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ABSTRACT

Genetic variation analysis holds much promise as a basis for

disease-gene association. However, due to the tremendous number

of candidate single nucleotide polymorphisms (SNPs), there is

a clear need to expedite genotyping by selecting and considering

only a subset of all SNPs. This process is known as tagging SNP

selection. Several methods for tagging SNP selection have been

proposed, and have shown promising results. However, most of

them rely on strong assumptions such as prior block-partitioning,

bi-allelic SNPs, or a fixed number or location of tagging SNPs.

We introduce BNTagger, a new method for tagging SNP selection,

based on conditional independence amongSNPs. Using the formalism

of Bayesian networks (BNs), our system aims to select a subset of

independent and highly predictiveSNPs. Similar to previous prediction-

based methods, we aim to maximize the prediction accuracy of

tagging SNPs, but unlike them, we neither fix the number nor the

location of predictive tagging SNPs, nor require SNPs to be bi-allelic.

In addition, for newly-genotyped samples, BNTagger directly uses

genotype data as input, while producing as output haplotype data of

all SNPs.

Using three public data sets,we compare the prediction performance

of our method to that of three state-of-the-art tagging SNP selection

methods. The results demonstrate that our method consistently

improves upon previous methods in terms of prediction accuracy.

Moreover, our method retains its good performance even when

a very small number of tagging SNPs are used.

Contact: lee@cs.queensu.ca, shatkay@cs.queensu.ca

1 INTRODUCTION

A major interest of current genomics research is disease-gene
association, that is, identifying which DNA variations are highly

associated with a specific disease. In particular, single nucleotide

polymorphisms (SNPs), which are the most common form of DNA

variation, as well as sets of SNPs localized on one chromosome—

referred to as haplotypes—are at the forefront of disease-gene

association studies (Halldörsson et al., 2004b; Crawford and

Nickerson, 2005). However, in most large-scale association studies,

genotyping all SNPs in a candidate region for a large number of

individuals is still costly and time-consuming. Thus, selecting a sub-

set of SNPs that is sufficiently informative but still small enough to

reduce the genotyping overhead is an important step toward disease-

gene association. This process is known as haplotype tagging SNP
(htSNP) selection, and it poses a current major challenge (Crawford

and Nickerson, 2005; Johnson et al., 2001).
Several computational methods for htSNP selection have been

proposed in the past few years. One widely-used approach is based

on the block structure of the human genome (Daly et al., 2001;
Gabriel et al., 2002). That is, the human genome can be viewed as

a set of discrete blocks such that within each block, there is a very

small set of common haplotypes shared by most of the population

(i.e., 80–90%). Based on this idea, these methods aim to identify

a subset of SNPs that can distinguish all the common haplotypes

(Gabriel et al., 2002), or at least explain a certain percentage of them
(Johnson et al., 2001; Avi-Itzhak et al., 2003). Another popular

htSNP selection approach (Ao et al., 2005; Carlson et al., 2004),
rooted in linkage disequilibrium (LD), is based on pairwise asso-
ciation of SNPs. This approach tries to select a set of htSNPs such

that each of the SNPs on a haplotype is highly associated with one of

the htSNPs. This way, although the SNP that is directly responsible

for the disease may not be selected as an htSNP, the association of

the target disease with that SNP can be indirectly deduced from its

associated htSNP.

Bafna et al. (2003) andHalldörsson et al. (2004) proposed a some-

what different approach. They consider htSNPs to be a subset of

all SNPs, from which the remaining SNPs can be reconstructed.

Thus, they aim to select htSNPs based on how well they predict the
remaining set of the unselected SNPs, referred to as tagged SNPs,

and reconstruct the complete haplotypes using htSNPs. To quantify

the confidence with which one group of SNPs can predict another,

they suggested a new measure called informativeness. With the

same predictive aim, Halperin et al. (2005) also proposed a new

measure, directly evaluating the prediction accuracy of a set of

SNPs. By limiting the number of predictive SNPs or restricting

them to a w-bounded neighborhood (where w is a fixed window

size � 30), both methods can identify the optimal (under these

restrictions) set of htSNPs satisfying their respective figure of merit.

These last two methods are not based on the block structure of

the human genome. Thus, they do not assume prior block partitioning

or limited diversity of haplotypes. Furthermore, they can use a com-

bination of several SNPs to predict the others. Therefore, predictive

methods typically select a smaller number of htSNPs than pairwise

association methods (De Bakker et al., 2006). However, despite their
advantages, these predictive methods still suffer from several limi-

tations. All of them can only be applied to bi-allelic SNPs (i.e., ones�To whom correspondence should be addressed.
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having only two different allelesl), and their performance is limited

by restrictions such as the small-bounded location or the fixed

number of htSNPs for each prediction. In addition, most of them

require haplotype information of htSNPs to reconstruct newly-

genotyped samples.

In this paper, we present a new method, BNTagger, for selecting

htSNPs based on their accuracy in predicting tagged SNPs, that is

not limited by previous restrictions. In addition, we provide

a haplotype-reconstruction framework for newly-genotyped sam-

ples. To identify a predictor-predictee relationship among SNPs,

we utilize conditional independencies among SNPs in the frame-

work of Bayesian networks. Bayesian networks (BNs) have been

previously used for haplotype block partitioning (Greenspan and

Geiger, 2003) and haplotype phasing (Xing et al., 2004), but to our

knowledge, this is the first time that they are applied to htSNP

selection. BNTagger uses three main steps:

(1) Identifying the conditional independence relations among

SNPs.

(2) Selecting htSNPs using two heuristics.

(3) Reconstructing the complete haplotypes for newly-genotyped

samples.

