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Abstract

Motivation: Images convey essential information in biomedical publications. As such, there is a

growing interest within the bio-curation and the bio-databases communities, to store images

within publications as evidence for biomedical processes and for experimental results. However,

many of the images in biomedical publications are compound images consisting of multiple pan-

els, where each individual panel potentially conveys a different type of information. Segmenting

such images into constituent panels is an essential first step toward utilizing images.

Results: In this article, we develop a new compound image segmentation system, FigSplit, which

is based on Connected Component Analysis. To overcome shortcomings typically manifested by

existing methods, we develop a quality assessment step for evaluating and modifying segmenta-

tions. Two methods are proposed to re-segment the images if the initial segmentation is inaccur-

ate. Experimental results show the effectiveness of our method compared with other methods.

Availability and implementation: The system is publicly available for use at: https://www.eecis.

udel.edu/~compbio/FigSplit. The code is available upon request.

Contact: shatkay@udel.edu

Supplementary information: Supplementary data are available online at Bioinformatics.

1 Introduction

Images convey essential information in biomedical publications. As

such, there is a growing interest within the bio-curation and the bio-

databases communities, to store images from within publications as

evidence for biomedical processes and for experimental results

(Ahmed et al., 2016; Kalpathy-Cramer et al., 2015). To support this

approach, recent efforts started exploring the use of image informa-

tion for biomedical document classification/retrieval (Apostolova

et al., 2013; Müller et al., 2012; Shatkay et al., 2006). However, an

obstacle toward automatically obtaining the information within

published figures is the abundance of compound figures, i.e. images

that consist of multiple panels, where each panel may carry a com-

pletely different type of information, obtained via diverse modal-

ities. For instance, graphs microscopy and x-ray images may all be

shown side-by-side as panels in one single figure (see e.g. Fig. 1). To

display and to further process individual image panels, it is essential

to first segment each compound image into its constituent panels.

Current compound image segmentation methods are primarily

based on finding gaps between panels (Antani et al., 2008;

Apostolova et al., 2013; Cheng et al., 2011; Chhatkuli et al., 2013;

Murphy et al., 2001; Taschwer and Marques, 2016; Yuan and Ang,

2014). Figure 1a shows a compound image whose panels are sepa-

rated by gaps. The white bands in the image are detected as gaps and

used for separation. However, in low quality images gaps are hard to

detect, which leads to under-segmentation, that is, parts of the image

may not be segmented into individual panels. To overcome this issue,

the image can be transformed, for instance via edge-detection (Cheng

et al., 2011; Taschwer and Marques, 2016; Yuan and Ang, 2014), so

that the gaps are more readily detected. Although current gap-based

methods treat all solid bands within figures as gaps, such bands do

not always serve as panel separators and can be an integral part of the

image itself. As such, gap detection methods may erroneously split

images into too many panels, to which we refer as over-segmentation.

To address the under- and over-segmentation, captions and image
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labels have been used to estimate the number of panels in compound

images and to identify true gaps of separation (Antani et al., 2008;

Apostolova et al., 2013; Cheng et al., 2011). However, such methods

are not effective, and may not even be applicable, when captions and

labels are not available. Additionally, extracting labels from images

requires optical character recognition, which can be a time-

consuming operation. An alternative approach (Chhatkuli et al.,

2013), applies several rules to first eliminate gaps that are not panel

separators thus aiming to avoid over-segmentation. Although this

method does not utilize information from image captions and labels

and is more efficient, it is still time consuming. Furthermore, its separ-

ation accuracy leaves much room for improvement.

Unlike the above methods that segment images using gaps,

Shatkay et al. (2006) proposed a method based on first identifying

connected contents within individual panels. They used connected

components analysis (CCA) to detect individual panels in images.

Follow-up work by Cheng et al. (2011), Kim et al. (2011) and Lopez

et al. (2013) used the same method for panel separation as well.

Similar to the gap-based technique discussed earlier, CCA also suf-

fers from over-segmentation; unconnected small objects may be de-

tected as individual panels and segmented off the main image-panel.

Aiming to address a different task, namely the identification of

multi-paneled images, Wang et al. (2015) used a post-processing

step by setting a threshold on panel-size, to avoid fragmentation

into very small panels. However, their work was not applied to the

image-segmentation task, but rather aimed only to identify whether

an image is compound or not.

