat level, orretive ations are onstantly exeuted to overome the physial drift anddrag. For example, if the left wheel is misaligned and drags the robot leftwards, a orretive73
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- actual position

ε−εFigure 8.1: A robot moving along the solid arrow, while orreting for drift in the diretionof the dashed arrow. The dotted arrow marks its reorded hange in position.ation of moving to the right is onstantly taken in the higher level to keep the robot awayfrom the left wall and entered in the orridor.The phenomena desribed above have a signi�ant e�et on the odometry reorded bythe robot, if it is interpreted with respet to one global framework. For example, onsiderthe robot depited in Figure 8.1. It drifts to the left ��Æ when moving from one state to thenext, and orrets for it by moving �Æ to the right in order to maintain itself entered in theorridor. Let us assume that states are 5 meters apart along the enter of the orridor, andthat the enter of the orridor is aligned with the y axis of the global oordinate system.The robot steps bak and forth in the orridor from one state to the next. Whenever therobot reahes a state, its odometry reading hanges by hx; y; �i along the hX; Y; heading idimensions, respetively. As the robot proeeds, the deviation with respet to the x axisbeomes more and more severe. Thus, after going through several transitions, the odometrihanges reorded between every pair of states, if taken with respet to a global oordinatesystem, beome larger and larger (espeially along the X dimension). Similar problems ofinonsistent odometri hanges reorded between pairs of states an arise along any of theodometri dimensions. It is espeially severe when suh inonsistenies arise with respet tothe heading, sine this an lead to mistakenly swithing movement along the X and the Yaxes, as well as onfusion between forwards and bakwards movement (when the deviationin the heading is around 90Æ or 180Æ respetively). Figure 8.2 demonstrates Ramona's viewof a path through the perfetly perpendiular department orridors, depited in Figure 7.1,based on its odometri reording, with respet to a global oordinate system.A solution to suh a situation is to model the odometri relations of moving from statesi to state sj using a hanging oordinate system whih is relative to state si, as opposed toa global oordinate system anhored at the initial state. This way, the learned relationship
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Figure 8.2: A path in a perpendiular environment plotted based on odometri readingstaken by Ramona.between eah pair of states, hsi; sji, is reliable despite the fat that it is based on multi-ple transitions reorded from si to sj . Within the global oordinate system the relationsreorded may vary greatly between one transition from si to the next. We formalize thisidea and provide the update rules for the odometri information based on this approah inthe rest of this hapter.8.2 Learning Odometri Relations with Relative CoordinatesAs before, our experiene sequene, E, onsists of T pairs hrt; Vti of reorded odometri rela-tions and observation vetors. The odometri relations are reorded as before, with respetto the robot's global oordinate system. However, when learning the relation matrix fromthe odometri readings, we interpret the entry Ri;j in the relation matrix R as enodingthe information with respet to a oordinate system whose origin is anhored at the statesi; the y axis is aligned with the robot's urrent heading and the x axis is perpendiular toit. This is depited in �gure 8.3. The robot is in state si faing in the diretion pointedto by the y axis, and its relationship to the state sj is desribed in terms of the oordinatesystem shown in the �gure.To support this interpretation of the relation matrix we need to revisit the formulationof the geometrial-onsisteny onstraints stated in Setion 3.2, as well as the initializationproedure and the update formulae used when learning the model.
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xFigure 8.3: The robot is in state Si faing in the diretion of the y axis; the relationbetween Si and Sj is measured aording to Si's oordinate framework.8.2.1 Geometrial Consisteny in a Relative FrameworkThe onsisteny onstraints have to reet the oordinate system with respet to whih theodometry is represented. Note that the hange in heading from one state to the next isindependent of any spei� oordinate system. Hene, only the onstraints over the x andy omponents of the odometri relation need to be rede�ned.Given a pair of states a and b, we denote by �hx;yi(a; b) the vetor h�(Ra;b[x℄); �(Ra;b[y℄)i.Let us de�ne Tab to be the transformation that maps an hxa; yai pair represented withrespet to the oordinate system of state a, to the same pair represented with respet tothe oordinate system of state b, hxb; ybi (note that Tab = T �1ba , and ��(a; b) = ���(b; a)).More expliitly, as before, let ��(a; b) be the mean hange in heading from state a tostate b. Then the transformation Tab is de�ned as follows:* xbyb + = Tab* xaya + = * xa os(��(a; b))� ya sin(��(a; b))xa sin(��(a; b)) + ya os(��(a; b)) + :Tab an also be expressed using the matrix notation:Tab = 24 os(��(a; b)) � sin(��(a; b))sin(��(a; b)) os(��(a; b)) 35 :



77We an now rede�ne the onsisteny onstraints given in Setion 3.2, for the x and yomponents of the odometri relation:� �hx;yi(a; a) = h0; 0i;� �hx;yi(a; b) = �Tba[�hx;yi(b; a)℄ (anti-symmetry);� �hx;yi(a; ) = �hx;yi(a; b) + Tba[�hx;yi(b; )℄ (additivity) :8.2.2 InitializationReall that the tag-based initialization algorithm, desribed in Setion 6.2, maintains ge-ometrial onsisteny while populating the relation matrix. When the matrix representsrelations in a relative oordinate system, the above onstraints need to be taken into a-ount when maintaining the onsisteny of the data. Expliitly, when �ij is set to hx; y; �i,�ji is set to h�(x os(�)� y sin(�)); �(x sin(�) + y os(�)); ��i :Similarly, if �ik is already set to hx1; y1; �1i and �kj is being set to hx2; y2; �2i then �ijneeds to be set tohx1 + (x2 os(�1) + y2 sin(�1)); y1 � (x2 sin(�1)� y2 os(�1)); �1 + �2ii :8.2.3 ReestimationThe reestimation formulae for all the parameters exept for the x and y omponents of therelation matrix R, remain as before. However, the reestimation formulae for the x and yparameters are hanged to reet the relative oordinate systems used. We follow a similarproess to the one used when deriving the reestimation formulae in Setion 4.3.3. Again,we are looking to improve expression 4.21 whih we repeat here for the sake of larity:Q(R;R) = N�1Xi=0 DXm=1Qmii (R;R) + N�1Xi=0 N�1Xj=(i+1) DXm=1[Qmij (R;R) + Qmji(R;R)℄ ;only this time the symmetry onstraints are:�xji = � os(��ij)�xij + sin(��ij)�yij ; (8.1)�yji = � sin(��ij)�xij � os(��ij)�yij : (8.2)By substituting these expressions for �xji and �yji, taking the derivatives of equation 4.21with respet to �xij and �yij , equating them to 0, and using the \lag-behind" poliy with



78respet to the update of standard deviations, as desribed in Setion 4.2.2, we obtain thefollowing pair of equations:av1 � u os(�)v2 � w sin(�)v3� �xi;j � lv1 + k(os(�))2v2 + k(sin(�))2v3 �+ �yi;jk os(�) sin(�)� 1v2 � 1v3� = 0 ; (8.3)bv4 + u sin(�)v2 � w os(�)v3+ �xi;jk os(�) sin(�)� 1v2 � 1v3�� �yi;j � lv4 + k(sin(�))2v2 + k(os(�))2v3 � = 0 ; (8.4)wherea =Xt �tijrxt ; b =Xt �tijryt ; u =Xt �tjirxt ; w =Xt �tjiryt ; l =Xt �tij ; k =Xt �tji; v1 = (�xij)2;v2 = (�xji)2; v3 = (�yji)2; v4 = (�yij)2; and � = ��ij :The expressions for �xij and �yij that solve this set of equations onstitute the updateformulae in the x and y dimensions. As before, these update formulae are guaranteed toimprove Q, and are therefore an instane of the generalized em algorithm.Note that in earlier work [SK98℄ we used an update heuristi of assuming that allvarianes are the same when updating the means, obtaining the following reestimationformulae:�xi;j = T�2Xt=0 (�t(i; j)rt[x℄)� T�2Xt=0 (�t(j; i) hos(��i;j); sin(��i;j)i 24 rt[x℄rt[y℄ 35T�2Xt=0 [�t(i; j) + �t(j; i)℄ ;�yi;j = T�2Xt=0 (�t(i; j)rt[y℄)� T�2Xt=0 (�t(j; i) h� sin(��i;j); os(��i;j)i24 rt[x℄rt[y℄ 35T�2Xt=0 [�t(i; j) + �t(j; i)℄ :These reestimation rules are easily obtained from the more general ones by setting v1; v2; v3; v4to all be the same.This hapter has introdued an approah for learning models from data that is orruptedby umulative rotational error. To demonstrate the e�etiveness of this approah we ranexperiments on data that was olleted without applying the perpendiularity assumption,thus indeed su�ers from the phenomena desribed in the beginning of this hapter. Theexperiments and their results are presented in the next hapter.