Similar to other predictive methods, our system aims to select

htSNPs maximizing the prediction accuracy for the remaining

tagged SNPs. However, it has several unique aspects. First, unlike

all previous work (Bafna et al., 2003; Halldörsson et al., 2004;
Halperin et al., 2005), we do not fix the neighborhood nor the

number of predictive htSNPs for each tagged SNP. Although

SNPs within close physical proximity are assumed to be in

a state of high linkage disequilibrium (LD), recent studies have

reported that the levels of LD vary across chromosomal regions

(Reich et al., 2001; Daly et al., 2001). Therefore, as noted by Bafna
et al. (2003), ‘‘. . . it is neither efficient nor desirable to fix the
neighborhood in which htSNPs are selected’’. Moreover, it is real-

istic to assume that a different number of htSNPs may be needed for

predicting each tagged SNP.

Second, our system is not restricted to the case of bi-allelic SNPs.

While most SNPs are indeed bi-allelic, there are SNPs that can take

on more than two nucleotides. While these cases may be rare, it is

still unknown whether disease variants are rare or common haplo-

types (Crawford and Nickerson, 2005). Thus, it is desirable to

impose as few restrictions as possible on htSNP selection

(Palmer and Cardon, 2005).

Third, for newly-geneotyped samples, we directly construct hap-
lotype data of all SNPs using genotype data of htSNPs. As pointed

by Halperin et al. (2005), the accuracy of haplotype phasing based

only on htSNPs is limited due to the reduced LD among htSNPs.

Therefore, it is reasonable to assume that reliable haplotype data are

not available in the case of newly-genotyped samples. However, we

note that, unlike Halperin’s method, which uses genotype data as

input and as output as well, we directly output the haplotype data of
all SNPs for new samples. Thus, subsequent haplotype phasing for

the reconstructed samples is unnecessary.

We applied our method to three public data sets (Daly et al., 2001;
Rieder et al., 1999; Nickerson et al., 2000). Based on leave-one-out

and on 10-fold cross validation, our results demonstrate that using

our selection method, about 2.9%–11.5% of the total SNPs are

sufficient to predict the others with 90% accuracy. We also compare

our prediction performance to that of recently published htSNP

selection methods (Bafna et al., 2003; Halldörsson et al., 2004;
Lin and Altman, 2004; Halperin et al., 2005). The results

show that our method extracts fewer htSNPs while achieving the

same level of prediction accuracy. Moreover, our method retains its

good performance even when a very small number of htSNPs is

used.

In section 2, we formulate the problem of htSNP selection in

the context of prediction accuracy, and introduce the basic notations

that are used throughout the paper. Section 3 briefly provides the

necessary background on Bayesian networks, focusing on the con-

cepts most relevant to our algorithm. Our selection and haplotype

reconstruction algorithms are described in section 4. Section

5 reports our evaluation results. Section 6 summarizes our findings

and outlines future directions.

2 PROBLEM FORMULATION

A haplotype represents the allele information of contiguous

SNPs on one chromosome, while a genotype represents the com-
bined allele information of the SNPs on a pair of chromosomes.

Thus, the allele information of haplotypes takes on values from

{a, g, c, t}, while that of genotypes takes on values from {a/a,
a/g, a/c, a/t, . . . , t/c, t/t}. When the combined allele information

of a pair of haplotypes, hj and hk, comprises the genotype gi, we

say that hj and hk resolve gi. For example, the two haplotypes hj ¼
(a, g, a, c) and hk ¼ (a, c, c, a) resolve the genotype gi ¼ (a/a, c/g,
a/c, a/c). We also refer to haplotypes hj and hk as the complementary
mates of each other to resolve gi, and consider them to be

compatible with gi.

Let D be a data set consisting of n haplotypes, h1, . . . , hn, each

with p different SNPs, s1, . . . , sp. The set D can be viewed as an n by

p matrix. Each row, Di�, in D corresponds to haplotype hi, while

each column, D�j, corresponds to a SNP sj. Dij denotes the jth SNP in
the ith haplotype. We view each SNP as a discrete random variable,

Xj, that takes on values from a finite domain {a, g, c, t}. Thus,
we define the finite set V ¼ {X1, . . . ,Xp}, in which each random

variable Xj corresponds to the jth SNP on a haplotype in the

data set D.

Given the set V of random variables corresponding to the p
SNPs, our goal is to find a subset T � V, such that the size of

T, jTj, is smaller than some pre-specified constant k, and SNPs

in T can best predict the remaining unselected ones, V � T. As
defined earlier, the selected SNPs are referred to as haplotype

tagging SNPs (htSNPs), and the unselected ones are referred to

as tagged SNPs. Suppose that our htSNP set T consists of q
SNPs, T ¼ fXt1 ‚ . . . ‚Xtqg. To predict the allele of a tagged

SNP Xj given the alleles of the htSNPs, T, we use the posterior

probability of Xj conditioned on the set T, PrðXj jXt1 ‚ . . .XtqÞ. That
is, the allele whose conditional probability is the highest given

the alleles of the predictive htSNPs is taken to be the allele of

the tagged SNP. When multiple maximum probability solutions

exist, the most common allele of Xj is selected. To capture the

idea that this prediction can be either correct or incorrect, we intro-

duce the following indicator function Pf.