Notably, none of the above methods can segment images whose

panels are not separated by visible gaps. Figure 1b shows an ex-

ample of such images, which are called stitched compound images.

Santosh et al. (2015a,b) first proposed a method to separate stitched

compound images based on straight lines detected in the images.

Their method is applicable only to stitched compound images but

does not offer a way to identify stitched images among other figures.

As such, it was only applied to manually-identified stitched images.

Here we present a new CCA-based scheme for segmenting com-

pound images, including stitched compound images, while address-

ing both over- and under-segmentation issues. To do this, we first

propose a pre-processing step to broaden and un-blur gaps in images

so that more images can be segmented. We then extend our method

by adding an assessment step to detect, evaluate and modify segmen-

tation errors, and re-separate some of the images accordingly. The

rest of the article is organized as follows: Section 2 describes the

complete framework of our method; Section 3 presents experiments

used to assess the performance of our method along with the results;

Section 4 discusses and analyzes the results, while Section 5 con-

cludes and outlines directions for future work.

2 Methods

Our goal is to segment compound images appearing in biomedical

documents. As noted before, compound images consist of several

panels, typically separated by gaps, which appear as vertical or hori-

zontal light/dark bands; such gaps may be blurry or too thin to rec-

ognize. We first pre-process compound images by resizing,

adjusting, and cropping them to make the gaps in the images clearer

and broader. We then apply CCA to segment compound images into

constituent panels. This approach eliminates small objects and keeps

only the main components as individual panels. We assess separ-

ation quality of the extracted panels and modify them if the image

segmentation quality appears to be low.

We note that CCA may not segment several kinds of images

correctly, namely: individual panels whose contents are not well-

connected, very blurry images, and stitched compound images. To

handle the first two types of images, we first apply an edge detector to

sharpen blurry components; we then dilate the edge image to increase

connectivity within panels. To handle stitched compound images, we

first apply an edge detector to sharpen panel boundaries. These boun-

daries, which are used for separating panels, can be detected by sum-

ming pixel values along horizontal and vertical directions. We finally

assess the segmentation quality of the panels obtained from the previ-

ous step, and modify the segmentation if needed. The complete frame-

work is shown in Figure 2. The rest of this section provides detail

about the techniques used in each of the steps.

2.1 Image pre-processing
Gaps in compound images typically separate panels into clear indi-

vidual components. However, some panels may be positioned too

close to one another, and a thin gap may be noisy or blurred, mak-

ing separation hard. To address this issue, we first scale the original

image I of size m�n, while employing bicubic interpolation (Keys,

1981; Lehmann et al., 1999); this process produces a 2m � 2n image

in which the gaps are magnified, while the contrast between each

gap and the image-region next to it is amplified. The gaps in the re-

sulting image are thus broader and clearer.

As a second step toward improving gap clarity, we note that

gaps are not always white or black, that is, the intensity of pixels in

Fig. 2. The framework for our compound image segmentation method: In

step a, we pre-process compound images to make the gaps between image

panels clearer and broader. We then apply CCA to segment compound

images into constituent panels in step b. Step c measures the separation be-

tween extracted panels and modifies them if the measurement suggests mis-

segmentation. Individual panels whose contents are not well-connected, very

blurry images, and stitched compound images may not be segmented by

CCA. We separately handle the stitched compound images by Step d, and the

other two types of images by Step e. Finally, in step f we assess the segmen-

tation quality of the panels obtained from the previous step, and modify the

segmentation if needed

Fig. 1. Examples of compound images. (a) A compound image whose panels

are separated by gaps. Taken from Figure 3 in Zhu and Qian (2006). (b) A

compound image whose panels are not separated by visible gaps, taken from

Figure 1 in Chooneea et al. (2010)

2 P.Li et al.

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btx611/4430539
by University of Delaware user
on 17 February 2018

Deleted Text: ; Cheng <italic>et<?A3B2 show $146#?>al.</italic>, 2011
Deleted Text: While 
Deleted Text: ,
Deleted Text: )
Deleted Text: paper 
Deleted Text: Connected Component Analysis (
Deleted Text: )
Deleted Text: P
Deleted Text: <IMG_FOUND/>
Deleted Text: <IMG_FOUND/>


gaps is non-binary. We therefore adjust the intensity of images. By

setting a lower threshold Tlow and an upper threshold Thigh on the

image, we re-map pixel intensities whose values are in the interval

[Tlow, Thigh] to the entire intensity interval [0, 1] by using linear

mapping. This mapping enhances contrast within the image so that

gaps, which are the lightest or the darkest bands in compound

images, become clearer. In the experiments described here, we set

Tlow to 0.05 and Thigh to 0.95.

