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Abstract— Multiple adverse health conditions co-occurring in 
a patient are typically associated with poor prognosis and 
increased office or hospital visits. Developing methods to identify 
patterns of co-occurring conditions can assist in diagnosis. Thus, 
identifying patterns of association among co-occurring conditions 
is of growing interest. In this paper, we report preliminary results 
from a data-driven study, in which we apply a machine learning 
method, namely, topic modeling, to Electronic Medical Records 
(EMRs), aiming to identify patterns of associated conditions. 
Specifically, we use the well-established Latent Dirichlet Allocation 
(LDA), a method based on the idea that documents can be modeled 
as a mixture of latent topics, where each topic is a distribution over 
words. In our study, we adapt the LDA model to identify latent 
topics in patients’ EMRs. We evaluate the performance of our 
method both qualitatively and quantitatively, and show that the 
obtained topics indeed align well with distinct medical phenomena 
characterized by co-occurring conditions. 
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I.  INTRODUCTION  

According to the Centers for Disease Control and Prevention, 
one in four individuals in the United States suffers multiple 
health conditions, while the rate is even higher (three in four), 
among individuals who are 65 or older. Per capita healthcare 
expenditure increases sharply as the number of conditions 
increases [1]. Patients suffering from multiple conditions pose a 
challenge to healthcare service providers as their prognosis is 
often poor and their visits frequency to primary care providers 
and hospitals is increased. Thus, identifying co-occurrence 
patterns of medical conditions is of growing interest, as it can 
help build accurate prediction models for hospitalization, 
progression of disease, or death. We report here preliminary 
results from a data-driven study in which we apply topic 
modeling to Electronic Medical Records (EMRs), aiming to 
identify patterns of associated conditions.  

We conduct our analysis on a dataset comprising EMRs of 
patients obtained from multiple primary care practices in the 
State of Delaware. A total of 13,111 patient records were 
included in this study. They represent patients whose kidney 
function is decreased, as indicated by lower than normal (below 
60 mL/min/m2) estimated Glomerular filtration rate (GFR), 
which is a common marker of kidney function. Each record 
includes attributes such as age, gender, lab test results 

and diagnosed conditions, recorded during multiple visits over 
a period of eight years. 

We focus our analysis only on the diagnosed conditions 
attribute in the EMR dataset, represented through the healthcare 
terminology of SNOMED-CT codes [2], a common standardized 
language to record diagnosed conditions in EMRs, across 
different healthcare providers. SNOMED-CT is specifically 
designed to capture detailed information during clinical care by 
enabling clinicians to choose appropriate conditions from a 
predefined fine-grained list. The large number of patients, the 
wide timespan in our EMRs and the use of SNOMED codes to 
represent diagnosed conditions give rise to a large-scale dataset 
suitable for identifying patterns of co-occurring conditions. 

Topic modeling is primarily used for identifying latent topics 
in a set of documents, based on the idea that documents can be 
modeled as a mixture of latent topics, where each topic is a 
distribution over words. In our study, a patient file, comprising 
all coded conditions with which the patient has been diagnosed, 
is viewed as a document, and each code is treated as a word. We 
use a well-established topic modeling technique, Latent 
Dirichlet Allocation (LDA) [3] to model patient files as though 
they were generated as a mixture of K underlying topics, where 
a topic is a probability distribution over SNOMED codes; each 
code is assigned a probability to be associated with each topic. 
We hypothesize that the coded conditions that show a high 
probability to be associated with a specific topic, indeed tend to 
co-occur in patients. 