1The nucleotide 2 {a, g, c, t} at a position in which a SNP occurred is called

an allele.
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DEFINITION 1. Prediction Indicator Function: Given a predictive
htSNP set, T ¼ fXt1 ‚ . . . ‚Xtqg, a predicted tagged SNP, Xj 2 V � T,
and a haplotype, Di�, a prediction indicator function Pf (Xj, T, Di�)
is defined2 as

Pf ðXj‚T‚Di�Þ ¼

¼

1 : if Dij ¼¼
arg max
x2fa‚g‚ c‚ tg

PrðXj ¼ x jXt1 ¼ Dit1 ‚ . . . ‚Xtq ¼ Ditq
Þ;

0 : otherwise:

8>><
>>:

We note that the prediction of each tagged SNP is assumed to

depend on the values of the htSNPs, but not on the other predicted

tagged SNPs. Hence, prediction can be applied in any order. Using

this prediction indicator function, we formally define our objective

as follows:

DEFINITION 2. Maximally Predictive htSNP Set: Given a set of
p SNPs, V ¼ {X1, . . . ,Xp}, a constant k, and a prediction indicator
function Pf, a maximally predictive htSNP set, T ¼ fXt1 ‚ . . . ‚Xtq

g,
for a set of haplotypes D is defined as a subset T of V, (T � V),
satisfying two criteria:

1Þ j T j < k‚ and

2Þ T ¼ argmax
T0�V

Xp

j¼1

Xn

i¼1

pf ðXj‚ T0‚ Di�Þ:

That is, T is the subset of SNPs that is likely to predict correctly the

largest number of SNPs in V � T. BNTagger utilizes the framework

of Bayesian networks to effectively compute the posterior proba-

bility in Pf and to select a set of htSNPs. In the next section, we

briefly introduce the necessary background on Bayesian networks.

3 BAYESIAN NETWORKS

A Bayesian network (BN) is a graphical model of joint probability

distributions that captures conditional independencies among

its variables (Jensen, 2002). Given a finite set V ¼ {X1, . . . ,Xp}

of random variables, a Bayesian network has two components:

a directed acyclic graph, G, and a set of conditional probability

parameters,Q¼ {�1, . . . , �p}. Each node of the graph G corresponds

to a random variable Xj. An edge between two nodes represents

a direct dependence between the two random variables, and the lack

of an edge represents their conditional independence. Using the

conditional independence encoded in the structure of the BN

(Jensen, 2002), the joint probability distribution of the random

variables in V can be computed as the product of their conditional

probability parameters:

PrðVÞ ¼
Yp

j¼1

�j ¼
Yp

j¼1

PrðXj j paðXjÞÞ‚

where pa(Xj) denotes the parent nodes of Xj. The BN formalism

enables the computation of the posterior probability of a target

variable when the values of some of the other variables are

observed. This computation process is typically referred to as BN
inference. Suppose that we have observed the values of q variables,

Xt1 ¼ e1‚ . . . ‚Xtq ¼ eq‚ in a BN. Based on this information, the

conditional distribution of Xj can be computed from the joint pro-

bability of V by marginalizing out all unobserved variables except

Xj, denoted as M ¼ V � fXj‚ Xt1 ‚ . . . ‚Xtqg (Jensen, 2002). Let m
denote any of the possible instantiation of the random variables in

M. The posterior probability of Xj can thus be calculated as:

PrðXj jXt1 ¼ e1‚ . . .‚Xtq ¼ eqÞ

¼

X
m

PrðM ¼ m‚ Xj‚ Xt1 ¼ e1‚ . . .‚ Xtq ¼ eqÞ

PrðXt1 ¼ e1‚ . . .‚Xtq
¼ eqÞ

¼

X
m

Y
Xk2V

PrðXk j paðXkÞÞ�

PrðXt1 ¼ e1‚ . . .‚ Xtq ¼ eqÞ ‚

ð1Þ

where the summation is over all possible combinations of values m
assigned to all the unobserved variables in M, and the value of every

observed variable, Xti , is set to ei in Pr(Xk j pa(Xk))
�.

The Markov blanket is another central concept in Bayesian net-

works. The Markov blanket of Xj includes the parents of Xj, the

children of Xj, and the other parents of Xj’s children (Jensen, 2002).

In a BN, Xj is conditionally independent of all other variables given

its Markov blanket. This typically speeds up the calculation of the

posterior Pr ðXj jXt1 ¼ e1‚ . . . ‚Xtq ¼ eqÞ since when the Markov

blanket of Xj is observed, only this information needs to be

taken into account for computing the distribution of Xj.

Numerous BN inference algorithms have been developed to com-

pute this posterior probability exactly or approximately. We use

the Generalized Variable Elimination algorithm implemented in

JavaBayes (Cozman, 2000) to compute the posterior probability

used in our prediction indicator function Pf.

To use the BN inference algorithm, we must first identify

the structure (G) and parameters (Q) of the BN representing the hap-

lotype data D. This process is referred to as BN learning. Structure
learning aims to find the graph structure G which maximizes the

conditional probability of G given the data D, as follows:

G ¼ argmax
G0

PrðG0 jDÞ ¼ argmax
G0

PrðD jG0Þ · PrðG0Þ
PrðDÞ

¼ argmax
G0

PrðD jG0Þ · PrðG0Þ:

We use the Minimum Description Length (MDL) score (Lam and

Bacchus, 1994) to reflect the above probabilistic scoring. In the

same vein, parameter learning in a BN aims to find Q which maxi-

mizes the conditional probability of Q given the data D, Pr(Q jD).

We use a maximum-likelihood approach to estimate Q.

4 METHODS

BNTagger aims to select a set of htSNPs that predicts the tagged SNPs

with the highest accuracy. However, finding this set of htSNPs in the general

case has been proven to be NP-hard (Bafna et al., 2003). To effectively

identify the set of highly predictive SNPs, T, we use several heuristics,

utilizing the framework of a Bayesian network (BN) and the conditional

independence captured in it.