Last, we note that it is hard to distinguish between the overall

boundary of the whole image and boundaries of individual panels.

Thus, to disambiguate image-boundaries, we crop the image borders

by removing rows and columns of pixels whose maximum gradient

value is 0. The image obtained by applying all the pre-processing

steps is denoted by Iprocessed.

2.2 Connected component analysis
To segment a pre-processed image, we first detect connected compo-

nents within it. We assume that gaps among image-panels are white

(which can be reversed later by inverting pixel values). To identify

gaps among panels, a binary mask M is generated as:

M x;yð Þ ¼
1 if Iprocessed x; yð Þ � t;

0 if Iprocessed x; yð Þ > t;

(
(1)

where Iprocessed x; yð Þ denotes the pixel at row x and column y in the

pre-processed image Iprocessed. By setting the threshold t, each pixel

located at coordinate (x, y) within the pre-processed image Iprocessed

for which Iprocessed x; yð Þ > t is labeled as background (M x; yð Þ ¼ 0)

and is labeled as foreground (M(x, y) ¼ 1) otherwise. In our experi-

ments the threshold t is set to 0.95. Based on the mask M, we detect

connected components by applying the Connected Component

Labeling method (Gonzalez and Woods, 2002). This labeling works

by scanning the mask M and assigning values to pixels as follows:

For each pixel, pixels above and below it as well as to its left and

right are considered adjacent; adjacent pixels sharing the same inten-

sity are assigned the same label. A connected component is viewed

as a set of pixels that have the same label value. A panel bounding

box is set around the smallest rectangle that contains all pixels in

each connected component. To detect panels separated by black or

dark gaps within images, we generate complement images by replac-

ing each pixel value v by 1� v.

Using CCA may generate some small bounding boxes due to small

and unconnected objects, such as text, in the image. We thus set two

thresholds to initially eliminate bounding boxes of very small box-

height or box-width: theight ¼ height=20, twidth ¼ width=20, where

width and height are the total figure width and height. The relatively

large bounding boxes, which typically correspond to the main compo-

nents of the image, are kept and viewed as the main segmented panels

within the compound image.

Figure 3 illustrates the CCA method. Figure 3a shows a pre-pro-

cessed image Iprocessed. Figure 3b is the binary mask generated ac-

cording to Equation (1). By using the Connected Component

Labeling method, we obtain the bounding boxes of connected com-

ponents, shown as textured rectangles in Figure 3c. We then extract

only the main components that are covered by large bounding boxes

produced by the CCA process. Figure 3d shows the preliminary seg-

mentation resulting from CCA.

After the CCA method is applied, some pieces of the original

image may not be covered by the segmented panels, or the original

image may be over-segmented. We next present our approach to as-

sess and adapt segmentation results in order to address these

shortcomings.

2.3 Segmentation quality assessment
We assess segmentation quality by employing the following five

steps: (i) Merge overlapping panels; (ii) Temporarily eliminate small

components; (iii) Recover missing panels; (iv) Check segmentation

area; and (v) Recover small components. Steps (i)–(iii) above are

used to evaluate and modify individual panels obtained by the seg-

mentation methods discussed in this section. Steps (iv) and (v) are

used to evaluate and adapt the segments.

1. Merge overlapping panels: Components within a panel may

be erroneously detected by CCA as individual panels. As the larg-

est connected component within a panel is typically indicative of

the panel’s boundary, the bounding boxes of smaller components

within the same panel will typically overlap with the bounding box

of the largest component. For example, the bounding box of

legends may overlap the bounding box of corresponding line

graph. We thus compute the ratio between the intersection area

and the area of the minimum intersecting bounding box, and

merge two bounding boxes when their overlap ratio exceeds a cer-

tain threshold tmerge. In the experiment described here, we set tmerge

to 0.1. Figure 4 illustrates the utility of this merging step. Figure 4a

shows the two detected bounding boxes around a graph and its re-

spective legend; notably, the two bounding boxes overlap. Figure

4b shows the segmentation result obtained by using CCA. As the

computed ratio between the intersection area and the area of the

legend bounding box exceeds tmerge, we merge the bounding boxes

surrounding the graph and the legend into one. Figure 4c shows

the resulting merged panel.