Chapter 9Experiments Using RelativeCoordinatesSimilar to the experiments presented in Chapter 7, we test our algorithm in a simple robot-navigation world. Again, we use both real robot data and data obtained from the samesimulated model as before, as shown in Figure 9.2, with two distintions:� The data is generated without the perpendiularity assumption. This means that thex and y oordinates are not realigned after eah turn with the global x and y axes,but rather, reorded as is. This is true for both robot data and simulated data.� The algorithm used for learning the model from the data is as desribed in Setion 8.2.9.1 Experimental SettingAs before, we provide qualitative results from applying the algorithm to the data obtainedfrom the robot. For statistially evaluating our results we used the sampled Kullbak-Leiblerdivergene of the distribution indued by the learned model with respet to that indued bythe true model. The sampled sequenes aording to whih the kl-divergene is alulatedare generated and ompared as before, ignoring the odometri data.Figure 9.1 depits the direted path through whih Ramona moved. This is the sametrue environment as the one desribed in Chapter 7. Figure 9.3 shows the projetion of theodometri readings that Ramona reorded along the x and y dimensions, while traversingthis environment. For obtaining statistially suÆient information, we generated 5 datasequenes, eah of length 800, using Monte Carlo sampling from the hidden Markov model79
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16Figure 9.1:True model of the orridors Ra-mona traversed. Arrows represent the pre-sribed path diretion. Figure 9.2:True model of a presribed paththrough the simulated hallway environment.whose projetion is shown in Figure 9.2. One of these sequenes is depited in Figure 9.4.The �gures of both real and simulated data demonstrate that in addition to the noise alongthe x and y measurements, a umulative rotational error is present one the perpendiularityassumption is dropped.We use the same four settings of the learning algorithm as before:� starting from a biased, tag-based, initial model and using odometri information;� starting from a biased, k-means based, initial model and using odometri information;� starting from a random initial model and using odometri information;� starting from a random initial model without using odometri information (standardBaum-Welh).For eah sequene and eah of the four algorithmi settings we ran the algorithm repeatedly10 times. In all the experiments based on simulated data, N was set to be 44, while in theexperiments using real robot data the number of states was set to 17. In both ases thisnumber of states is the \orret" one.



81
-2500 -2000 -1500 -1000 -500 500 1000

500

1000

1500

2000

2500

3000

-1500 -1000 -500 500

-1500

-1000

-500

500

1000

1500

Figure 9.3:A data sequene olleted by Ra-mona in a perpendiular hallway environment. Figure 9.4:A data sequene generated by oursimulator, without perpendiularity assump-tion.9.2 ResultsFigure 9.5 depits a typial model learned from data obtained by the robot, using odometry,starting from a tag-based initial model. The models learned using k-means initializationand uninformed initialization do not typially reet the lear retangular geometry of thetrue environment, and hene are not satisfatory geometrially. Note that the k-meansinitialization, as desribed in Setion 6.1, was expeted not to perform well in the preseneof umulative rotational error.As before, the geometrial plot used in Figure 9.5 prevents us from observing the ge-ometrial inonsistenies in the learned model. For example, State 16, when drawn withrespet to state 15 is at the same x and y oordinates as state 15, but the heading is perpen-diular to it, that is, the robot needs to turn to the right in order to move from state 15 tostate 16. However, if we were to draw state 16 with respet to state 1, it should have beenplaed very lose to where state 0 is, thus orresponding muh better to the retangulargeometry of the true environment. Sine state 1 was drawn with respet to state 0 and state16 with respet to state 15, while laking geometrial onsisteny throughout the model,the geometry is somewhat distorted.We ontrast this model with the one shown in Figure 9.6 whih is the topologial layout ofa model learned without the use of odometri information, from the same data sequene. Itis obvious from the �gure that the harateristi loop topology of the traversed environmentwas not learnt when odometri information was not used.
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Figure 9.7:Learned model of the simulatedenvironment. Initialization is Tag-based. Figure 9.8:Learned model of the simulatedenvironment. Initialization is Tag-based.Seq. Tag-based k-means Random No Odo# kl Iter.# kl Iter. # kl Iter. # kl Iter. #1 1.540 9.90 0.983 19.80 1.110 27.00 6.919 113.302 1.029 15.10 0.984 24.70 1.065 32.60 9.926 113.103 1.301 26.40 1.236 22.70 1.119 27.10 10.030 102.004 1.028 33.50 1.100 36.00 1.020 36.00 9.539 104.205 1.029 28.30 1.107 25.30 1.060 31.90 12.431 112.50Table 9.1: Average results of the four learning settings with �ve training sequenes.odometry. To hek the signi�ane of our results we again applied the two-sample t-test.The models learned using odometri information have statistially signi�antly (p� 0:9995)lower average kl divergene than the others. We an onlude that despite the umulativerotational error in the odometri data, the topologial models learned using it are muhbetter than those learned without any odometri information.We notie that models learned with random initialization and the ones based on k-meanshave a slightly lower kl-divergene than the models whose learning used the tag-basedinitialization. The explanation to this is again the fat that the tag-based initialization,whih is more rigorous than the others, results in more peaked models, typially assigningvery low probabilities to the less likely sequenes of the original model, even when thelearned distributions are similar to the true ones. Thus, the divergene between the learnedand the true model is larger when this initialization is used than when the other methods,whih result in atter models, are used.



84 Seq. Tag-based k-means Random1 1.280 0.854 1.0812 0.876 0.904 1.0253 1.173 1.056 1.0584 0.837 0.968 0.9545 0.880 0.949 0.956Table 9.2: Average results of three learning settings with �ve training sequenes. Distri-butions are attened.To illustrate this point, we applied a simple \attening" proedure to the models, addinga small onstant, (0:001) to all the small probabilities (< 0:0001) and subtrating a propor-tional portion from the larger probabilities. This proedure was applied to models that werelearned using all three initialization proedure, and not just the ones that were learned fromtag-based initialization. We ompared the resulting less peaked models to the true model,and the results are summarized in Table 9.2. The values of the kl-divergene for the attermodels are indeed smaller than those of Table 9.1. The model learned from sequene 1 isstill muh worse when using tag-based initialization, sine the initial model whih is badin this ase, strongly biases the learning algorithm towards a peaked model that is quitedi�erent from the true one. Sequene 3 also seems to be assoiated with worse models whenstarting from tag-based initialization, although the di�erene here is not highly statistiallysigni�ant, due to large standard deviations. For sequenes 2; 4, and 5, one the learnedmodels are attened the kl-divergene of the models learned starting from tag-based ini-tialization is smaller than that of the attened models learned using the other initializationmethod. The di�erenes in these ases are highly statistially signi�ant.The number of iterations required for onvergene when learning using odometri in-formation is roughly 3-5 times smaller than that required when ignoring suh information.Again, the t-test veri�es the signi�ane (p > 0:9995) of this result. The typial standarddeviation around the mean number of iterations is about 10 when odometry is used andabout 35 when odometry is not used. Again, among the methods that use odometri infor-mation, the tag-based initialization method results in the smallest iterations number, whilethe random initialization results in the largest one. This ordering is statistially signi�ant(p > 0:95).To examine the inuene of the amount of data on the quality of the learned models,we took one of the 5 sequenes (Seq. #1) and used its pre�xes of length 100 to 800 (theomplete sequene), in inrements of 100, as individual sequenes. We ran eah of the four



85Seq. Tag-based k-means Random No Odolength Mean Std. Mean Std. Mean Std. Mean Std.KL Dev. KL Dev. KL Dev. KL Dev.800 1.029 0.046 1.107 0.058 1.060 0.105 12.431 2.869700 1.147 0.044 1.102 0.039 1.129 0.080 15.102 3.578600 1.361 0.080 1.276 0.171 1.129 0.142 16.832 2.854500 1.377 0.131 1.267 0.110 1.271 0.118 22.721 4.560400 1.324 0.102 1.216 0.067 1.267 0.085 28.570 4.755300 1.475 0.229 1.930 0.698 2.046 1.024 37.111 6.690200 1.630 0.806 6.493 3.751 3.025 1.776 55.387 3.548100 16.780 8.572 38.722 7.464 11.396 14.796 85.945 4.054Table 9.3: Average results of four learning settings with 8 inrementally longer sequenes.
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NoOdoFigure 9.9: Average kl-divergene as a funtion of the sequene length.algorithmi settings over eah of the 8 pre�x sequenes, 10 times repeatedly. We then usedthe kl-divergene as desribed above to evaluate eah of the resulting models with respetto the true model. For eah pre�x length we averaged the kl-divergene over the 10 runs.Table 9.3 summarizes the results of this experiment. It lists the mean kl-divergeneover the 10 runs for eah of the pre�xes, as well as the standard deviation around this mean.The plot in Figure 9.9 depits the kl-divergene as a funtion of the sequene length foreah of the four settings. Both the table and the plot demonstrate the robustness of thealgorithm in the fae of data redution. In ontrast, learning without the use of odometryis muh more sensitive to redution in the amount of data.The onlusion from these experiments is that using odometri information, even in thepresene of umulative rotational error an be, when treated orretly, highly bene�ial forlearning topologial models. The results also demonstrate the usefulness of the tag-based



86algorithm for reduing the number of iterations required for onvergene, as well as forobtaining good geometrial models when the number of states is small. However, theyalso demonstrate a weekness of the initialization algorithm in handling large models. Thislimitation mostly seem to e�et the quality of the geometrial aspets of the learned model.It would be interesting to see if there is a way to address this limitation diretly, and alsoto �nd ways for learning well small portions of the environment and later ombining theminto a omplete model.