Figure 1 provides a simple example for how BNTagger utilizes the

conditional independencies among SNPs to select htSNPs. The sample

here consists of ten haplotypes with four SNPs each (Figure 1(a)); the

BN structure that represents conditional independencies among the four

SNPs along with the probability parameters is found via BN learning,

and shown in Figure 1(b). For simplicity, the conditional probabilities are2For any SNP Xtl 2 T‚ Pf ðXtl ‚ T‚ Di�Þ is taken to be 1 always.
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shown only for alleles occurring in the sample. The other probabilities are

considered here to be zero.

To select htSNPs given a Bayesian network, BNTagger starts with an

empty htSNP set T, and sequentially examines the average prediction accu-

racy for each SNP (node) based on the current set, T. If the prediction

accuracy for a SNP, Xj, is smaller than a pre-specified threshold, BNTagger

adds Xj into T as a new htSNP, because Xj is not well-predicted by the current

htSNPs in T. Clearly, the order in which SNPs are evaluated is very

important, since it can directly affect the selected set of htSNPs and their

prediction performance. Unlike other methods that sequentially examine

SNPs in the order of their chromosomal location, BNTagger examines

the SNPs in the topological order (from parents to children) in the BN.

For example, in Figure 1(b), BNTagger first examines the root X4, then

its children X3, X1, and so on. Thus, when the prediction accuracy for

each SNP Xj is evaluated, given T, the htSNPs in the current set T are all

ancestors of Xj. This has two advantages:

First, the parent-child relation in the BN encodes the direct dependence

between these nodes, that is, the state of child nodes depends primarily on the

information of their parents. For example, Figure 1(c) shows the prediction

accuracy3 for SNP X3 assuming each of the other SNPs, X1, X2, or X4 as an

htSNP, as well as when assuming no htSNP is used. All the prediction

accuracies are higher when htSNP information is given than when it is

not. Moreover, the best prediction accuracy is achieved when the parent

of X3, that is X4, is used as a predictor.

Second, as shown in Definition 1, BNTagger calculates the prediction

accuracy for each SNP Xj using the posterior probability of Xj given the allele

information of the htSNPs. To calculate this posterior, the product of the

conditional probabilities in the BN must be computed as was shown in

Equation (1). However, if the set of htSNPs contains no descendants of

Xj and the parents of Xj are already in the set of htSNPs, the posterior

probability is the same as the conditional probability parameter of Xj,

due to the conditional independence encoded in the BN. For instance, in

Figure 1(c), the best prediction accuracy for the SNP X3 is simply the

maximum of its conditional probability parameters, Pr(X3 jX4), shown in

Figure 1(b).

As a result, the conditional independence structure and the conditional

probability parameters in the BN guide BNTagger to find a set of highly

predictive htSNPs, and expedite the evaluation procedure. We note though

that in order to use the BN components, BNTagger must first build them. Once

the BN is constructed and the htSNPs are selected, we also provide a recon-

struction framework for newly-genotyped samples; as mentioned earlier, the

main purpose of prediction-based htSNP selection is to reconstruct the original

set of SNP information based on the selected htSNPs.

To summarize, BNTagger consists of three stages: I. Identification of the

conditional independence relations among SNPs; II. htSNP selection; and

III. Reconstruction of haplotype information for newly-genotyped samples.

In the first stage, BN learning is used to identify a graph structure, G, and

a set of conditional probability parameters, Q, that best explain the given

haplotype data, D. In the second stage, a heuristic search is applied to the

identified BN model to find a set of htSNPs. The third stage provides the

haplotype reconstruction framework for subsequent association studies.

These three stages are depicted in Figure 2, and are further described in

the following subsections.

4.1 Identification of conditional independence

relations among SNPs

To use a Bayesian network as described above, its structure and parameters

must first be learned. We implemented the Sparse Candidate algorithm

(Friedman et al., 1999), which accelerates BN learning by restricting the

parents of each node to a small subset of candidates. To select candidate

parents for each node, we use the non-random association among SNPs,

known as linkage disequilibrium (LD). Disease-gene association studies are

typically based on the assumption that LD exists between a disease allele and

adjacent SNPs (Crawford and Nickerson, 2005), thus it is widely used for

quantifying relationships between SNPs in population genetics. Numerous

LD measures have been used. Among them, we use the multi-allelic4 exten-

sion of Lewontin’s linkage disequilibrium (LD) measure, D0 (Hedrick,

1987), which is one of the most commonly used measures for multi-allelic

SNPs (Aulchenko et al., 2003).
We explain it here in detail. Let X1 be an m-allelic SNP, and X2 be an n--

allelic SNP. Let f 1i be the relative frequency of the ith allele for SNP X1, while

f 2j be the relative frequency of the jth allele for SNP X2. Let fij be the relative
joint frequency of the ith allele occurring for SNP X1 and the jth allele occurring

for SNP X2 (where i ¼ 1, . . . ,m and j ¼ 1, . . . , n). Formally, the multi-allelic

extension of Lewontin’s LD, D0, is defined as:

D0 ¼
Xm

i¼1

Xn

j¼1

f 1
i · f

2
j

��� f ij � f 1i · f
2
j

Dmax

���‚
where Dmax is the maximum value of LD between the ith and the jth alleles. In

principle, D0 measures the difference between the observed (fij) and the

Fig. 1. A Bayesian network of SNPs and examples of prediction accuracy

values.

3The prediction indicator function Pf (Definition 1) is used in the equations

in Figure 1(c).

4Most LD measures assume SNPs to have only two different alleles. Multi-

allelic LD measures extend these bi-allelic LD measures, by allowing SNPs

to have more than two different alleles.
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expected frequency of haplotypes under independence ðf 1i · f 2j Þ, normalized

by the maximum LD (Dmax), and weighted by the expected joint frequency

under independence ðf 1i · f 2j Þ:
Using the measure D0, BNTagger first considers candidate parents for

SNP Xj from the set V� {Xj}, whose pairwise disequilibrium with Xj, as

measured by D0, is in the top g percent (here, g ¼ 10). The search for the

optimal graph structure is performed using greedy hill climbing with random

restarts. After N iterations (N¼ 25,000), we select the graph structure with

the best MDL score (Lam and Bacchus, 1994). The conditional probability

parameters Q ¼ {�1, . . . , �p} are computed using maximum-likelihood

estimation given the identified structure and the data.