2. Temporarily eliminate small components: Similar to the elim-

ination step in CCA, we eliminate bounding boxes that are small

(<1/5 in height or width) compared with the largest bounding box,

thus reducing noise and removing text.

3. Recover missing panels:Due to blurriness or unconnected

contents in compound figures, some panels will be omitted in our

segmentation process. We thus introduce a recovery step, in which

missing panels are detected and recovered. We assume that

each missing panel is similar in size and symmetric in position to

present panels. We thus check for each panel within the current

image whether there is sufficient space for another bounding

box to its left or right, as well as above or below it. The space

available for a bounding box next to a present panel indicates the

position of a candidate panel. We thus use the following two con-

siderations to evaluate the position of a candidate panel: First, we

note that pixels surrounding a panel boundary are typically part of

gaps, and as such, all share the same color and intensity (given

that gaps are bands of a single solid color). Second, the content

area within the candidate panel boundary, calculated as the num-

ber of non-white pixels within it, should be similar to that of the

Fig. 3. Steps in CCA. (a) The pre-processed image. The original image is Figure

4 in Fazio et al. (2011). (b) The binary mask generated according to Equation

(1). (c) The Connected Component Labeling result. Each textured rectangle rep-

resents a connected component. (d) By extracting only large connected com-

ponents, we obtain the segmentation result of the CCA method
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panel that is present. Figure 5 shows an example of such recovery.

The thick frames in the figure indicate bounding boxes of de-

tected panels. Figure 5a shows that panel A is not detected as the

bounding box for panel A is missing. Figure 5b shows the

panel introduced back into the image following the missing panel

recovery step.

4. Check segmentation area: To detect incorrect segmentation,

we compute the ratio between the sum of the areas of segmented

panels and the area of the original image. If this ratio is lower than

0.5, we consider the segmentation to be incorrect. Incorrect segmen-

tations are discarded and thus the image remains unsegmented.

Figure 6 shows an example of incorrect segmentation through CCA.

In Figure 6 some parts of image are detected as panels, as shown by

the bounding boxes, but the segmentation misses many parts of the

image. As the ratio between the sum of the areas bounded by boxes

and the area of the original image falls below 0.5, the segmentation

is identified as incorrect.

5. Recover small components: During the elimination of small

bounding boxes, some essential parts, such as the text/note/legend

within the image, may be erroneously eliminated. To re-adopt these

small components into the image, we merge eliminated small bound-

ing boxes into their nearest bounding box. To avoid merging bound-

ing boxes that are not part of the same panel during the recovery

process, we employ several rules to control the process:

• If merging changes both height and width of a qualified bound-

ing box—do not merge.

• If merging changes more than 20% of the height or the width of

a qualified bounding box - do not merge.
• If the height or width of a qualified bounding box changes more

than 20% through the small components recovery step, this

qualified bounding box keeps its original size and the adopted

small bounding boxes will be left alone.
• An eliminated small bounding box will at most be merged once.

After executing the five steps above, some images may still remain un-

segmented. Some of those are indeed single-paneled images, but others

still comprise multiple panels. The panels may not have been correctly

detected by the previous steps either because the image is stitched—

lacking gaps among panels, or because the image is irregularly blurred

or fragmented. These cases are discussed in the next subsection.

2.4 Handling stitched and other unsegmented images
Notably, stitched compound images differ from other compound

images, because there is no gap-separation among the panels (e.g.

Fig. 7a). To identify stitched images, we employ a classification step

that separates stitched from non-stitched compound images. We de-

fine a gap as a row or a column whose minimum gray value is above

0.95. If a gap is found in a compound image, the image is classified

as a compound image with gaps; otherwise, it is labeled as stitched.

2.4.1 Handling stitched images

Stitched compound images cannot be segmented by the CCA

method because there is no gap separating panels in such images.

Identifying panel boundaries is thus the main challenge. The SUSAN

edge detector (Smith and Brady, 1997—without applying edge-thin-

ning) is applied to identify pixels whose neighbors’ intensity sharply

changes as SUSAN has demonstrated the best performance in this

context. The edge detector is applied to the pre-processed image

Iprocessed to generate a binary edge image in which the boundaries be-

tween panels are intensified (see e.g. Fig. 7b). The objective thus be-

comes that of detecting boundaries in the resulting edge image Iedge.