Previous studies in other domains have employed topic 
models for a variety of natural language processing and image 
processing applications [3, 4]. Recently, topic models have also 
been applied in the biomedical domain for case-based retrieval 
[5], characterization of clinical concepts over time [6], and 
prediction of patient satisfaction and mortality [7, 8], among 
others. Topic models have also been employed to analyze 
differences in language use between depressed and non-
depressed individuals [9], as well as to rank gene-drug 
relationships in the biomedical literature [10]. The majority of 
previous applications have centered around text data. To our 
knowledge, only a handful of studies have applied topic models 
to non-text data [11, 12]. However, compared to these studies, 
we analyze a much larger dataset and take a more rigorous 
approach to assess the clinical relevance of our results and to 
quantitatively evaluate the performance of our method.   
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We evaluate the performance of our method using two 
approaches. First, we assess the medical validity of our results 
by examining whether the conditions that show a high 
probability to be associated with a topic are known to co-occur 
according to the medical literature. Second, we quantitatively 
assess the topics obtained from our model by measuring how 
distinct they are from one another (distinctiveness) and whether 
a topic can be specified by a small number of conditions 
(tightness). We measure distinctiveness by calculating inter-
topic distance using Jensen-Shannon divergence [13] – a 
symmetric measure of similarity between two probability 
distributions. Tightness is measured by inspecting, for each 
topic, the number of associated codes whose probability is 
greater than a threshold value; a low number of associated codes 
indicates that a topic can be characterized by a handful of codes, 
and is thus tight. Our results show that the topics are indeed 
distinct and tight, while aligning well with sets of conditions that 
are known to co-occur according to the medical literature. 

The rest of the paper is organized as follows: Section II 
describes the experimental setting, including the dataset used, the 
data preprocessing steps, the LDA algorithm and the Jensen-
Shannon divergence measure; Section III presents and discusses 
the results; Section IV summarizes our findings and proposes 
directions for future work. 

II.  EXPERIMENTAL SETTING  

Our dataset consists of information gathered from EMRs of 
patients in the state of Delaware, showing evidence of decrease 
in kidney function, recorded during office visits to physicians. 
Specifically, patients were included in the dataset if at least one 
estimated GFR value in their records was below 60 mL/min/m2. 
The EMRs contain several attributes such as age, ethnicity, 
gender, lab test results and diagnosed conditions collected 
between August 2007 and July 2015 for 13,111 patients. The 
average number of visits per patient, over the 8-year period, is 6. 
The age range of patients in our dataset is 18-107, where 70% of 
the patients are 58-82 and the mean age is 70 (σ =12.4). Our 
dataset consists of 60% female and 40% male patients. In this 
study, we focus solely on the diagnosed conditions attribute, 
represented via SNOMED codes. Table I lists the ten most 
frequent SNOMED codes in our dataset, along with their 
description and occurrence frequency. 

 We preprocess and organize the data to form records that can 
be used to fit a topic model. Typically in topic modeling, a word 
is the basic unit of discrete data while the set of unique words is 
referred to as the vocabulary. In contrast, in our study, we use 
diagnosed conditions, represented as SNOMED codes, rather 
than words, such that the set of unique codes forms our 
vocabulary.  To determine the set of codes included, we create a 
list in which each code is associated with the number of times it 
occurs within the dataset, and note that 180 of the 5,000 codes 
present in the dataset account for 80% of the cumulative 
frequency. To avoid sparsity in the dataset, we limit our 
vocabulary to these 180 most frequent SNOMED codes.  

 Based on this vocabulary, we create a data matrix where rows 
correspond to patient-IDs and columns correspond to SNOMED 
codes, such that each cell <p, c> in the matrix contains the 
number of times a patient p was diagnosed with condition c. 

Thus, each patient is associated with a 180-dimensional vector, 
in which each entry represents the occurrence frequency of a 
diagnosed condition within the patient’s record. We refer to each 
such vector as a patient-conditions record and to the collection 
of all such vectors as the patient-conditions corpus, represented 
by a matrix of dimension 13,111 by 180.  
 

TABLE I. THE TEN MOST FREQUENT SNOMED CODES IN OUR EMR DATASET 

SNOMED 
Code 

SNOMED Description Number of 
Occurrences 

1201005 Benign Essential Hypertension 148,424 

55822004 Hyperlipidemia 82,890 

44054006 Type 2 Diabetes Mellitus 59,156 

235595009 Gastroesophageal Reflux  48,731 

267432004 Pure Hypercholesterolemia 47,022 

414916001 Obesity 40,499 

61582004 Allergic Rhinitis 40,066 

40930008 Hypothyroidism 39,534 

53741008 Coronary Arteriosclerosis 36,795 

271795006 Malaise and Fatigue 27,581 

 