4.2 Haplotype tagging SNP selection

Given the SNP-independence structure and the parameters constructed in

the previous stage, we now identify a set of htSNPs, T, for the haplotype data,

D. Since a different combination of htSNPs can be used to predict each

tagged SNP, we also identify a set of predictive htSNPs, TXj � T, for each
tagged SNP Xj.

As was demonstrated earlier, given the haplotype data, D, and the

current set of htSNPs, T, we sequentially examine the average prediction

accuracy for each SNP, Xj. If the prediction accuracy for the SNP Xj is

smaller than a pre-specified threshold, a, Xj is added to the set of htSNPs,

T. Otherwise, Xj is considered a tagged SNP, and the current htSNP set, T, is

kept as its candidate set of predictive htSNPs, TXj
. We call this procedure

sequential search. When a new htSNP is added to T during the sequential

search, we re-evaluate the prediction accuracy for previously examined

tagged SNPs using the updated T. If the prediction accuracy for the re-

examined tagged SNP is increased by using the new set T, its previously

assigned candidate set of predictive htSNPs is updated to the new T. We call

this procedure revising search.

In brief, BNTagger sequentially identifies a global set of htSNPs, T,

based on their prediction accuracy, and iteratively updates the predictive

set of htSNPs, TXj
, for each tagged SNP, Xj. To efficiently conduct these

procedures, BNTagger uses two heuristics. First, we topologically sort the

nodes in the BN, which yields the levels of nodes as defined below, and

conduct sequential search in this topological order.

DEFINITION 3. A level of node Xj in a Bayesian network is
defined as:

levelðXjÞ ¼
1 : if paðXjÞ ¼ f;

max
Xk2paðXjÞ

ðlevelðXkÞÞ + 1 : otherwise:

(

The sequential search is conducted in the order of the levels from low to

high. This way, the level of htSNPs in T is never greater than that of

the currently examined node. As mentioned before, there are two advantages

to this ordering: the value of child nodes depends primarily on the infor-

mation of their parents, and when parents are htSNPs, the child’s posterior

probability is obtained directly from the network’s parameters.

The second heuristic is for expediting the identification of predictive htSNPs

for each tagged SNP. That is, if the current set of htSNPs, T, shows a prediction

accuracy greater than a pre-specified threshold, b, for SNP Xj, we do not re-

evaluate it any more. We formally define the current htSNP set T as the pre-

diction blanket of Xj, and use it as the final set of predictive htSNPs for Xj. This

second heuristic stems from an empirical observation that when the prediction

accuracy for tagged SNP, Xj, given the current set T, is sufficiently high, new

htSNPs often do not significantly improve the accuracy. This phenomenon was

also observed by others (Ackerman et al., 2003). Thus, it is typically unnecessary
to examine the effect of every new htSNP on the tagged SNPs that are already

well-predicted. The loss in accuracy is typically negligible. Moreover, the poten-

tial overfitting of predictive htSNP selection to the training dataD is also reduced.

Formally, we define the prediction blanket as follows:

DEFINITION 4. Given a prediction indicator function, Pf, and
a constant b, the current set of htSNPs, T ¼ fXt1 ‚ . . .‚Xtqg, is defined
as the prediction blanket of Xj if the average prediction accuracy for
Xj, over all haplotypes Di� given T is greater than b, that is:�

1

n

Xn

i¼1

Pf ðXj‚T‚Di�Þ
�
> b:

As a matter of fact, in a Bayesian network, re-evaluation can be

avoided whenever TXj
is the Markov blanket of Xj, as information

about newly-added htSNPs does not affect the posterior probability of

Xj given its Markov blanket. However, it is unlikely that all parents, all

children, and all spouses of Xj (i.e., the complete Markov Blanket of Xj) will

be included in the current htSNP set T, unless T is very large. Thus, our

prediction blanket can be viewed as a relaxed version of the Markov blanket

in the context of prediction. The selection algorithm is summarized in

Table 1.

4.3 Reconstruction of newly-genotyped samples

The ultimate purpose of prediction-based htSNP selection is to reconstruct

the information for all SNPs on a haplotype, using only the selected htSNPs

in newly-genotyped samples (for instance, in new association studies). We

propose a practical framework for this reconstruction. Our reconstruction

algorithm takes genotype data of htSNPs as input, infers their resolving

haplotypes5 based on the previously used haplotype data set D, predicts

Fig. 2. Outline of haplotype tagging SNP selection and reconstruction in

BNTagger.

5As defined in the first paragraph of Section 2.
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the alleles of tagged SNPs using the Bayesian network model built in stage I,

and outputs the haplotype information of all SNPs.
Suppose that our htSNP set T, as identified in stage II, consists of

q SNPs, that is, T ¼ fXt1 ‚ . . . ‚Xtqg: Let g ¼ ðxt11 /xt12 ‚ . . . ‚xtq1 /xtq2 Þ be a

new genotype, consisting of the combined allele information of the q htSNPs.

To deduce the haplotype information of g, we first select the most common

haplotype in D, whose htSNP information is compatible with g. The

complementary mate of the haplotype can then be automatically constructed.