Given an edge image Iedge, if pixel (x, y) is detected as a pixel along

an edge we set Iedge x; yð Þ ¼ 1. Summing the pixel value along the

horizontal and the vertical directions gives rise to two projections:

Projhorizontal and Projvertical, which are calculated as:

Projhorizontal ¼ Iedge x; yð Þ; y 2 1 . . . 2n;

Projvertical ¼ Iedge x; yð Þ; x 2 1 . . . 2m:
(2)

The values 2n and 2m are the width and height of the edge image,

respectively. The panel segmentation takes place along the horizon-

tal or the vertical line that goes through the highest projection pos-

ition. For images with complex layout, the boundary between

panels may not cross the whole image; in such cases we recursively

segment the image along one direction at a time, where the

Fig. 4. The affect of merging overlapping panels. (a) The original image is

taken from Figure 3, panel A, in Bonay et al. (2005). The bounding boxes,

shown as dashed frames, of both the graph and its legend are detected using

the CCA method. The intersection area is shown shaded. (b) Segmentation

result based on the detected bounding boxes without merging overlapping

panels. (c) Segmentation result after merging the two (partially overlapping)

bounding boxes into one panel

Fig. 5. (a) Segmentation result without missing panel recovery versus (b) The

result after missing panel recovery. In (a) the bounding box of panel A, which

is shown as shaded, is not detected using only the CCA method, resulting in

panel A not being recovered. In part (b) the bounding box of Panel A is de-

tected by employing the missing panel recovery step. The recovered panel is

shown surrounded by a dashed frame in (b). The original image is taken from

Figure 5 in Saka and Smith (2007)

Fig. 6. An example of incorrect segmentation. The original image is taken

from Figure 1 in Gálvez-Gastélum et al. (2010). The blue rectangles represent

the segmentation result obtained through CCA. The part of the image not cov-

ered by blue rectangles is missing from result of the CCA method as the con-

nected region in that part is too small to be detected
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projection peak value is at least 0.7 of the height or the width of the

region currently considered for segmentation.

Figure 7 shows an example of the steps applied to stitched

images. Figure 7a is the original stitched compound image. Figure

7b shows the edge image obtained by applying an edge detector.

Panel boundaries are observed as straight black lines in the image.

Figure 7c shows the horizontal projection plot Projhorizontal of Figure

7b. By applying the selection of a projection peak, we obtain the seg-

mentation result shown in Figure 7d.

2.4.2 Handling potential blurry or fragmented images

To address the remaining unsegmented images, which are poten-

tially blurry, fragmented or having many fine details, we first apply

an edge-detector to to sharpen components in the pre-processed

image Iprocessed. As with the case of stitched images, we use the

SUSAN edge detector (without applying edge-thinning). The corres-

ponding edge image, denoted Iedge, may still have poor connectivity.

To enhance connectivity of components in Iedge, we dilate the con-

nected regions within the edge image using the minimum gap-width

in the image as the dilation factor. After dilation, the connectivity

within the dilated edge image is increased. We then apply the CCA

method on the dilated edge image again to obtain the segmentation.

Figure 8 illustrates these steps, applied to example blurred/frag-

mented images. Figure 8a shows an original compound image. By

applying the SUSAN edge detector, we first unblur the blurry com-

ponents, as shown in Figure 8b. We then find the gaps in the edge

image along the horizontal and the vertical directions and use the

width of the thinest gap as the dilation factor. Figure 8c is the dilated

edge image, while Figure 8d shows the segmentation result obtained

by using CCA on the dilated edge image. Two panels are detected

and highlighted by bounding boxes in Figure 8d. The augmented

method thus correctly handles this blurry and fragmented image and

identifies the segments within it, unlike the original CCA method

(see Fig. 6).

3 Experiments and results

To evaluate our method we conducted two sets of experiments,

using datasets from the Figure Separation task in the ImageCLEF

Medical shared task (De Herrera et al., 2013, 2015, 2016). The first

set of experiments aims to compare the separation accuracy ob-

tained by the different steps of our segmentation method. We use

the training and test datasets of ImageCLEF2015 to train our system

and test its performance.

In the second set of experiments, we compare the separation ac-

curacy of our comprehensive method against that of state-of-the-art

systems using test datasets from ImageCLEF 2013, 2015 and 2016.

Additionally, to demonstrate the general applicability of our

method, we test the method we have developed using the

ImageCLEF’15 dataset on the 2013 test dataset.