Latent Dirichlet Allocation: LDA is a generative 
probabilistic model based on the idea that documents can be 
modeled as a mixture over latent topics, where each topic is a 
distribution over words [3]. We employ LDA to model patient 
records as though they were generated by sampling from a 
mixture of K underlying topics, where a topic is a multinomial 
distribution over all SNOMED codes in our vocabulary. Each 
code is thus viewed as a sample from a multinomial distribution 
over codes, and each such multinomial is selected from a 
distribution over K topics. By inferring the probability 
distributions associated with the K topics, we can characterize 
patient records as multinomial distributions over codes.  

 

The number of patients in our corpus is 13,111. The number 
of unique codes that form our vocabulary is denoted by V; in the 
experiments reported here V=180. We represent a patient’s 
record as a V-dimensional vector of SNOMED codes, referred 
to as a patient-conditions record. The patient-conditions records 
are obtained by preprocessing the original patient file in the 
EMR; a patient file comprises all coded conditions with which 
the patient had been diagnosed during the 8-years period 
reflected in our dataset.  

 

We represent each patient file, Fi (1 ≤ i ≤ 13,111), as a vector 
of codes = ,… , , where Ni is the total number of code 

occurrences in the ith patient file. Each code, , in the vector is 
one of the V SNOMED codes in our vocabulary, viewed as a 
value taken by a respective random variable, Cj (1≤ j ≤ Ni), 
denoting the code value occurring in the jth position of the ith 
patient file. We note that any of the V codes in our vocabulary 
can appear at any position in a patient file. The generative 
process for each patient file consists of the following steps: 
First, a multinomial distribution over V codes for the tth topic, 
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denoted Φt (1≤ t ≤ K), is obtained by sampling from a Dirichlet 
distribution with parameter α; Φt represents the conditional 
probability of a code to occur in the tth topic. Next, for each 
patient file, , a multinomial distribution over K topics, denoted 
θi, is sampled from a Dirichlet distribution with parameter β; θi 
represents the conditional probability of the file to be associated 
with each of the K topics. Subsequently, for each code-position,  
j, in the file, Fi : (1) A topic is drawn by sampling from θi; the 
selected topic at position j in the file Fi is denoted  ∈{1,…,K}; 

(2) Given the topic  a code, , is drawn by sampling from the 
topic-code distribution,  . 

To learn the model parameters based on our data, we use the 
R topicmodels library [14]. 

 

 Jensen-Shannon Divergence:  The Jensen-Shannon 
divergence (JSD) [13] is a symmetric measure of similarity 
between two probability distributions. Let  = <x1,..., xN> and 		= <y1,..., yN>  be two N-dimensional vectors that 
represent two discrete probability distributions. The 
Jensen-Shannon divergence between  and  is defined as: ( || ) = 	 ∑ 	+	 ∑ 	 , where 

the vector  = <m1,..., mN> is a N-dimensional vector 
representing the mean distribution of and , calculated as: = ( + ). 
 The JSD values range between 0 and ln(2) (~0.693), where 
0 indicates identical distributions, and ln(2) indicates non-
overlapping distributions. We use the JSD to calculate the inter-

topic distance between each pair of topics, where the distribution 
dimension N is 180 (the number of codes in our vocabulary). 

III.  EXPERIMENTS AND RESULTS 

Experiments: We applied LDA to the patient-conditions 
corpus to obtain topics, where each topic is a distribution over 
SNOMED codes. We ran multiple experiments varying the 
number of topics, and focus here on results obtained when using 
20 topics. To ensure an appropriate burn-in period, which is the 
initial stage of the sampling process when the Gibbs samples are 
poor estimates of the posterior, we discarded the first 4,000 
samples, after which we saved 4,000 Gibbs samples at regular 
intervals of 100 [15]. We used the default values, set in the 
topicmodels library, for the parameter β (0.1) and for the initial 
value of the parameter α (50/M) [14].  