If we cannot find any haplotype compatible with g in D, we create a new

haplotype whose alleles are assigned as the major allele for each hetero-

zygous htSNP. Let h0n be the new haplotype, and h
0

ni
be its ith element (where

i ¼ 1, . . . , q). Given g ¼ ðxt
11
/xt

12
‚ . . . ‚xtq1

/xtq2
Þ hni can then be defined as:

h0ni
¼

xti1 : if xti1 ¼ xti2 ;

argmax
x2fxti1

‚ xti2
g

PrðXti ¼ xÞ : otherwise:

8<
:

The prior probability, Pr(Xti
), can be computed using our Bayesian network

model. Again, its complementary mate can then be automatically con-

structed. In either case, the inferred two haplotypes for g are separately

used for predicting the alleles of each tagged SNP. We call this procedure

incremental haplotype reconstruction.

The principle of incremental haplotype reconstruction is based on Clark’s

parsimony approach (Clark, 1990). That is, it tries to resolve an ambiguous

genotype using one of the already identified haplotypes. Moreover, rather

than picking any compatible haplotype, it selects the most common one,

since common haplotypes are the most likely candidates under the random

mating assumption. Our haplotype reconstruction for the htSNP genotype

thus follows the widely-used maximum parsimony approach. However, it

differs from conventional algorithms in utilizing the existing haplotype

information of all previously known SNPs, rather than directly phasing

those in the genotype.We believe that utilizing this prior haplotype informa-

tion is necessary. As noted earlier, haplotype phasing based on the set of

htSNPs might not be as reliable as haplotype phasing based on the original

set of SNPs due to the reduced linkage disequilibrium among htSNPs

(Halperin et al., 2005).

Once the haplotype information of htSNPs is deduced, we use the same

prediction rule introduced in Section 2 to predict the tagged SNPs. That is,

the allele whose conditional probability is the highest given the alleles of the

htSNPs is taken to be the allele for each tagged SNP. When multiple solu-

tions exist, the most common allele of the tagged SNP is selected.

5 RESULTS

5.1 Evaluation methods

We compare the performance of our method with that of three state-

of-the-art htSNP selection methods: 1) the Eigen2htSNP method

based on principal component analysis (PCA) (Lin and Altman,

2004); 2) the Block-free method based on dynamic programming

(Bafna et al., 2003; Halldörsson et al., 2004); and 3) the STAMPA

method based on dynamic programming (Halperin et al., 2005). Lin
and Altman (2004) tested Eigen2htSNP with two options: varimax
and greedy, and predicted each tagged SNP using the one htSNP

whose correlation coefficient with the tagged one is the highest.

Bafna et al. (2003) and Halldörsson et al. (2004) tested the Block-

free method with two window sizes: 21 and 13, and used the major-

ity vote of htSNPs to predict each tagged SNP. Halperin et al. (2005)
also relied on the majority vote of htSNPs for prediction, but unlike

the previous two methods, they used the genotype data of htSNPs

rather than haplotype data.

All these methods aim to select a set of highly predictive htSNPs

for the unselected, tagged SNPs. Therefore, they have all been

evaluated using prediction accuracy. Accordingly, this is the

measure we use here for a fair comparison. We note that the pub-

lished results (Bafna et al., 2003; Halldörsson et al., 2004; Lin and

Altman, 2004; Halperin et al., 2005) were all based on different data
sets. To compare BNTagger with each of these methods, we

obtained the data set used to test each method, preprocessed it as

described in the respective publication, and applied our algorithm to

it. For evaluation, we use the same evaluation procedure used

by each of the compared methods utilizing leave-one-out for the
Block-free and the STAMPA methods (Bafna et al., 2003;

Halldörsson et al., 2004; Halperin et al., 2005) and 10-fold cross

Table 1. BNTagger: Haplotype tagging SNP selection algorithm

D: training data (n haplotypes with p SNPs)

Pf: a prediction indicator function

V: a set of p SNPs {X1, X2, . . . ,Xp}

T: a set of htSNPs fTt1 ‚ . . .‚Ttqg

// predefined constants

a: accuracy threshold for htSNPs

b: accuracy threshold for prediction blanket

level[Xj]: the level of Xj in the BN

status[Xj]: the status of Xj

accuracy[Xj]: the prediction accuracy for Xj

Function SequentialSearch (D, Pf){/
� Main function �/

T ¼ f;

8j status[Xj] ¼ ‘unchecked’;

8j accuracy[Xj] ¼ 0;

L ¼ max
j

level[Xj];

for (each level 1 � l � L)

for (each node Xj whose level is l)
accuracy ¼ 1

n

Pn
i¼1 Pf ðXj‚T‚Di�Þ;

if (accuracy < a)

// add this node as an htSNP

status[Xj] ¼ ‘htSNP’;

T ¼ T [ {Xj};

call RevisingSearch(level[Xj]);

else if (accuracy > b)

// the prediction blanket of Xj is found

status[Xj] ¼ ‘blanket_found’;

prediction_blanket[Xj] ¼ T;

else

// store a candidate predictive htSNPs

status[Xj] ¼ ‘tagged’;

prediction_blanket[Xj] ¼ T;
accuracy[Xj] ¼ accuracy;

}

Function RevisingSearch (L) {
for (each node Xk

whose level � L and status ¼ ‘tagged’)

accuracy ¼ 1
n

Pn
i¼1 Pf ðXk‚T‚Di�Þ;

if(accuracy > b)

status[Xj] ¼ ‘blanket_found’;

prediction_blanket[Xk] ¼ T;

else if (accuracy > accuracy[Xk])

prediction_blanket[Xk] ¼ T;
accuracy[Xk] ¼ accuracy;

}
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validation for Eigen2htSNP (Lin and Altman, 2004), as described in

the respective publications. As Lin and Altman (2004) did not

provide their 10-fold split, we ran the 10-fold cross validation pro-

cedure 10 times, each using a randomized 10-way split, to ensure

robustness. In all cases, the average prediction accuracy is used as

the ultimate evaluation measure. The prediction performance of the

compared methods for each data set was directly taken from their

respective publications (Bafna et al., 2003; Halldörsson et al., 2004;
Lin and Altman, 2004; Halperin et al., 2005).