3.1 Datasets and evaluation
We used five ImageCLEF datasets in this study, two (from

ImageCLEF’15 and ’16) for training and three (from

ImageCLEF’13, ’15 and ’16) for testing. The images in the datasets

are first extracted from the biomedical publications stored in the

PubMed Central and then identified as compound images by manu-

ally classification. The number of images and ground-truth panels in

these datasets are shown in Table 1.

To evaluate our image separation performance, we use the tool

provided by ImageCLEF Medical (De Herrera et al., 2013). This

tool computes the accuracy of the separation result for a compound

image Ii, where the accuracy is defined as:

ACCi ¼
Ci

max NG
i ;N

D
i

� � ;
where Ci is the number of detected panels that overlap with at least

two-third of the area of the ground-truth panel, NG
i is the true num-

ber of panels in the image, and ND
i is the total number of panels we

detected. The overall accuracy for the dataset, denoted ACCDS, is

calculated by averaging the accuracy over all images:

ACCDS ¼
Pi¼n

i¼1 ACCi

n
;

where n is the number of images in the dataset.

3.2 Results
Table 2 shows the separation accuracies obtained in our first set of ex-

periments using different combinations of steps within our method

over the ImageCLEF2015 test dataset. The table shows both the ac-

curacy obtained over the entire dataset as well as that calculated over

only those images that were actually segmented into sub-panels by

our method. The CCA method alone achieves 79.37% accuracy,

Fig. 7. Example illustrating the steps applied for handling stitched images. (a)

The stitched compound image taken from Figure 5 in Sereno et al. (2015). (b)

The edge image of the figure shown in (a). (c) The horizontal projection of (b)

is calculated according to Equation (2). (d) Segmentation result obtained by

choosing the peak position of the horizontal projection

Fig. 8. Example illustrating the steps of handling potential blurry and frag-

mented images. (a) The compound image taken from Figure 1 in Gálvez-

Gastélum et al. (2010). (b) The edge image of panel (a). (c) The dilated edge

image. (d) The result of CCA on the dilated image
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where 279 images remain unsegmented. For the 3102 images that

were segmented by CCA, the accuracy is 86.51%. Proceeding the

CCA method by a pre-processing step leads to an increase of 2.75%

in accuracy. Table 2 also shows that 80 additional images are seg-

mented when the pre-processing step is added. By combining the

segmentation-quality-assessment step and the CCA method, 38 fewer

images are separated compared with CCA-alone, but the overall ac-

curacy increases by 3.32% (compared with the first row in the table).

Moreover, the accuracy for the 3064 images that are segmented is

91.25%. Thus, the results suggest that segmentation quality assess-

ment contributes to improved accuracy. Combining the image pre-

processing step and the segmentation-quality-assessment step with the

CCA method (Row 4 in the table), the overall accuracy reaches

85.82%, and the accuracy for the 3146 segmented images reaches

92.23%, but 235 images remain unsegmented.

To reduce the number of images that remain un-segmented, we

utilize additional steps, as described in Section 2. Applying the step

of handling stitched images, the accuracy for the whole dataset

reaches 89.31% and the number of compound images that remain

unsegmented decreases to 27. Similarly, applying the step of han-

dling potential blurry or fragmented images, the accuracy reaches

89.83% and the number of compound images that remain unseg-

mented decreases to 71. Combining all the steps leads to the highest

accuracy on the ImageCLEF2015 test dataset (90.65%) and on the

segmented images (92.65%).

The combination of all steps similarly achieves the highest

performance, compared with subsets of steps, when applied to

other datasets, further demonstrating the effectiveness of our frame-

work. Results on ImageCLEF’15 and ’16 training datasets and

ImageCLEF’13, and ’16 test datasets are shown in Supplmentary

Tables S2–S5.

In the second set of experiments, we compare the results

achieved by our comprehensive method with those achieved by

other systems submitted to ImageCLEF2015 Medical, using the

2015 test dataset. Santosh et al.’s (2015a,b) method [based on their

previous work (Apostolova et al., 2013; Santosh et al., 2015a,b) dis-

cussed in Section 1] achieved an accuracy of 84.64%, while

Taschwer and Marques (2016) achieved an accuracy of 84.90%.

Our method performs significantly better than all other systems by

achieving an accuracy of 90.65%.