Chapter 10Enforing AdditivityIn Chapter 3, we augmented the standard hmm with an odometri relation matrix, statingthat the relation matrix should satisfy the three geometrial-onsisteny onditions, for allstates a, b, and :� �m(a; a) = 0;� �m(a; b) = ��m(b; a) (anti-symmetry) ; and� �m(a; ) = �m(a; b) + �m(b; ) (additivity) :In Chapter 8 we have adapted the statement of these onditions to aommodate relativeoordinate systems. However, our disussion and experiments up to this point have onlydealt with the �rst two onstraints. Although the results are typially topologially satis-fatory, it is of interest to know if better results an be obtained by ompletely satisfyinggeometrial onsisteny. Intuitively, there are ases in whih enforing additivity is ruialin order to identify that a state that is reahed through two distint routes is still thevery same state. There are several ways we have explored to enfore the full geometrialonsisteny.As a �rst step, we tried to use the iterative proedure desribed in the previous hapters,augmenting eah iteration (whih provides a symmetrial but non-additive model), with aproedure for deriving an additive model from the symmetri one. Our �rst attempt at doingthis was through the use of a spring-system model, solving a set of equilibrium equations.The idea is to model eah pair of states as though they are onneted by a spring, where thelength of the spring orresponds to the mean of the odometri relation between the states (asobtained from the symmetri estimation proedure), and the spring onstant orresponds87



88to the expeted number of times we have transitioned between these two states. By solvingthe equilibrium equations we obtain the state oordinates that minimize the energy in thesystem, and due to the geometrial nature of the model, we obtain a geometrially onsistentmodel.This approah was also taken in other work on geometrial onsisteny in the ontext ofmetri maps. See, for instane, work by Lu and Milios on alignment of laser sans [LM97℄ orby Golfarelli et al. [GMR98℄. However, embedding this approah in the em setting provedunsatisfatory. At the end of eah iteration, solving the equations and hanging the relationestimates based on the obtained solution did not preserve monotoni improvement of thelikelihood funtion, and did not guarantee onvergene to any kind of solution at any stage.The approah we take here is that of diretly enforing the additivity onstraints throughthe reestimation proedure. We start by explaining the approah in the ase of a globaloordinate system for the x and y dimensions only. We then extend the solution to thease of relative oordinate systems. Finally we desribe the way in whih we maintaingeometrial onsisteny over headings, where the diret approah is problemati due to thespeial nature of the von Mises distribution.10.1 Additivity within a Global FrameworkThe main observation underlying our approah is that the additivity onstraint is a resultof the fat that states an be embedded in a geometrial spae. That is, assuming we haveN states, s0; : : : ; sN�1, there are points on some global X and Y and � axes, x0; : : : ; xN�1,y0; : : : ; yN�1, �0; : : : ; �N�1 respetively, suh that eah state si is assoiated with the oor-dinates hxi; yi; �ii.Assuming that the use of one global oordinate system is feasible, the mean odometrirelation from state si to state sj an be expressed as: hxj � xi; yj � yi; �j � �ii. If umula-tive rotational error is to be taken into aount, the global mean relations xj � xi; yj � yineed to be rotated to be expressed with respet to the heading �i at state si, as shown inSetion 10.2.When learning the model, rather than look for N2 odometri relation values along theX , Y and � dimensions that maximize the log-likelihood funtion with respet to odometrirelations while satisfying additivity, we an reparameterize the problem. Spei�ally, we anexpress eah odometri relation as a funtion of two of the N state positions, and optimizean unonstrained log-likelihood funtion with respet to the N state positions. Then we



89an alulate the relations from the state positions, and obtain a geometrially onsistentoptimal estimate.Reall that in Setions 4.3.2 and 4.3.3 we introdued the funtion Q that we need tooptimize (or at least improve) in every iteration of reestimating the parameters, as follows:Q(R;R) = N�1Xi=0 N�1Xj=0 DXm=1Qmij (R;R) ; (10.1)where Qmij (R;R) = T�2Xt=0 �t(i; j)(log(fmi;j(rmt+1))� log(�mij )) ;and m 2 fx; y; �g. Due to the independene assumption and the form of the likelihoodfuntion P (Ej�) we an separate the optimization proedure into optimizing with respetto eah of x, y and � independently. In this setion we disuss the reestimation of the statepositions along the x dimension only. For the y dimension the estimation is idential, while� is treated separately in Setion 10.3. We therefore onern ourselves only with optimizing:Qx(R;R) def= N�1Xi=0 N�1Xj=0 Qxij(R;R)= N�1Xi=0 N�1Xj=0 T�2Xt=0 �t(i; j)(log(e�(rxt+1��xij)2=2(�xij)2)� log(�xij)) :In order to satisfy geometrial onsisteny of the means �xij for all i and j, we need to �nd N1-dimensional points, x0; : : : ; xN�1, suh that �xij = xj � xi. These points should maximize(or improve { for generalized em) the expression:Qx(R;R) = N�1Xi=0 N�1Xj=0 T�2Xt=0 �t(i; j)[log(e�(rxt+1�(xj�xi))2=2(�xij)2)� log(�xij)℄ (10.2)with respet to x0; : : : ; xN�1. As in Setion 4.2.2 we �x the standard deviation terms totheir urrent values, �xij , when reestimating the values xi and xj and then reestimate �xijbased on the reestimated xj , rather than simultaneously reestimating both terms. This isagain an instane of the generalized em algorithm.Sine all we are interested in is �nding the best relationships between xi and xj , we an�x one of the xi's at 0, and only �nd optimal estimates for the other N�1 state positions.Hene, we �x x0 = 0. By taking the derivative of equation 10.2 with respet to eah of theother xj ; (1 � j � N�1) and setting it to 0 we obtain a set of N�1 equations of theform:



90 N�1Xi=0i 6=j xi T�2Xt=0  �t(i; j)(�xij)2 + �t(j; i)(�xji)2 !! � xj 0BB�N�1Xi=0i 6=j T�2Xt=0  �t(i; j)(�xij)2 + �t(j; i)(�xji)2 !1CCA (10.3)+ N�1Xi=0i 6=j T�2Xt=0 rxt  �t(i; j)(�xij)2 � �t(j; i)(�xji)2 ! = 0 :The solution to these equations is an estimate for x1; : : : ; xN�1 that maximizes Qx, where�xij are �xed at their urrent values. To show that this is indeed a maximum and not aminimum, we invoke the following theorems1De�nition 10.1 A matrix A =(aij) is said to be diagonally dominant if jaiij >Pj 6=i jaijj.De�nition 10.2 Given a matrix A =(aij), the matrix M [A℄ =(mij) is a matrix whoseentries are: mii = jaiij; mij = �jaij j; for j 6= i :Theorem 10.1 [Fie86℄ Let A =(aij) be a real square matrix. The following onditionsare equivalent:� A is diagonally dominant.� All the o�-diagonal elements of M [A℄ are non-positive (mij � 0, for j 6= i), and everyreal eigenvalue of M [A℄ is positive.Theorem 10.2 [Apo69℄ Let f be a salar �eld with ontinuous seond-order partial deriva-tives Dij(f) in an n-ball B(a), and let H(a) denote the Hessian matrix at a stationary pointa. Then if all the eigenvalues of H(a) are negative, f has a relative maximum at a.We now examine the Hessian matrix H(Qx), whih is the matrix of the seond derivativesof Qx (after setting x0 to 0). It is an (N�1)� (N�1) matrix of the following form:H(Qx) = 266666666666666664�N�1Xi=0i6=1 T�2Xt=0 (�t(i; 1)(�xi;1)2 + �t(1; i)(�x1;i)2 ); T�2Xt=0 (�t(2; 1)(�x2;1)2 + �t(1; 2)(�x1;2)2 ; : : : ; T�2Xt=0 (�t(N � 1; 1)(�xN�1;1)2 + �t(1;N � 1)(�x1;N�1)2 )T�2Xt=0 (�t(2; 1)(�x2;1)2 + �t(1; 2)(�x1;2)2 ); �N�1Xi=0i6=2 T�2Xt=0 (�t(i; 2)(�xi;2)2 + �t(2; i)(�x2;i)2 ); : : : ; T�2Xt=0 (�t(N � 1; 2)(�xN�1;2)2 + �t(2;N � 1)(�x2;N�1)2 ):::T�2Xt=0 (�t(N � 1; 1)(�xN�1;1)2 + �t(1;N � 1)(�x1;N�1)2 ); : : : ; � N�1Xi=0i6=(N�1)T�2Xt=0 (�t(i;N � 1)(�xi;N�1)2 + �t(N � 1; i)(�xN�1;i)2 )377777777777777775 :1Thanks to Vasiliki Chatzi for pointing in the diretion of diagonally dominant matries.



91Under the assumption that all �t's are stritly positive, we note that H(Qx) is diagonallydominant, sine all its diagonal elements are stritly larger in magnitude than the sum ofthe other elements in their respetive rows. Hene, by theorem 10.1 all the eigenvalues ofthe matrix M [H(Qx)℄ are positive. Note that M [H(Qx)℄ = �H(Qx), and that from thede�nition of eigenvalues, k is an eigenvalue of �H(Qx) if and only if �k is an eigenvalue ofH(Qx). Therefore all the eigenvalues of the Hessian H(Qx) itself are negative and thereforeby theorem 10.2, Qx is indeed maximized when the loations for the states are hosen assolutions to the above equations.An estimate for eah mean relation �xij is simply obtained as�xij = xj � xi ; (10.4)and all the geometrial onstraints are met. The proedure for y is idential. The proessfor reestimating the variane remains as desribed in Setion 4.2.2.10.2 Additivity within a Relative FrameworkIn Setion 8.2 we expressed the geometrial onsisteny onstraints in the ontext of relativeoordinate systems. In this senario, eah state has assoiated with it a oordinate systemwhose origin is at the state, its y axis is aligned with the heading assoiated with the state,and its x axis is perpendiular to it (see, for instane, Figure 8.3).To enfore the geometrial onsisteny onstraints diretly, we observe again that it issuÆient to assoiate points hx0; y0; �0i; : : : ; hxN�1; yN�1; �N�1i with the states s0; : : : ; sN�1,respetively, only that this time the relationships between states along the x and y dimen-sions are interdependent through the hange in headings between the states.We denote by (�xij)0 = x0j � x0i and (�yij)0 = y0j � y0i the mean odometri relation fromstate si to state sj with respet to the global oordinate system whose origin is at state s0,along the global x and y axes, respetively. If state si has mean heading ��0;i with respetto the heading at state s0, then with respet to state si,(�xij)i = os(��0;i)(�xij)0 � sin(��0;i)(�yij)0 = os(��0;i)(x0j � x0i )� sin(��0;i)(y0j � y0i ) :Similarly,(�yij)i = sin(��0;i)(x0j � x0i ) + os(��0;i)(y0j � y0i ) :