Table II shows examples of six characteristic topics from the 
20 identified by our model. For each of the six topics, we list the 
ten diagnosed conditions that have the highest probability to 
occur in the topic, along with their respective probabilities. We 
display only ten diagnosed conditions, since for most topics, the 
cummulative probability mass associated with these conditions 
accounts for over 0.9 of the total probability mass, as shown at 
the bottom row of the table. Moreover, the remaining diagnosed 
conditions have probability lower than 0.01. Similar results were 
obtained for the other 14 topics. 

Medical Relevance: To evaluate whether topic modeling 
indeed identifies patterns of association among patients’ 
conditions, we verify that the most probable conditions within 
each topic are indeed known to co-occur according to the 
medical literature. 
 

TABLE II. EXAMPLES OF SIX CHARACTERISTIC TOPICS FROM THE TWENTY IDENTIFIED BY OUR MODEL; EACH COLUMN LISTS TEN DIAGNOSED CONDITIONS 
THAT HAVE THE HIGHEST PROBABILITIES TO BE ASSOCIATED WITH THE RESPECTIVE TOPIC, ALONG WITH THEIR PROBABILITIES  
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As seen from the leftmost column in Table II, many of the 
diagnosed conditions grouped together in Topic A are clearly 
related to Diabetes, which is one of the most frequent causes of 
decrease in kidney function in the US [16]. It is well established 
medically that Type 2 Diabetes and Hyperlipidemia are closely 
associated conditions [17]. Similarly, Type 2 Diabetes Mellitus, 
Benign Essential Hypertension and Morbid Obesity are known 
to co-occur [18]. Moreover, Vitamin D deficiency is a common 
phenomenon in Chronic Kidney disease and hence frequently 
co-occurs with Diabetes. Likewise, most of the conditions 
grouped together in Topic B are related to Limb or Joint pain, 
conditions frequently occuring in patients suffering from 
advanced kidney disease, which explains the high probability of 
Chronic Renal failure, Limb- and Joint-pain to all be associated 
with the same topic [19]. We similarly assess the medical validity 
of each of the other topics identified by our model [16-19]. 

Quantitative Evaluation: We next measure the quality of the 
resulting topics in terms of tightness and distinctiveness. 

 We assess the tightness of the topics by examining whether 
each can be specified by a small number of coded conditions. 
Thus for each topic we inspect the number of codes assigned a 
probability greater than a threshold value, set to 0.01. The 
observation that for each topic, only 10 or fewer of the 180 codes 
have a probability above 0.01, and that the cumulative 
probability of these 10 codes adds up to more than 0.9, indicates 
that the 10 conditions are sufficient for characterizing a topic, 
illustrating the tightness of the topics.  

 We assess the distinctiveness of the topics by calculating the 
inter-topic distance between all distinct pairs of 20 topics using 
the JSD [13] to measure how well-separated each topic is from 
another. The mean, median, and minimum values of the inter-
topic distances obtained are 0.666, 0.692 and 0.483 respectively. 
As mentioned earlier, JSD values range between 0 and ln(2) 
(~0.693), where 0 indicates identical distributions, and ln(2) 
indicates non-overlapping distributions. The higher the JSD 
value between two topics, the more distinct they are from one 
another. The high mean and median values (close to the upper 
bound of ln(2)) of the inter-topic distances indicate that the 
majority of topic pairs obtained by our model are distinct.  

IV. CONCLUSION AND FUTURE WORK  

 We reported preliminary results obtained from our data-
driven approach, using LDA to identify patterns of co-occurring 
medical conditions within an EMR dataset. Our results indicate 
that most of the coded conditions grouped together as topics are 
indeed known to co-occur according to the medical literature. 
We also quantitatively evaluate the performance of our method 
and demonstrate that the topics identified by our method are tight 
and distinct. Tightness is established by showing that each topic 
can be defined by ten or fewer conditions. Distinctiveness is 
established by illustrating that the large majority of the topic 
pairs are separated by a high Jensen-Shannon divergence.  

 We believe that our approach can be used to support clinical 
decision making. The data driven approach for identifying 
associated conditions can be used as a basis for a system that 
facilitates diagnosis and data entry in clinical settings by 
suggesting conditions that may co-occur with the patient’s 
current diagnosed conditions.  
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