We demonstrate the general applicability of our method by

using parameters obtained by training over one of the datasets

(ImageCLEF’15) to segment images provided in another dataset

(ImageCLEF’13); our result shows 84.47% accuracy. The other three

top performers (De Herrera et al., 2013; Kitanovski et al., 2013;

Simpson et al., 2013) achieved accuracy of 68.59, 69.27 and 84.64%,

respectively. We note that while the performance of our method is

slightly lower than that reported by De Herrera et al. (2013) using

method proposed by Chhatkuli et al. (2013), the time our system re-

quires to process one image is 0.74 s on average (wall-clock), which is

much lower than that of the latter method, which is 2.4 s. Moreover,

the ground truth of the ImageCLEFck) dataset was generated using a

separation method proposed by Chhatkuli et al. (2013) as a basis and

manually correcting the automatically generated results, thus biasing

the ground truth provided by ImageCLEF toward those produced by

the system described in De Herrera et al. (2013).

For ImageCLEF’16, as the only team participating in the

Figure Separation task, we achieved an accuracy of 84.43% on the test

dataset. The segmentation accuracy is similar to the best result

obtained in ImageCLEF’15. This result is particularly noteworhy, given

that the difficulty of the Figure Separation task was increased in 2016

by increasing the number of stitched compound images, as indicated in

the task description (De Herrera et al., 2016).

4. Discussion

The results demonstrate that our method segments compound

images more accurately than other state-of-the-art methods (De

Herrera et al., 2013; Kitanovski et al., 2013; Santosh et al.,

2015a,b; Simpson et al., 2013; Taschwer and Marques, 2015). Due

to the complex structure of published biomedical images, automatic

detection of the correct separation gap is challenging. In contrast to

these gap-detection based methods, our method segments compound

images based on the connected contents within individual panels.

Moreover, the quality assessment step evaluates separation quality,

corrects for separation errors, and discards incorrect segmentations.

Table 1. Datasets used for training and testing our compound

image segmentation method

Figure separation dataset No. of images No. of panels

ImageCLEF’13 test 1429 5433

ImageCLEF’15 test 3381 12 789

ImageCLEF’15 training 3403 14 531

ImageCLEF’16 test 1615 8528

ImageCLEF’16 training 6782 27 315

Note: Names of datasets are shown on the left. The middle column shows

the total number of images, while the rightmost column shows the number of

ground-truth panels associated with each of the respective datasets.

Table 2. Comparison of segmentation accuracies obtained by using different combinations of steps within our method

Steps used Overall accuracy over

the whole dataset

No. of images

in the dataset

Accuracy over

segmented images

No. of segmented

images

CCA-alone 79.37% 86.51% 3102

Image pre-processing þ CCA 82.12% 87.26% 3182

CCA þ Segmentation quality assessment 82.69% 91.25% 3064

Image pre-processing þ CCA þ Segmentation quality assessment 85.82% 92.23% 3146

Image pre-processing þ CCA þ Segmentation quality assessment þ
Handling stitched images

89.31% 3381 90.03% 3354

Image pre-processing þ CCA þ Segmentation quality assessment þ
Handling potential blurry and fragmented images

89.83% 91.76% 3310

Combination of all steps 90.65% 92.65% 3308

Note: The leftmost column indicates the combination method used in the respective experiment. The next column shows the accuracy obtained over the entire

dataset, which consists of 3381 compound images. The second column from the right shows the accuracy calculated only over those images that were actually seg-

mented by the respective method. The number of images segmented by each method is shown on the right. The highest accuracies are shown in boldface.
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Compound images that are hard to segment, including stitched,

blurry or fragmented images are also handled well by our method.

As an example, Figure 9 shows a tree image (a), along with its

ground-truth segmentation (b), provided by ImageCLEFions The

segmentation shown in 9(b) was obtained by using a gap-detection

based separation method proposed by Chhatkuli et al. (2013) as a

basis and manually correcting the automatically generated results

(De Herrera et al., 2013). The segmentation is clearly incorrect as it

over-segments Figure 9a, which consists of only three panels, into

five panels. Gaps within the image are erroneously detected as panel

separators. In contrast, Figure 9c shows the correct segmentation

obtained by our method. The quality-assessment step we use identi-

fies the over-segmentation of the image (see e.g. Fig. 6) resulting

from CCA, and applies instead the method we have described for

handling potential blurry and fragmented images.