92We note that the reorded relations rxt ; ryt are also expressed with respet to the heading attime t. Thus, we are left with the following expression for maximization:Qx;y(R;R) = N�1Xi=0 N�1Xj=0 T�2Xt=0 �t(i; j) �(rxt+1 � �xij)22(�xij)2 � log(�xij) � (ryt+1 � �yij)22(�yij)2 � log(�yij)!= N�1Xi=0 N�1Xj=0 T�2Xt=0 �t(i; j) �(rxt+1 � (os(��0;i)(x0j � x0i )� sin(��0;i)(y0j � y0i )))22(�xij)2� log(�xij) � (ryt+1 � (sin(��0;i)(x0j � x0i ) + os(��0;i)(y0j � y0i )))22(�yij)2 � log(�yij)! : (10.5)Di�erentiating equation 10.5 aording to eah x0j and eah y0j where j 6= 0 , and equatingeah partial derivative to 0, results in a set of 2N�2 linear equations in 2N�2 unknowns.(The derivatives and the equations are given in Appendix B.2.) The solution, obtained aspart of eah em iteration, is a set of oordinates x1; : : : ; xN�1, y1; : : : ; yN�1; for the statess1; : : : ; sN�1 , respetively. As before, s0 is set to be at h0; 0i.The mean state relationships, �xij ; �yij are reovered through the equations:(�xij)i = os(��0;i)(x0j � x0i )� sin(��0;i)(y0j � y0i ) ; (10.6)(�yij)i = sin(��0;i)(x0j � x0i ) + os(��0;i)(y0j � y0i ) : (10.7)Note that the underlying assumption used here is that an estimate for the mean angle ��0;iis already alulated. Obtaining geometrially onsistent heading angles is disussed in thefollowing setion.10.3 Additive Heading EstimationThe method demonstrated so far suggested that �nding optimal state oordinates and de-duing the relationships between them rather than diretly �nding optimal relationships isa good way to address the additivity onstraint. Unfortunately, this approah is hard to fol-low in the ase of heading hange estimation, due to the von Mises distribution assumptionof the heading measures.Reall that the von Mises density funtion has the form:f�;�(�) = 12�I0(�)e� os(���) ;where I0(�) is the modi�ed Bessel funtion of the �rst kind and order 0, I0(�) = 1Xr=0 1r!2 (12�)2r:Hene, by substituting �ij by �j � �i and applying a proedure similar to the one disussed



93in Setion 10.1 we obtain a set of N�1 trigonometri equations with terms of the formos(�j) sin(�i) whih do not lend themselves to simple solution.One possible way to address the hardness of solving these equations, suggested byMihael Sever [GSD98℄, is through the diret optimization of the auxiliary funtion, Q,using an iterative method suh as gradient desent. This is an interesting approah topursue as future researh. However, we preferred to look for a striter method that is notiterative, given that the em algorithm itself is already an iterative method. It seems prefer-able, if possible, to have a (small) �xed bound on the amount of work performed withineah em iteration.Hene, rather than solve the equations or try to iteratively optimize the auxiliary fun-tion, we use the anti-symmetri reestimation proedure presented in Setion 5.4, and followit by a perpendiular projetion operator, whih maps the headings vetor of length (N�1)2,h��iji; 1 � i; j � N�1, i 6= j, whih does not satisfy additivity, onto a vetor of headingswithin an additive linear vetor spae. (Note that all entries in whih i = j are �xed to 0already, and therefore we do not need to projet them.)The projetion operator P maps eah urrent mean estimate, ��0j , to a real numberP(��0j). Eah ��ij where i 6= 0 is mapped to P(��0j) � P(��0i). An orthogonal projetionoperator P is onstruted as desribed by Saad [Saa95℄, by taking P = V V T where Vis a matrix whose olumns are an orthonormal basis of the linear spae of vetors thatsatisfy additivity. Obtaining suh an orthonormal basis is done through the Gram-Shmidtproedure.Our experiene shows that this form of projetion is still not satisfatory within oursetting, sine it simply looks for the additive vetor losest to the non-additive one, ignoringthe fat that some of the entries in the non-additive vetor are based on a lot of observations,while others are based on hardly any data at all. Intuitively, we would like to keep theestimates that are well aounted for intat, and adapt the less aounted for estimates inorder to meet the additivity onstraint. More preisely, we would like to projet the non-additive heading estimates vetor onto a subspae of the additive vetor spae, in whih thevetors have the same values as the non-additive vetor in all entries that are well-aountedfor. Unfortunately, this set of vetors is not a linear vetor spae (for instane, it does notsatisfy losure under salar multipliation), and the projetion operator as de�ned abovean not be applied diretly. However, this set of vetors does form an aÆne vetor spae,and we an projet onto it using a speial tehnique from linear algebra. We desribe theomplete proedure below.



9410.3.1 Seleting Fixed EntriesWe start by piking the maximum number, n, of heading estimates that we would like topreserve. A typial hoie we have made is for n to be the number of states in the model.Using the heap data struture over all expeted ounts of transitions between states, weselet a list of the n ordered pairs of states (si; sj) that have the largest expeted transitionounts, Pt(�ij), from si to sj . The list is kept sorted aording to the number of theexpeted ounts. Note that we an't just �x these values and proeed to the projetionstage, sine:1. There may be inonsistenies between these topmost values themselves;2. By �xing ertain relationships, other relationships are also enfored through the geo-metrial onsisteny requirement.Therefore �xing the entries that should not be projeted requires examining and propagatingdependenies within the heading relationship vetor. To allow for easy expression of theinterdependenies, we hoose to take ��0;1; : : : ; ��0;N�1 as independent variables, and expressthe rest of the relationships ��i;j as ��0;j � ��0;i.Building the �xed-values vetor proeeds as follows. We pik the most aounted forrelationship ��i1;j1 , and assume its estimated value is �1. Fixing it implies that the vetorentry for ��j1;i1 is set to ��1. Note that one the entry is �xed it does not hange any more.That is, if later in the list of sorted state pairs there is a ontraditing assignment to ��j1;i1 ,we disard this item in the sorted list without using it to �x any of the values, and movedown to the next item in the list. However, we do not add any more items to the list; thuswe may, in pratie, use less than the n most aounted for values.We also note that �xing ��j1;i1 impliitly fores the relationship between ��0;i1 and ��0;j1to be ��0;i1 = ��0;j1 + �1.One all the impliit relationships are determined, the next most aounted for item onthe list is examined. As said before, if it is inonsistent with the already �xed values, itis disarded. Else, it is used for �xing all the impliit dependents. We proeed until all nitems in the sorted list are treated.At the end of this phase we have entries that are ompletely determined, with a numerialvalue assigned to them, as well as entries that are inter-related suh as ��0;i1 above whihdepends on ��0;j1 through the equation: ��0;i1 = ��0;j1 + �1. Sine, obviously, ��0;i1 and��0;j1 depend on one another, we adopt the onvention that the item with the higher index



95depends on the the item with the lower index, and the item with the lower index is viewedas a free variable. The following example demonstrates the proess.Example 10.1 Suppose our model has 3 states. Hene our estimated symmetri vetor ofheading relationships, exluding self-transitions values whih are always 0, has 6 entries.h��0;1; ��0;2; ��1;0; ��1;2; ��2;0; ��2;1i = h90; 110;�90; 5;�110;�5i :We note that ��0;1 + ��1;2 is urrently not equal to ��0;2. Now, suppose that our expetedsupporting ounts of transitions between every pair of states are as follows:0 1 20 0.01 0.01 0.011 0.02 0.01 3.972 0.01 2.94 0.03Suppose we are only going to preserve the relationships for the 2 most aounted for statetransitions. Hene our sorted list ontains is ��1;2; ��2;1. By �xing ��1;2 to 5 we �x ��2;1 to�5, and ��0;2 = ��0;1 + 5. (Through symmetry we have ��1;0 = ���0;1 and ��2;0 = ���0;1 � 5.)The seond most-supported value is ��2;1, but sine it was already �xed by the previous step| we are done. The geometrially onsistent partially-�xed vetor is now:h��0;1; ��0;1 + 5; ���0;1; 5; ���0;1 � 5; �5i :The �nal step left is to projet the inonsistent values urrently assigned to the un�xedentries h90; 110;�90;�110i onto a spae of the form hx; x+5;�x;�x�5i.We emphasize again, that vetors of the form hx; x+5;�x;�x�5i do not onstitutea linear vetor spae. In ontrast, vetors of the form hx; x;�x;�xi do onstitute a lin-ear spae. An aÆne transformation maps between these two spaes; adding/subtratingthe vetor h0; 5;�0;�5i is the appropriate transformation. Hene, vetors of the formhx; x+5;�x;�x�5i onstitute an aÆne spae of vetors. The following setion explainshow to projet onto suh a spae.10.3.2 Projetion onto an AÆne Spae 2Perpendiular projetion onto a linear spae was desribed earlier in this hapter. An aÆnespae A is de�ned as follows:2This setion is almost ompletely based on material I learned through onversations with John Hughes,to whom I am most grateful.
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Figure 10.1: Projeting v onto an aÆne spaeDe�nition 10.3 A � Rn is an n-dimensional aÆne spae if for all vetors va 2 A, the setof vetors: A� va def= fua � vajua 2 Ag is a linear spae.Hene, we an pik a vetor va1 2 A and de�ne the translation Ta : A ! V , where V is alinear spae, V = A � va1 . This translation is trivially extended for any vetor v0 2 Rn,by de�ning Ta(v0) = v0 � va1 . In order to projet a vetor v 2 Rn onto A, we apply thetranslation Ta to v and projet Ta(v) onto V , whih results in a vetor P(Ta(v)) in V . Byapplying the inverse transform T�1a to it, we obtain the projetion of v on A.This proess is demonstrated in Figure 10.1, in whih the linear spae is the two di-mensional vetor spae fhx; yij y = �xg, and the aÆne spae is fhx; yij y = �x + 4g. Thetransform Ta in this ase onsists of subtrating the vetor h0; 4i. The solid arrow in the�gure orresponds to the diret projetion of the vetor v onto the point P(v) of the aÆnespae. The dashed arrows represent the projetion via translation of v to Ta(v), the pro-jetion of the latter onto the linear vetor spae, and the inverse translation of the result,P(Ta(v)), onto the aÆne spae.By applying this projetion proess, we obtain the values that replae the entries in theheading relations vetor that were not yet �xed by the previous stage of the algorithm, anddid not satisfy additivity. We plug these values into their orret entries in the vetor andobtain a heading vetor that satis�es additivity. We note that it is suÆient to projetonly the entries orresponding to unde�ned values of �0;1; : : : ; �0;N�1; the rest of the valuesan be dedued through the expression: �i;j = �0;j � �0;i. We onlude this setion byompleting the example provided earlier.