5.2 Test data

Three public data sets, ACE (angiotensin converting enzyme)

(Rieder et al., 1999; Lin and Altman, 2004), LPL (human lipopro-

tein lipase) (Nickerson et al., 2000; Bafna et al., 2003; Halldörsson
et al., 2004), and IBD5 (inflammatory bowel disease 5) (Daly et al.,
2001; Lin and Altman, 2004; Halperin et al., 2005) were used for

evaluation. These data sets were previously used to test the three

compared methods, as reported in their respective publications. We

first analyzed the genetic characteristics of each data set based

on: gene diversity, linkage disequilibrium, and recombination

rate. The gene diversity, (i.e., the probability that two haplotypes

chosen at random from the sample are different (Nei, 1987)), is

measured by ðn/ðn � 1ÞÞ · ð1 �
Pk

i¼1 p2i Þ‚ where n is the total

number of haplotypes, k is the number of distinct haplotypes,

and pi is the relative frequency of the ith distinct haplotype. Linkage
disequilibrium (LD) between SNPs is estimated by the multi-allelic

extension of Lewontin’s LD, D0 as defined earlier (Hedrick, 1987),

where the statistical significance of the standardized LD parameter

is calculated using the x2 test with one degree of freedom. The

recombination rate of each data set is measured by the four-gamete

test (Hudson and Kaplan, 1985).

The first data set ACE (Rieder et al., 1999) contains 78 SNPs

within a genomic region of 24Kb on chromosome 17q23. Genotyp-
ing was done from 11 individuals. This data set was used by Lin and

Altman to test Eigen2htSNP (Lin and Altman, 2004). Following

their procedure, among the 78 original SNPs only 52 bi-allelic

nonsingletons are analyzed. Partially due to the small number of

SNPs and small sample size, this data set shows high average LD

(0.78) and relatively low gene diversity (0.876). The recombination

rate is also relatively low (19.38%).

The second data set LPL (Nickerson et al., 2000), which was

used by Bafna et al. (2003) and Halldörsson et al. (2004) to test the
Block-free method, contains 88 SNPs spanning 5.5Kb on chromo-

some 19q13.22. Genotyping was performed over 71 individuals.

Following the analysis performed by Bafna et al. (2003), we analyze
only 87 bi-allelic SNPs. Despite the small size of the LPL gene, this

data set has high gene diversity (0.99) and low average LD (0.55),

because it consists of haplotypes from three different populations.

The four-gamete test shows 55.95% recombination or recurrent

mutation.

The third data set, IBD5 (Daly et al., 2001) contains 103 SNPs on

chromosome 5q31, spanning 500Kb. Genotyping was performed over

129 father-mother-child trios from a European population. This data

set was used by Halperin et al. and by Lin and Altman to test the

STAMPA (Halperin et al., 2005) and the Eigen2htSNP (Lin and

Altman, 2004) methods, respectively. Lin and Altman (2004)

analyzed data from all 387 individuals using PHASE (Stephens

et al., 2001) for haplotype phasing. Halperin et al. (2005) analyzed
data of only 129 individuals using GERBIL (Kimmel and Shamir,

2005) for haplotype phasing. Thus, following both of these two

procedures, we created two separate data sets from IBD5, denoted

as IBD5-1 (for Lin and Altman’s) and IBD5-2 (for Halperin’s). Both

these sets have low linkage disequilibrium and high recombination

rates. The summary of all data sets is given in Table 2.

5.3 Test results

We summarize the performance of BNTagger compared with the

three state-of-the-art htSNP selection methods in Figure 3. We also

compute the p-value of the difference in performance, using the

Wilcoxon-ranksum test with 5% significance level. Overall,

BNTagger consistently outperforms other methods on all data

sets. Most importantly, improvement in prediction performance

is most notable when the number of selected htSNPs is small,

the average linkage disequilibrium in a data set is relatively low,

and the gene diversity is high. This is a major advantage of

BNTagger, since most htSNP selection methods have been

known to suffer in those cases (Crawford and Nickerson, 2005;

Johnson et al., 2001; Avi-Itzhak et al., 2003; Ao et al., 2005;
Carlson et al., 2004). In other words, BNTagger retains its good

performance even in what are considered to be hard cases.

The prediction performance of Eigen2htSNP (Lin and

Altman, 2004) is compared with ours using two data sets: ACE

and IBD5-1. For the first data set, ACE, Eigen2htSNP-varimax

shows performance comparable to ours (see Figure 3(a); p-values

are 0.2933 for varimax and 4.88 · 10�2 for greedy), but in the case

of IBD5-1, its performance is considerably lower than ours, as

shown in Figure 3(c) (p-values are 1.9489 · 10�6 for varimax

and 1.5707 · 10�8 for greedy). The prediction performance of the

Block-free method (Bafna et al., 2003; Halldörsson et al., 2004) is
compared with ours using the LPL data set. Their performance

increases substantially with the number of selected htSNPs, as

shown in Figure 3(b), but the performance difference between

ours and the Block-free method is significant when the number

of htSNPs is smaller than 30 (p-values are 4.2 · 10�3 for window

21 and 1.2552 · 10�9 for window 13). The prediction

performance of STAMPA (Halperin et al., 2005) is compared

Table 2. Summary of test data sets

Data Data Source SNP No Haplotype No Phasing Gene Diversity LD (Std) Recombination

ACE Lin and Altman (2004) 52 22 PHASE 0.876 0.78 (0.34) 19.38%

LPL Nickerson et al. (2000) 87 142 known 0.991 0.55 (0.35) 55.95%

IBD5-1 Lin and Altman (2004) 103 774 PHASE 0.981 0.53 (0.27) 94.3%

IBD5-2 Daly et al. (2001) 103 258 GERBIL 0.724 0.41 (0.23) 99.6%
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with ours using the data set that Halperin et al. used, IBD5-2, as
shown in Figure 3(d). Again, BNTagger outperforms STAMPA

(p-value ¼ 0.7 · 10�2), and the difference is significant as the

number of htSNPs gets smaller (below 60).

