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Abstract—Figures in biomedical articles often constitute
direct evidence of experimental results. Image analysis methods
can be coupled with text-based methods to improve knowledge
discovery. However, automatically harvesting figures along
with their associated captions from full-text articles remains
challenging. In this paper, we present an automatic system
for robustly harvesting figures from biomedical literature. Our
approach relies on the idea that the PDF specification of the
document layout can be used to identify encoded figures and fig-
ure boundaries within the PDF and enforce constraints among
figure-regions. This allows us to harvest fragments of figures
(subfigures), from the PDF, correctly identify subfigures that
belong to the same figure, and identify the captions associated
with each figure. Our method simultaneously recovers figures
and captions and applies additional filtering process to remove
irrelevant figures such as logos, to eliminate text passages
that were incorrectly identified as captions, and to re-group
subfigures to generate a putative figure. Finally, we associate
figures with captions. Our preliminary experiments suggest
that our method achieves an accuracy of 95% in harvesting
figures-caption pairs from a set of 2, 035 full-text biomedical
documents from BioCreative III, containing 12, 574 figures.
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I. INTRODUCTION

Figures in the biomedical literature provide a unique

source of information. They may contain useful details about

experimental settings, methodology, and procedures to help

readers better comprehend the contents and interpret the

results. Figures, along with their associated captions, can

effectively illustrate hypotheses and highlight the contribu-

tions stated in scientific publications.

Despite the usefulness of figures, they are not readily ac-

cessible in public databases. The vast size of the biomedical

literature makes essential the use of automated systems to

robustly harvest figures from biomedical publications.

Although most of current information retrieval methods

within the biomedical domain utilize only the text when

searching for relevant articles, recent work has indeed started

utilizing information from figures and captions in the context

of biomedical information retrieval [1], [2]. There is also

an emerging trend of coupling figures and text (especially

figure captions) for biomedical literature mining. Examples

include work by Murphy et al [3] on identifying documents

that contain information and images relevant to protein sub-

cellular localization, by Shatkay et al on the integration of

text and images for biomedical document categorization [4],

and recent work by Demner-Fushman et al [5] that uses

figure captions to help classify, archive and retrieve various

types of CT/MRI images. While their system automatically

extracts figures from documents, it requires some manual

intervention to extract figure captions and associate them

with the respective figures. Further manual intervention is

needed for correcting some of the errors, such as merging

image-panels into complete figures, and removing images

that are not content-bearing.

In this paper, we present an automatic system for robustly

harvesting figures from the biomedical literature. A unique

feature of our system is its capability to simultaneously

extract figures and locate their associated captions. In par-

ticular, we intended to address two fundamental challenges.

First, to remove figures that are not part of the publication

(e.g. logos). Second, to identify and fix fragmented figures

that are stored separately in PDF documents.

We demonstrate the utility of our method by applying

it to a corpus obtained from the BioCreative III, Inter-

action Method task (IMT) [6]. This large, public dataset

consists of 2, 034 full-length biomedical articles describing

experimental techniques for studying PPI, thus containing a

large variety of biomedical images. Furthermore, the IMT

challenge itself represents an important biomedical applica-

tion for image mining. Our results show that we correctly

extracted 95% figure-caption pairs from the dataset, which

consists of over 12, 500 figures.

II. OUR APPROACH

A high-level view of our pipeline for automatically ex-

tracting figures along with their associated captions from

biomedical documents is shown in Figure 1. Our system

consists of four key components: (A) a PDF Operator
Parser that simultaneously recovers figures and captions

from each PDF document, (B) a Figure Filter that identifies

and removes “noise figures”, such as journal logos and fixes

fragmented figures (e.g. merging subfigures), (C) a Caption
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Figure 1. Overview of our system to harvest figures and captions from
biomedical publications
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Figure 2. State transition diagram of the Finite State Machine (FSM)
implemented to recover information from PDF files

Filter that evaluates and removes the captions incorrectly

harvested in (A), and (D) a Figure-Caption Matcher that

associates the recovered figures and captions. In addition,

we store the resulting figures and their associated captions

in a local database and link them with other important

information (e.g PMID, XML files, and PDF files) for

potential future use.

A. PDF operator parser

A PDF document consists of a set of operators de-

scribing the text and graphic objects to be displayed.

Each operator has specific parameters to define layout and

formatting options [7]. To open the PDF files and ex-

tract these operators, we use a modified version of Xpdf

(http://foolabs.com/xpdf/), a public domain tool. As shown

in figure 2, to simultaneously recover captions and figures

from the set of PDF operators, our solution uses an event-

driven Finite State Machine (FSM) model with four states.

The initial state is the “Reading Operator” that simply

reads the set of operators generated by the Xpdf tool. We

consider all the paragraphs starting with “Fig” as potential

captions, so when this state finds a text operator with its

string starting with “Fig” or any variant (e.g. “FIG”) we

create a transition to the “Reading Caption” state. Similarly

when this state finds a graphics operator defining a figure,

it transits to the “Reading Image” state.

The “Reading Caption” state creates a new string of text

that contains a potential caption. In PDF files, it is common

that a single paragraph can be split across multiple operators.

Therefore, we consider the subsequent lines of text as part of

the current caption until we identify the end of the paragraph.

A new paragraph or the end of the file indicates a transition

out of the “Reading Caption” and induces a transitions to
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Figure 3. Rendering a high resolution figure from a set of subfigures.
(A) Whole figure layout (consiting of three subfigures, denoted A,B and
C, in the low resolution page space. (B) Actual subfigure dimensions. (C)
Reconstructed high resolution figure.

either the “Reading Operator” or “Finish FSM” states,

respectively.