97Example 10.1 (Cont.) We needed to projet the values h90; 110;�90;�110i onto a spaeof the form hx; x+ 5;�x;�x� 5i. It is suÆient to projet the entries h90; 110i onto thespae hx; x+ 5i, and the rest of the values are obtained through anti-symmetry. The linearspae hx; xi is obtained from the aÆne spae hx; x+ 5i through the transform of subtratingthe vetor h0; 5i. Applying this transform to the vetor h90; 110i results in h85; 105i. Thespae hx; xi is spanned by the orthonormal basis b = h 1p2 ; 1p2i. The projetion obtained bytaking bTb applied to the vetor h85; 105i results in the vetor h95; 95i. We apply the inversetranslation, adding h0; 5i and obtain the vetor h95; 100i.The omplete vetor obtained by plugging h95; 100;�95;�100i into the yet undeterminedentries of the heading relations vetor gives us the following additive heading reestimate:h95; 100;�95; 5;�100;�5i :Although the proedure for preserving additivity over headings is not proven to preservemonotone onvergene of the likelihood funtion towards a loal maximum, our experimentshave shown that monotone onvergene is preserved. However, under the urrent form ofadditivity enforement, the quality of the results, as demonstrated in the next hapter,ompared with those obtained when only symmetry is enfored, does not learly justify theadditional e�ort involved.
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Chapter 11Experiments Enforing AdditivitySimilar to the experiments presented in previous hapters, we test the algorithm both withina global framework under the perpendiularity assumption, and within a relative oordinateframework, where the perpendiularity assumption is relaxed. Again, we use both real robotdata and data obtained from the same simulated model as before.As before, we provide both qualitative results in terms of plots of the models, and statis-tial evaluation. Setion 11.1 demonstrates the e�ets of additivity enforement under theperpendiularity assumption, while Setion 11.2 demonstrates its e�ets when the perpen-diularity assumption is relaxed. Note that there is a signi�ant di�erene between the twosettings. The reason is that when the perpendiularity assumption is dropped, obtainingthe orret headings is ruial, sine the evaluation of both x and y measurements dependon the heading. Through the use of projetion over the heading we ompromise the qualityof the heading, and possibly harm x and y estimates. Another problem with the additivityenforement is its reliane on �0i as a basis for the onstraints. A bad estimate for the �0i'san result in a bad estimation of all the geometrial parameters.Setion 11.3 desribes some experiments designed spei�ally for studying the e�ets ofodometry and additivity on the quality of the topology and the geometry of learnt models.11.1 Results within a Global FrameworkWe applied the algorithm desribed in Setion 10.1 to the same robot-gathered and simu-lated sequenes desribed and used in Chapter 7. The same evaluation methods are appliedhere as well. 99
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101in Figure 7.3 whih was learned without enforing additivity, using the same initializationalgorithm.The two examples of the learned geometry starting from k-means initialization demon-strate that geometrially onsistent models an still vary in quality. Moreover, althoughthe geometry looks almost aurate in Figure 11.2, note that the topology is still not asgood, given that we don't have two states at eah of the top two orners to denote hangeof headings during turns, and that there is a bak and forth transition between states13 and 16. The variability in the geometrial outline of the models aross multiple runs,when starting with k-means initialization is smaller when additivity is enfored, than whenonly anti-symmetry is enfored. That is, we get more onsistently good models and thedependene on the initial lustering seems to be redued.It is interesting to note that even when starting from a random initial model, the algo-rithm did onverge several times to models with geometry that is lose to the true one, asshown in Figure 11.4. Again, this behavior appears to our more onsistently than whenonly anti-symmetry is enfored.Figures 11.5 { 11.8 show some of the models obtained by applying our algorithm to thesimulated sequenes, enforing the omplete geometrial onsisteny while using the variousinitialization methods. The most aurate map, shown in Figure 11.5 is learned using thek-means based initialization tehnique. Using a global framework allows this method tobe e�etive. There is still, however, a lot of variability aross multiple runs and trainingsequenes, in the quality of the results under this initialization method, due to its randomstarting point. A muh worse model, geometrially speaking, whih does not represent thetrue environment well, despite its geometrial onsisteny, is shown in Figure 11.6. Whenusing the tag-based initialization, we get more uniformity in the quality of the results arossmultiple runs, but there is still diversity when running over di�erent data sequenes. Weshow one of the better geometrial models in Figure 11.7, and not as good a model inFigure 11.8. A possible explanation to the diversity in quality of the learned simulatedmodel, under tag-based initialization, as opposed to the models learned from robot data,is that the simulated environment is muh larger. This auses the global relations betweenremote states, whih are reeted in the geometrial onsisteny onstraints, to be harderto learn.For the purpose of quantitatively evaluating the learning algorithm we provide in Ta-ble 11.1 a summary of the results of running the algorithm under eah of the 3 initializationsettings, 10 times for eah sequene. The results of the runs without odometri information
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Figure 11.7:Learned model of the simulatedenvironment. Initialization is tag-based. Figure 11.8:Learned model of the simulatedenvironment. Initialization is tag-based.are listed here again for omparison. The kl divergene with respet to the true model formodels learned using odometry, starting from either a biased or a random initial model, isabout 5-6 times smaller than for models learned without odometri data. The standarddeviation around the means is about 0.2 for kl distanes for models learned with odom-etry using biased initialization and about 0.1 for models learned from a random startingpoint. The two-sample t-test still veri�es that the odometri models are better than thenon-odometri ones with a very high statistial signi�ane.In addition, the number of iterations required for onvergene when learning using odo-metri information is roughly 4-5 times smaller than that required when ignoring suh



103Seq. Tag-based k-means Random No Odo# kl Iter.# kl Iter. # kl Iter. # kl Iter. #1 0.981 16.70 1.149 29.90 1.061 28.40 6.351 124.12 1.290 20.90 1.037 27.80 1.037 27.70 4.863 126.03 1.115 22.30 1.085 20.40 1.110 21.50 5.926 113.04 1.241 12.70 1.144 26.60 1.055 19.90 6.261 107.45 1.241 27.50 1.442 20.40 1.028 29.20 4.802 122.9Table 11.1: Average results of four learning settings with �ve training sequenes.information. Again, the t-test veri�es the signi�ane of this result. As before, the num-ber of iterations required for onvergene when starting from a tag-based initial model isstatistially signi�antly lower than when starting with any other initialization method.Under all three initialization settings, the models learned are topologially somewhatinferior (and this is with high statistial signi�ane), in terms of the kl divergene, tothose learned without enforing additivity. This is likely to be a result of the very strongonstraints enfored during the learning proess, whih prevent the algorithm from searhingbetter areas of the learning-spae, and restrit it to reah poor loal maxima. The geometrylooks superior in some ases, but it is not signi�antly better. However, there seems to beless variability in the quality of the geometrial models aross multiple runs when additivityis enfored.11.2 Results within a Relative FrameworkWe applied the algorithm desribed in Setion 10.2 to the same robot-gathered and sim-ulated sequenes desribed and used in Chapter 9. The evaluation methods also stay thesame. Figure 11.9 shows a typial model obtained by applying the algorithm enforing theomplete geometrial onsisteny, to the robot data shown in Figure 9.3, using tag-basedinitialization. The enforement of onsisteny onstraints resulted in a better preservationof the retangular geometry of the environment. We notie that state 0 still does not par-tiipate in the loop. The main reason for this is that due to the relatively large number ofstates that are lose together in the orresponding area of the true environment, it was notreognized that we ever returned to this partiular state during the loop. Therefore, therewas only one transition reorded from state 0 to state 1 aording to the expeted transitionounts alulated by the algorithm. When projeting the angles to maintain additivity, theangle from state 0 to 1 was therefore ompromised, allowing geometrial onsisteny to
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Figure 11.9: Learned model of the orridors Ramona traversed. Initialization is tag-based.Seq. Tag-based k-means Random No Odo# kl Iter.# kl Iter. # kl Iter. # kl Iter. #1 1.462 11.80 1.066 36.50 1.076 35.50 6.919 113.32 1.184 36.80 1.051 30.20 1.097 32.00 9.926 113.13 1.195 30.70 1.270 45.00 1.116 31.00 10.030 102.04 1.025 24.60 1.216 40.80 1.043 30.40 9.539 104.25 1.223 33.30 1.100 40.80 1.083 35.90 12.431 112.5Table 11.2: Average results of four learning settings with �ve training sequenes.maintain the retangular geometry among the more regularly visited states.Figures 11.10 { 11.11 show two of the models obtained by applying our algorithm tothe simulated sequenes, enforing the omplete geometrial onsisteny while using thetag-based initialization methods. The geometry of retangular ombination is lear, but,obviously, these are highly inaurate geometrial representations of the simulated environ-ment.For the purpose of quantitatively evaluating the learning algorithm we provide in Ta-ble 11.2 a summary of the results of running the algorithm under eah of the 3 initializationsettings, 10 times for eah sequene. For omparison the results of the runs without odo-metri information are repeated here. As before, the kl divergene with respet to thetrue model is signi�antly smaller when odometri information is used. The standard devi-ation around the means is about 0.2 for kl values of models learned with odometry using
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Figure 11.10:Learned model of the simu-lated environment. Figure 11.11:Learned model of the simu-lated environment.tag-based initialization and about 0.1 for models learned from a random or k-means-basedstarting point.The standard deviation around the number of iterations is about 10 for models startedfrom either a random or a tag-based model and about 20 for models whose initializationwas based on k-means. The number of iterations when additivity is enfored in the relativeoordinate setting is onsistently higher, with high statistial signi�ane, than when onlyanti-symmetry is enfored, in the ase of k-means based initialization. An explanation forthis is that in the relative setting, the bad initialization starting from k-means leads to lowlikelihood values, whih in turn auses numerial instability in the proess of solving the setof equations required for enforing additivity. This auses a slowdown in the onvergeneof the em algorithm. An inrease in the number of iterations, whih is not as dramatiand not as statistially signi�ant, also exists when using any of the other two initializationmethods.11.3 Studying the E�ets of Odometry and AdditivityTo better understand the impat of enforing geometrial onsisteny in partiular andthat of odometri information in general, we study two small examples. We designed twomodels; One that intuitively does not require additivity in order to be learned, and the otherwhih seemingly does require the enforement of the omplete geometrial onsisteny. Wesampled data from both models, and applied our algorithms to it. The models, and theresults analysis are desribed throughout the rest of this setion.