Overall, as shown in Figure 3, our method uses a small fraction

of SNPs as htSNPs (2.9%–11.5%) to achieve 90% prediction

accuracy for all data sets: 4 htSNPs among 52 SNPs (7.7%) for

data set ACE, 10 among 87 (11.5%) for LPL, 4 among 103 (3.9%)

for IBD5-1, and 3 among 103 (2.9%) for IBD5-2. To achieve 95%

prediction accuracy, we need 8.7%–32.7% of the target SNPs:

17 htSNPs among 52 SNPs (32.7%) for data set ACE, 22 among

87 (25.2%) for LPL, 9 among 103 (8.7%) for IBD5-1, and 13 among

103 (12.6%) for data set IBD5-2. Table 3 summarizes the prediction

performance of BNTagger with respect to the percentage of the

selected htSNPs.

As can be seen in Table 3, BNTagger can be reliably used

even when the maximum number of htSNPs is very small. This is

a major advantage of BNTagger. The explicit goal of htSNP selection

is to save genotyping overhead, typically aiming at a 10–50 fold
reduction in the number of target SNPs in the case of European

samples (Palmer and Cardon, 2005). Thus, it is especially important

to guarantee good prediction performance when the number of

htSNPs is a small fraction of the total number of SNPs. We note

that, unlike other methods, BNTagger can predict the allele informa-

tion of all SNPs even without any htSNPs. In this case, the posterior

probability of the predicted SNP Xj is the same as the prior probability

of Xj. Thus, the prediction used by the function Pf, as shown in

Definition 1, is still applicable even without selecting any htSNPs.

6 DISCUSSION

We presented BNTagger, a heuristic algorithm that uses the

probabilistic framework of Bayesian networks to effectively identify

a set of predictive htSNPs. BNTagger outperforms other state-of-the-

art predictive methods when compared over their own data sets and

prediction measure. Moreover, its improved performance is espe-

cially notable when a small number of htSNPs are selected. We be-

lieve that two main factors contribute to this improved performance:

(1) We do not restrict the htSNPs to any bounded location.

(2) We do not fix the number of htSNPs.

Fig. 3. Prediction performance of BNTagger and the compared methods for test data sets.

Table 3. Prediction accuracy (in %) of BNTagger

Data Set Percentage of Selected htSNPs

0% 5% 10% 25% 50%

ACE 66.7 86.5 92.1 93.7 97.4

LPL 77.2 86.6 89.0 95.0 98.3

IBD5-1 73.3 91.2 95.3 98.4 99.6

IBD5-2 83.6 91.9 94.9 98.0 99.0
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In addition, heuristics based on the conditional independencies

among SNPs guide BNTagger to effectively find an improved set

of htSNPs in terms of prediction accuracy.

Another major advantage of BNTagger is that, after the htSNPs

are selected, it can directly reconstruct the haplotype information

of newly-genotyped samples. BNTagger does not require prior

haplotype phasing of htSNPs, which might not be reliable

(Halperin et al., 2005). Instead, it deduces the haplotype informa-

tion of the new sample based on the haplotype training data that was

originally used for htSNP selection. In addition, BNTagger does not

require SNPs to be bi-allelic nor does it assume prior block-

partitioning. Nevertheless, it shows significant improvement in

prediction performance for data sets with high gene diversity and

relatively low linkage disequilibrium. Thus, we believe that

BNTagger provides the most practical and comprehensive frame-

work for htSNP selection, and can form a reliable basis for subse-

quent disease-gene association studies.

The improved performance of BNTagger comes at the cost of

compromised running time. Currently, its running time varies from

several minutes (when the number of SNPs is 52) to 2–4 hours

(when the number is 103). Most of this time is spent on stage I,

namely, learning the Bayesian network, rather than on htSNP selec-

tion or on haplotype reconstruction. As BNTagger does not partition

the haplotype data (neither through blocks nor through a sliding-

window6), it considers all SNPs at once. That is, the conditional

independence structure among all SNPs is learned simultaneously,

which substantially increases its running time as the number of

SNPs increases. In practice, we argue that based on the clinical

importance of disease-gene association studies (Crawford and

Nickerson, 2005), improved prediction performance takes priority

over running time—when the time is not prohibitively long.

Nevertheless, our future research will focus on improving the

speed of BNTagger, while minimizing loss in prediction perfor-

mance. This will most likely involve the evaluation of alternative

heuristics and optimization criteria. We also plan to provide

BNTagger as an online service.

Currently, BNTagger does not directly set the number of

selected htSNPs. Rather, it selects htSNPs based on their prediction

accuracy compared to a predefined threshold (a). Thus, by adjusting

this threshold, the number of selected htSNPs can be changed.

We intend to revise our selection algorithm so that the number

of htSNPs can be explicitly set, if needed. Finally, we used the

multi-allelic extension of Lewontin’s linkage disequilibrium

(LD), D0 (Hedrick, 1987), to expedite the learning procedure in

stage I. We plan to apply other multi-allelic LD measures, and

examine whether different measures affect the learned networks,

the selected set of htSNPs, and their prediction performance.
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