While our method successfully separates most compound

images, there are a few cases where the separation is incorrect. For

example, Figure 10a shows a case of under-segmentation, where the

topmost part was not correctly identified as a panel. The method

first detected the bounding boxes around two small disconnected gel

images, within Panel A. As the height of these bounding boxes is

<1/10 the height of the largest bounding box detected in the image,

the method eliminated the small bounding boxes detected in panel A

based on the Segmentation Quality Assessment step, leading to

under-segmentation. As another example of under-segmentation,

Figure 10b shows an image where the three stitched panels at the

top as well as those at the bottom were incorrectly detected as two

individual panels. As our method detected the two disconnected

panels within the image it has pre-maturely stopped the separation

process, without checking for stitched images. We plan to extend

our method to re-assess the image and re-segment it if the segmented

result contains compound images. Figure 10c illustrates a case of

over-segmentation, where panels A and D are both split into two

panels, as each of these panels consists of two well-separated com-

ponents. Although the six panels we thus detect indeed do not match

the four panels (A–D) annotated in the original figure, such over-

segmentation may not necessarily negatively impact downstream

processing. We shall investigate this issue in future studies, and pos-

sibly through the application of deep learning—if sufficient anno-

tated data can be obtained.

Notably, our system typically yields correct panel-separation;

Figure 11 illustrates additional cases of such successful separation.

Figure 11(a–c) were obtained by applying our method to compound

images consisting of a single type of panel, e.g. graphs, medical

images, or protein images. Compound images that consist of mul-

tiple panel types present further challenges. It is harder to identify

the gaps for separation within such images, as the size of different

type of panels and the content connectivity within different type of

panels typically vary. The gap-detection based methods look for

gaps throughout the whole image, and as such mis-identify some

gaps as separation-gaps. In contrast, our method segments the image

based on the connected components detected within the image, and

as such is not affected by the variation in panel type within a com-

pound image. Figure 11(d–f) demonstrates successful panel-

separation in images consisting of multiple types of panels.

5 Conclusion

We presented a new scheme for segmenting compound images, includ-

ing stitched compound images. We first proposed a pre-processing step

to make gaps clearer in images so that more images are segmented. We

then introduced a method based on CCA to segment images into pan-

els. The segmentation errors were addressed by the step of segmenta-

tion quality assessment. Importantly, this step evaluates separation

quality, modifies separation errors, and ensures that only correct panels

are extracted from images. The over- and under-segmentation errors in

very blurry images, fragmented images and stitched images are hard to

correct. As such, we propose two advanced methods, namely, for han-

dling potential blurry or fragmented images and for handling stitched

images, to re-separate the three kinds of images accordingly. Handling

potential blurry or fragmented images is done by dilating the content

in images so that components within a panel become more connected

Fig. 9. Example comparing the segmentation result obtained by a gap-detec-

tion based method (Chhatkuli et al., 2013) versus our system. (a) The com-

pound image taken from Figure 2 in Voss et al. (2006). (b) The segmentation

result on image (a) obtained using method proposed by Chhatkuli et al.

(2013). (c) Our segmentation result on image (a)

Fig. 10. Examples of inaccurate segmentation obtained by our method. (a, b)

show two examples of under-segmentations, while (c) shows an example of

over-segmentation. The original images (a–c) correspond to Figure 4 in

Fazzino et al. (2010), Figure 3 in Piciucchi et al. (2011) and Figure 2 in Seibert

et al. (2002), respectively

Fig. 11. Examples of successful panel separation obtained by our method.

(a–c) show segmentation when panels are of a single modality. (d–f) show

segmentation of panels stemming from multiple modalities. The original

images (a–f) are taken from Figure 4 in Fazzino et al. (2010), Figure 3 in

Piciucchi et al. (2011), Figure 6 in Liu et al. (2009), Figure 2 in Evans et al.

(2002), Figure 2 in Koyanagi et al. (2010) and Figure 1 in Kallergi et al. (2008),

respectively
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and the gaps between panels are used for separation. Handling of

stitched images works by applying an edge detector and detecting

boundaries between panels for separation. The results obtained demon-

strate that our comprehensive method segments compound images

more accurately than other reported methods.

As there is an increasing drive toward utilizing image information

within biomedical documents, our method effectively addresses an es-

sential need for extracting panels within published biomedical figures,

while significantly improving over the state-of-the-art. As part of future

work, we shall further develop methods to identify and address specific

problem cases. We shall also continue to develop and improve on the

interface to the FigSplit system, based on users’ needs and input.
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