106 0< D, W, W> 1< O, D, D> 2< O, D, D> 3< O, D, D> 4< O, D, D>0.85 0.85 0.85 0.85
0.85 0< D, W, W> 1< O, D, D> 2< O, D, D> 3< O, D, D> 4< O, D, D>0.22 0.78 0.94 0.81 0.85

0.82Figure 11.12:A model of a simulated en-vironment. The distanes between states aredrawn to sale. Initial state is distint. Figure 11.13:A learned model. Initializa-tion is Tag-based. Distanes are drawn tosale.2< D, W, W> 4< O, D, D> 3< O, D, D> 0< O, D, D> 1< O, D, D>0.85
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0.22 0.78 0.810.94 4< O, D, D> 3< O, D, D> 2< O, D, D> 1< O, D, D>0< D, W, W>0.22 0.78
0.81

0.850.810.94Figure 11.14:A learned model. Initializa-tion is k-means based. Figure 11.15:A learned model. Initializa-tion is k-means based.Experiment 11.1 To examine the e�ets of odometri information on learning a model,we used a small yli model, for whih the initial state has a distint tuple of observations,while all other states look alike observation-wise, but an be distinguished by their geomet-rial plaement in the environment. Figure 11.12 shows a geometri layout of the modelas a probabilisti state-transition diagram. Note that the states are plaed in di�erent dis-tanes from eah other. This plaement is signi�ant, and represents the geometry of thestate spae; all the states lie on the same line, with diminishing distanes from one state tothe next. The distanes between the states in the �gure are drawn to sale. Edges denotetransitions with probability greater than 0:2. The numbers on the edges orrespond to theatual transition probabilities. At eah state, the observations onsist of the view on thefront, left and right, whih an be either a door, D, a wall, W, or and open area O. Themost likely observations are shown in the diagram. These observations are typially seen80-90 perent of the times when a state is visited.Using Monte-Carlo sampling we generated two sequenes of 300 observations and learned5 models from eah of them under eah of the four learning settings, enforing only anti-symmetry during the learning proess.Figure 11.13 shows a typial model learned using tag-based initialization. Again, thestates are plaed aording to the relation matrix learned. It is lear that there is an almostperfet orrespondene between both the geometry and the topology under this learningsetting. All models learned using this algorithm look almost idential to this one.
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0.40 0.420.910.500.50
0.790.21 0.85Figure 11.16:A learned model. Initializa-tion is random. Figure 11.17:A learned model. Initializa-tion is random.3< D, W, W> 4< O, D, D> 2< O, D, D> 0< O, D, D> 1< D, W, W>0.37 0.21
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0.280.63 0.46 0.54Figure 11.18:A learned model. No odome-try used. State plaing is arbitrary, Figure 11.19:A learned model. No odome-try used. State plaing is arbitrary.Figures 11.14 and 11.15 demonstrate the results of learning using k-means based ini-tialization. The �gure on the left shows a typial good result, where both topology andgeometry almost exatly �t the true model. However, when starting from a poor lustering,the model is not as good; although it is still topologially orret, the initial state is notorretly identi�ed. This is shown in Figure 11.15.Figures 11.16 and 11.17 show the results of learning starting from a randomly initializedmodel. The �gure on the left shows the less frequent ase in whih the algorithm managed tolearn a good model despite the random initialization. The �gure on the right demonstratesone of the less well-learned models, in whih the geometry is learly not as good as inall the other odometri model. The two leftmost states are atually plaed in the sameposition aording to the relation matrix, and are plaed one above the other for the sakeof readability only. These two states orrespond the initial state in the original model. Theyliity is still present and the observations are still the same as in the original model, butboth the topologial and the geometrial struture is di�erent from the true one.Figures 11.18 and 11.19 show the results of learning without the use of odometry. Itis important to note that the plaement of the states here has no geometrial signi�ane,and the layout is imposed in order to larify the plot. Figure 11.18 depits one of thebetter models, in whih the observation distribution orresponds well to that of the originalmodel although the topology is di�erent. In Figure 11.19, we see that in state 1, the triplehD; O; W i that is highly unlikely in the original model was learned as a likely observationtriple, although, in an unlikely-to-be-reahed state.



108 Seq. Tag-based k-means Random No Odo# Mean StD Mean StD Mean StD Mean StD1 0.073 0.019 0.641 0.766 0.699 0.101 0.609 0.1982 0.032 0.006 0.091 0.067 0.805 0.239 0.987 1.117Table 11.3: Average results of four learning settings with two training sequenes.We an see that under this setting, odometry greatly helps to distinguish the states fromeah other, and the tag-based initialization ensures onsistently good results.To verify these results we also used the Kullbak-Liebler divergene, evaluated based ongenerating 50 sequenes of length 20 eah from the true model and measuring the di�erenebetween their likelihood with respet to the true model and the likelihood with respetto the learned model (averaging over the total number of data points { 1000 in this ase).Table 11.3 lists the means and standard deviations of the Kullbak-Leibler measure for eahof the sequenes averaged over the 5 di�erent learning experienes. The kl divergene formodels learned using tag-based initialization are muh smaller than for those learned usingany other initialization method, or not using odometry at all. Using k-means based initial-ization typially gives very good results in this setting, but due to two severe outliers whenstarting from bad initial lustering, the mean is not muh lower than when using randominitialization or no odometry in the ase of the �rst sequene. Note that the geometrialsetting of the model is suh that there are no turns, and therefore umulative rotationalerror does not interfere with the e�etiveness of the k-means based initialization. (Still,the algorithm used here does take into aount umulative rotational errors, as desribedin Chapter 9.)Models learned using odometry, starting from a random initialization, are not muhbetter than those learned without odometri information at all, although, at times theformer still does very well, while the latter sometimes performs muh worse. (Spei�ally,when using the seond sequene the di�erene between the two settings is apparent). Itis important to note that the example uses a small model whih is not very peaked, andthat there was an abundane of data provided from it. Hene, even the non-odometrilearning performed quite well, if all we are onerned about is the probability distributionover sequenes.Experiment 11.2 To examine the e�ets of enforing additivity on the learning proess,it takes a model in whih not only is odometry needed to distinguish between seeminglysimilar states, but also, odometry helps to tell that a state reahed via two distint routes
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Figure 11.20:A model of a simulated envi-ronment. Figure 11.21:A geometrial projetion of a600 observations sequene sampled from themodel
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-4500Figure 11.22:Log-likelihood as a funtion ofthe number of iterations. Learning from se-quene 2. Figure 11.23:Log-likelihood as a funtion ofthe number of iterations. Learning from se-quene 3.is still the same state. This is where we expet geometrial onsisteny to play a majorrole. We use a small model as shown in Figure 11.20. State 5 is reahable from state 0both by going north, turning east, and then turning north again, (the state sequene in thisase is: h0; 1; 2; 3; 4; 9; 5i) and also by �rst going east then north (the state sequene ish0; 6; 7; 10; 8; 5i). From state 5 we an go diretly to state 0, and also, from state 2 we ango with equal probability either to state 3 or to state 8.Using Monte-Carlo sampling we generated three sequenes of 600 observations andlearned 5 models from eah of them under all learning settings, with and without theenforement of additivity. One of these sequenes is plotted in Figure 11.21. The resultspresented here are only onerned with the value of enforing additivity. Therefore, welimit our disussion to using the tag-based initialization whih is the superior initializationmethod aording to all of our experiments, in the presene of umulative rotational error.Typially when the model is small, tag-based initialization performs well and plays asigni�ant role in apturing the geometry of the model. However, the iterative learning
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111
0

8 9

7

6
1

2 3 4
5

10

0
8 9 7

6

1

2 3 4 5

10Figure 11.28:Model learned from sequene3. Additivity is enfored. Figure 11.29:Model learned from sequene3. Only anti-symmetry is enfored.data sequene without the enforement of additivity (Figure 11.25), our attempt to pre-serve geometrial onsisteny has ompromised some of the angular relationships betweenstates. States 3 and 4, whih should have been aligned with states 1 and 5, are not plaedexatly where they should be. It an be explained as a side-e�et of the dependeny onthe relationship of eah state to state 0 when enforing global onsisteny between everypair of states (see Setion 10.2). If the relations to state 0 are not substantiated by data,it is likely that the estimates obtained from the onstrained equations are ompromised.Future researh will examine the possibility to hange the referene system when enforinggeometrial onsisteny to be with respet to state transitions that are estimated to havebeen traversed the most.Figures 11.26 and 11.27 demonstrate a ase in whih the results are very similar withand without enforing additivity.Figures 11.28 and 11.29 demonstrate a ase in whih the enforement of additivityatually makes a signi�ant di�erene in the quality of the learned model. Here we see thatan almost orret model is obtained by the use of additivity (aside for state 10, whih isunreahable and probably should have orresponded to state 10 in the true model). Withoutadditivity, the model learned (Figure 11.29) is not geometrially onsistent. State 6 is plaedas shown in the �gure when drawn with respet to state 7, while it should be lose to state5 if drawn with respet to state 5. Note that the returning edge to the initial state is fromstate 7 rather than from state 5.There is no signi�ant di�erene in the Kullbak-Leibler divergene between the sym-metri and the additive ase.



112In summary, to obtain models that are good both geometrially and topologially, it isruial to start with a good initial model. The tag-based method we have developed provesuseful in many ases. It is partiularly e�etive for small models in whih the aumulatedvariane alulated and used when �lling the relations table is not too big. An importantresearh diretion is that of learning small piees of a large model and then ombining thesmall models into one large model of the omplete environment.The enforement of geometrial onsisteny throughout the model an be helpful attimes, but is not, in its present form, guaranteed to be signi�antly advantageous over thesimpler anti-symmetry enforement. In addition, it may inrease the number of iterationsrequired for onvergene. By strongly onstraining the learning proess, it may even resultin topologially inferior models, as demonstrated by our larger simulated experiments inSetions 11.1 and 11.2. It is possible that enforing anti-symmetry at the early stagesof the learning proess, and the omplete geometrial onsisteny only towards the end,would allow the algorithm to onverge to better models. As for the onsisteny-enforementproess itself, an alternative hoie of the basis for the onsisteny onstraints may rely onthe estimated state transitions ounts, hoosing as a basis the transitions that have themost estimated ounts.



Chapter 12Conlusions and Future WorkIn this work we introdued a way in whih readily available information is used to improvethe quality of aquired models for robot navigation, as well as to redue the resouresrequired for obtaining suh models.We have shown that the separation ommonly made between geometrial and topologialmodels as mutually exlusive entities, (see an extensive disussion by Thrun [Thr99℄), is notneessary. Not only an it be bridged, as done by Thrun in a two-tiered fashion by learning�rst a geometrial model and then a topologial one from it, but rather, geometrial-in-nature odometri information an be diretly inorporated into the topologial realm, andused to improve the aquisition proess of a topologial model. This setion summarizesthe ontributions of the thesis, and surveys several diretions for future work.12.1 ContributionsThe theoretial ontributions of the thesis are as follows:� Extension of the formal hidden Markov models framework to aommodate odometriinformation.� Extension of the Baum-Welh algorithm to use odometri information for learninghidden Markov models, providing proof of onvergene for most of the algorithmiextensions.� Pointing out several speial issues in handling diretional data in the ontext of robotnavigation. In partiular, the need for diretional distributions suh as the von-Mises113



114 distribution, and the assoiated estimation proedures.� Providing a basis for maintaining geometrial onsisteny throughout the system,both in terms of projetion and in terms of diret optimization under geometrialonstraints. Suh statistial estimation under onstraints is hardly treated in themain-stream statistial literature [Bar84℄.The pratial ontributions are:� Implementation of the learning algorithm for both pomdps and hmms, as well as thesupporting pakages for parsing, testing, omparing, sampling sequenes from thesemodels, and for plotting hmms.� Empirial tests showing that through the use of odometri information better modelsan be learned, while requiring fewer iterations and shorter data sequenes.� Appliation of the algorithm to real robot data gathered from a globally ambiguousenvironment whih ontains loops. Learning models for environments with loops isonsidered one of the hardest problems in model aquisition for robot navigation.� A new heuristi for �nding an initial model, based on odometri information. Thealgorithm is robust in the presene of umulative rotational error, and may also serveas a possible basis for estimating the number of states in the model.12.2 Future WorkLearning topologial maps through the use of odometri information is by no means a solvedproblem. First, we stress that the redution in the number of iterations does not urrentlytranslate to a redution in the expeted run time, sine the omputation of the normaland von-Mises distribution for eah data point and eah pair of states in eah iteration isan expensive operator. Through the use of lookup-tables, ahing, and exploitation of thesymmetries in the relations table, this ost should be redued, allowing us to take advantageof the fewer iterations. Our urrent na��ve implementation does not bene�t muh from thefewer iterations, aside from the fat that the run time would have been muh greater ifto ahieve the same quality of models as our algorithm ahieves, we would have needed asmany iterations as in the non-odometri ase.As demonstrated in Chapter 11, the geometrial-onsisteny maintenane su�ers fromtwo main drawbaks. It is more ompliated due to the need to solve a potentially large set



115of linear equations, and it depends on obtaining good estimates for the values of �0i along alldimensions. Despite the relatively ompliated reestimation proedure, having to solve a setof equations is not a omputational bottlenek of the algorithm. However, it may still provebene�ial to use advaned tehniques for treating sparse matries for solving the equations.Suh tehniques may also prove e�etive for addressing the numerial instabilities ourringwhile solving the equations. An important diretion to explore, addressing the dependenyon the means with respet to state 0, is that of hoosing the expressions for geometrialonstraints to be based on the transitions whih have the most support. This may be donein a way similar to the one taken for treating the projetion of heading estimates. Suhan approah might ompliate the algorithm on one hand, but may make it muh moreaurate on the other.The value of enforing omplete geometrial onsisteny is not fully determined. It maybe an e�etive learning proedure to enfore anti-symmetry rather than omplete geomet-rial onsisteny for several learning iterations, enforing omplete geometrial onsistenyonly in the last stages of the learning proess. An additional alternative is to enfore addi-tivity over the x and y dimensions, while enforing only anti-symmetry along the headingdimension.Another important issue is the understanding of the e�ets of the parameters that areurrently provided to the algorithm. These inlude the number of states, the initial defaultvariane, and the weight assigned to sines and osines when alulating the distane betweenodometri measures. Our experiene has shown that all of the latter parameters e�et theresults of the initialization (both the k-means and the tag-based), and although it is feasibleto adjust these few parameters manually aording to the problem at hand, it is desirable tohave de�nite guidelines in hoosing them, or a fully automated proedure that does it basedon the magnitude of the input data. We stress that all the experiments reported in thiswork were onduted under the same �xed set of onstants. The only varying parameterwas the number of states in the model, as expliitly stated.An additional diretion we have started to explore is that of ombining learning themodel and planning within it into a uni�ed framework, based on reinforement learning.The basi idea behind this possible extension, is to take the urrent learned model of apomdp and augment eah state with a reward that is invertly proportional to our on�denein the auray of the probability distributions urrently assoiated with the state. Thatis, states whose distributions are believed to be well supported by the data sequene fromwhih the model was learned, are assigned low rewards while states whose distributions



116are unsupported by enough data are assigned high rewards. The robot, moving in theenvironment aording to its urrent model, trying to maximize its expeted reward, wouldonentrate on arriving at those states about whih it knows the least, thus obtaining moredata about them. It an then improve the urrent model based on the newly obtaineddata. As a onsequene { both the model and the reward assignment hange. The proessthen ontinues under the updated model and reward funtion. Suh \ignorane rewards"an potentially be ombined with the standard pomdp rewards, thus enabling the tasks ofplanning within a pomdp environment [CKL94, Cas98℄ and learning it to be ombined.12.3 Beyond RobotisHidden Markov models serve as useful modeling tools in a variety of domains other thanrobot navigation, from natural language understanding [Cha93℄ to omputational moleularbiology [BCH+93, KBM+94℄.Our work demonstrates that through the use of domain-spei� information and on-straints, automati model aquisition is made more e�etive while requiring fewer iterationsand less gathered data. We strongly believe that this idea an be applied for learning hmmsand pomdp models in areas other than robotis.One appealing appliation domain is medial deision support. Probabilisti modelssuh as Bayesian networks and pomdp models have been reently introdued as aids fordiagnostis and deision making in mediine [SDL+93, SOA97, HF98℄. The patient's stateand symptoms that evolve through time as a result of treatment, an be naturally modeledas a pomdp. Various onditions that the patient may be in are mutually exlusive and timedependent. Thus there are many potential onstraints on the hange in the patient's ondi-tion. These onstraints an be exploited in order to learn models both for the developmentof the disease and for the expeted hange in the patient's state as treatment is applied.Suh models an be of great value for prediting the results of possible treatments, and forassisting physiians in deiding on suh treatments.Another area that is rapidly developing is omputational biology [KBM+94, GM96,FMG+97, KSB+97℄. Hidden Markov models are already suessfully used for modelingproteins and dna sequenes. Suh large moleules have an intriate 3-dimensional geomet-rial struture. It is likely that by enforing geometrial onstraints, similar to the onesdisussed throughout this work, aquiring models for proteins and dna sequenes an bemade better and faster.



117In both the medial and the biologial domain, the ability to learn from relatively smallquantities of data is partiularly important. There are medial treatments that are rarelyapplied due to their high ost or high risk, as well as medial onditions that are rarelyenountered. Similarly, some families of proteins, for whih models need to be learned,have only a few instanes that are fully analyzed. In order to obtain models from theexisting data in these ases, it is important to be able to take advantage of the availabledata to the fullest. As demonstrated by the experiments desribed in previous hapters,our algorithm retains its good performane even when the amount of data available to itis signi�antly redued. This apability is expeted to be of great value if our approah isapplied in the bio-medial domain.
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Appendix AAn Overview of the OdometriLearning Algorithm for HMMsThe algorithm takes as input an experiene sequene E = hr; V i, onsisting of the odometrisequene r and the observation sequene V .Learn Odometri HMM(E)1 Initialize matries A;B;R (See Chapter 6)2 max hange  13 while ( max hange > �)4 do Calulate Forward probabilities, � (Formula 4.1)5 Calulate Bakward probabilities, � (Formula 4.2)6 Calulate state-oupation probabilities,  (Formula 4.3)7 Calulate State-transition probabilities, �; (Formula 4.4)8 Old A  A; Old B  B9 A Reestimate (A) (Formula 4.5)10 B  Reestimate (B) (Formula 4.6)11 R�  Reestimate (R�) (Formulae 5.4 and 5.6)12 hRx; Ryi  Reestimate(Rx; Ry), using either� Formulae 4.13 and 4.12 (within a global framework), or� Formulae 8.3, 8.4 and 4.12 (within a relative framework)13 max hange  MAX(Get Max Change(A; Old A );Get Max Change(B; Old B ))If additivity is enfored, step 13 is followed by a projetion of the reestimated R� onto anadditive aÆne spae, as desribed in Setion 10.3. In addition, step 12 is substituted by119



120the proedure desribed in either Setion 10.1 or 10.2. That is, if we are operating withina global framework, the equations denoted by Formula 10.3 are solved and the means arealulated from the solution aording to equation 10.4. If we are operating within a state-relative framework, the system of equations B.1, B.2 is solved, and the means are alulatedaording to equations 10.6 and 10.7.Get Max Chage is a funtion that takes two matries and returns the maximal element-wise absolute di�erene between them.



Appendix BDi�erentiation DetailsWe provide here two di�erentiations whose details were omitted earlier.B.1 Unonstrained Odometri Reestimation FormulaeIn Setion 4.3.2, Formula 4.19, we rewrote Baum's auxiliary funtion, Q, restrited to apair of states i; j, and for a single odometri dimension, m, as:Qmij (R;R) = T�2Xt=0 �t(i; j)(log(fmi;j(rmt+1))� log(�mij )) ;and laimed that by setting its partial derivatives, �Qmij��mij and �Qmij��mij to 0, we obtain theunonstrained reestimation formulae 4.7 and 4.8:�mi;j = T�2Xt=0 rt[m℄�t(i; j)T�2Xt=0 �t(i; j) ; �2mi;j) = T�2Xt=0 (rt[m℄� �mi;j)2�t(i; j)T�2Xt=0 �t(i; j) :The derivative of Qmij with respet to �mij is:�Qmij��mij = �T�2Xt=0 �t(i; j)�(rmt ��mij )22(�mij )2��mij = T�2Xt=0 �t(i; j)(rmt � �mij )(�mij )2 :By setting this derivative to 0, we obtain the equation:T�2Xt=0 �t(i; j)(rmt � �mij )(�mij )2 = 0 ;121



122whose solution is indeed: �mij = T�2Xt=0 �t(i; j)rmtT�2Xt=0 �t(i; j) :The derivative of Qmij with respet to �mij is:�Qmij��mij = �T�2Xt=0 �t(i; j)��(rmt ��mij )22(�mij )2 � log(�mij )���mij = T�2Xt=0 �t(i; j) (rmt � �mij )2(�mij )3 � 1�mij ! :Setting it to 0 results in the equation:T�2Xt=0 �t(i; j) (rmt � �mij )2(�mij )3 � 1�mij ! = 0 ;whose solution is indeed: (�mij )2 = T�2Xt=0 �t(i; j)(rmt � �mij )2T�2Xt=0 �t(i; j) : 2B.2 Enforing Additivity within a Relative FrameworkIn Setion 10.2, Formula 10.5, we rewrote Baum's auxiliary funtion, Q, restrited to theodometri dimensions x; y, as a funtion of the loations, hx00; y00i; : : :hx0N�1; y0N�1i, of statess0; : : : ; sN�1, along the global x and y oordinate system, as follows:Qx;y(R;R) = N�1Xi=0 N�1Xj=0 T�2Xt=0 �t(i; j) �(rxt+1 � (os(��0;i)(x0j � x0i )� sin(��0;i)(y0j � y0i )))22(�xij)2� log(�xij)� (ryt+1 � (sin(��0;i)(x0j � x0i ) + os(��0;i)(y0j � y0i )))22(�yij)2 � log(�yij)! :The loation hx00; y00i is assumed to be the origin, h0; 0i. Rotations aording to the headinghanges with respet to the origin, ��0;0; : : : ; ��0;N�1, are applied in order to aount for therepresentation of the odometri relation within a state-relative framework.We stated that by di�erentiating this expression aording to eah x0j and eah y0jwhere j 6= 0 , and equating eah derivative to 0 we obtain a set of (2N � 2) linear equationsin (2N � 2) unknowns. These equations are solved at eah iteration of the em algorithmwhen additivity in a relative framework is enfored.



123We give here the expliit expressions for the derivatives and the resulting equations thatare solved at eah iteration.For eah x0k and y0k, where 0 < k � N � 1 :�Qx;y(R;R)�x0k =N�1Xi=0i 6=k  T�2Xt=0 �t(i; k) "�(rxt � os(��0;i)(x0k � x0i ) + sin(��0;i)(y0k � y0i ))(� os(��0;i))(�xik)2 �(ryt � sin(��0;i)(x0k � x0i )� os(��0;i)(y0k � y0i ))(� sin(��0;i))(�yik)2 # +T�2Xt=0 �t(k; i) "�(rxt � os(��0;k)(x0i � x0k) + sin(��0;k)(y0i � y0k)) os(��0;k)(�xki)2 �(ryt � sin(��0;k)(x0i � x0k)� os(��0;k)(y0i � y0k)) sin(��0;k)(�yki)2 # ! and�Qx;y(R;R)�y0k =N�1Xi=0i 6=k  T�2Xt=0 �t(i; k) "�(rxt � os(��0;i)(x0k � x0i ) + sin(��0;i)(y0k � y0i )) sin(��0;i)(�xik)2 �(ryt � sin(��0;i)(x0k � x0i )� os(��0;i)(y0k � y0i ))(� os(��0;i))(�yik)2 # +T�2Xt=0 �t(k; i) "�(rxt � os(��0;k)(x0i � x0k) + sin(��0;k)(y0i � y0k))(� sin(��0;k))(�xki)2 �(ryt � sin(��0;k)(x0i � x0k)� os(��0;k)(y0i � y0k)) os(��0;k)(�yki)2 # ! :



124By equating all these partial derivatives to 0, we get for eah k, where 0 < k � N � 1, twoequations as follows:N�1Xi=0i 6=k "T�2Xt=0 �t(i; k) rxt os(��0;i)(�xik)2 + ryt sin(��0;i)(�yik)2 !� T�2Xt=0 �t(k; i) rxt os(��0;k)(�xki)2 + ryt sin(��0;k)(�yki)2 !# =N�1Xi=0i 6=k (x0k � x0i ) "T�2Xt=0 �t(i; k) os2(��0;i)(�xik)2 + sin2(��0;i)(�yik)2 !+T�2Xt=0 �t(k; i) os2(��0;k)(�xki)2 + sin2(��0;k)(�yki)2 !#�N�1Xi=0i 6=k (y0k � y0i ) "T�2Xt=0 �t(i; k) sin(��0;i) os(��0;i) 1(�xik)2 � 1(�yik)2!+T�2Xt=0 �t(k; i) sin(��0;k) os(��0;k) 1(�xki)2 � 1(�yki)2!# ; (B.1)N�1Xi=0i 6=k "T�2Xt=0 �t(i; k) rxt sin(��0;i)(�xik)2 � ryt os(��0;i)(�yik)2 !+ T�2Xt=0 �t(k; i) ryt os(��0;k)(�yki)2 � rxt sin(��0;k)(�xki)2 !# =N�1Xi=0i 6=k (x0k � x0i ) "T�2Xt=0 �t(i; k) sin(��0;i) os(��0;i) 1(�xik)2 � 1(�yik)2!+T�2Xt=0 �t(k; i) sin(��0;k) os(��0;k) 1(�xki)2 � 1(�yki)2!#�N�1Xi=0i 6=k (y0k � y0i ) "T�2Xt=0 �t(i; k) sin2(��0;i)(�xik)2 + os2(��0;i)(�yik)2 !+T�2Xt=0 �t(k; i) sin2(��0;k)(�xki)2 + os2(��0;k)(�yki)2 !# : (B.2)
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