The “Reading Images” state retrieves the image informa-

tion and its pixel values, stores the image in an internal data

structure for further processing and returns the control to the

“Reading Operator” state. Finally, the “Finish FSM” state

simply ends the recovering process.

B. Figure Filter

Once our FSM harvests all the figures, the latter are

filtered to remove non-informative figures such as logos at-

tached by publisher. To do so, we first analyze the document

layout information stored in the PDF file, such as figure

and text margins, column widths, and line spaces. We found

that logos are found outside the text margins, then, for each

extracted figure we evaluate its position with respect to the

rectangle defined by the exterior text margins and exclude

figures that lie outside this area.

Another challenge is the lack of uniform standards for

embedding figures in biomedical documents. Ideally, each

figure in a publication should correspond to a single figure

in the PDF file. However, in practice a figure is often

fragmented and stored as a set of subfigures. To resolve

this problem, we group all the consecutive operators defining

figures preceding each caption into one figure, and render its

corresponding full-resolution image. We use the document

layout to compute subfigures size in the low resolution

page dimensions. Next, for each subfigure, we calculate its

scaling. Finally, to avoid undersampling we generate the

final figure using the smallest scaling factor obtained over

for all the constituents subfigures, and map the pixel values

of each input image to the final image. Figure 3 shows an

example of this process.

C. Captions Filter

The FSM described in Section II-A correctly identified

all captions. However, it may also mistakenly identify ref-

erences to figures occurring within the text as captions.

Therefore, we evaluate the recovered information to first

identify and then remove references to figures. For every

string of text in the potential caption set, we create a

descriptor using only the first and second words in the

string. The descriptor preserves the alphabetical characters,

special characters, and punctuations from both words. In the
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Table I
EXAMPLE OF THE CONSTRUCTION META DESCRIPTORS

Caption Meta descriptor Group

Figure 1. ... Figure#. 1

Fig. 1 ... Fig.# 2

Fig. 2 ... Fig.# 2

Figure 10. ... Figure#. 1

A) B)

Figure

Caption

Figure Caption

Figure

Caption

Figure

Caption

Caption

C)

Figure 4. Three categories of the figure-caption matching problem. (A)
1-to-1 matching. (B) N-to-N matching. (C) N-to-M matching.

descriptor we substitute the numbers by the special symbol
′#′. We then cluster strings sharing identical descriptors,

and use the integer value in the second word to calculate

the number of unique subfigures linked in each group. Table

I shows an example construction of descriptors from a set

of string of captions. Finally we select the group with a

maximum number of unique links to subfigures and discard

the rest.

D. Figure-Caption Matcher
Once we extract the figures and the captions, we associate

each figure fi with a caption cj , our goal is to use geometric

and structural cues to compute the optimum match between

the corresponding objects. Our approach separately handles,

1-to-1, N-to-N, and N-to-M matching problems, which cor-

respond to associate 1 figure to 1 caption, N figures to

N captions and N figures to M caption, respectively, as

shown in Figure 4. Given the set of figures and captions

we classify them according to their structural information

into left column, right column and double column object.

For each non-empty page we first compute the association

cost between all figure-caption pairs across the page.

For a given pair of objects fi and cj we compute their

matching cost C(fi, cj) as the minimum distance dfi,cj
between their corresponding boundaries multiplied by a

penalty cost pfi,cj that prioritizes the matches between

figures and captions with similar structural information

C(fi, cj) = dfi,cj ∗ pfi,cj . If fi and cj are objects in the

same column, the penalty cost is set to be 1; otherwise it is

set to be 10.

Once we finish building the cost matrix we start matching

the objects. In the base case 1-to-1 matching we simply

associate the figure to the caption in the page.

The N-to-M matching and N-to-N matching problems

are solved by applying a greedy algorithm to find the optimal

global association. We start by finding the figure-caption pair

with the minimum value in the matching cost table. Next, we

associate them and recalculate the cost matrix excluding the

previously associated objects. We repeat this process until

we exhaust the figures or caption sets from the current page.

Finally we associate the unmatched objects by repeating the

previous steps including objects from different pages, and

recomputing the matching cost by including the disparity

between their pages in the original cost equation C(fi, cj) =
dfi,cj ∗ pfi,cj ∗ disparityfi,cj .

Similar to previous approaches [1], [8], we extracted text

embedded inside figures to enable indexing figures based on

this text. We use the commercial ABBYY OCR software for

recognizing characters in high resolution figures recovered in

the previous steps. We recover the text within the subfigures

directly from the PDF file. The OCR software correctly

recognize English characters, but its performance is lower

when extracting Greek and other special symbols. Finally,

we use a standard MySQL database to store each figure,

and corresponding subfigure captions, and embedded text.

We then associate the figures with other publicly available

information (PDF files, XML files, PMID). We also use both

the text embedded in the figures and the words from the

captions as keywords for indexing and retrieval.

III. RESULTS AND DISCUSSION

To evaluate the system performance we have collected

2, 035 full-text biomedical documents from the corpus pro-

vided by BioCreative III for the Protein-Protein Interaction

(PPI) Interaction Method Task (IMT) [6]. It is important to

note that IMT provides a variety of document formats (XML,

PDF, TXT, and HTML), and we use the PDF format as this

is the only set to contain all the figures. In our experiment,

we were able to generate a dataset consisting of 12, 574
figures with associated captions.

As mentioned in Section II-B, an important feature of our

system is that it can automatically remove journal logos. In

the Biocreative III corpus: about 30.4% of figures are logos.

In traditional figure extraction solutions, these irrelevant

figures not only incur computational processing overhead

but also make it difficult to reliably associate figures with

captions. In contrast, our solution detects and removes the

logo figures before associating figures with captions. In our

experiment 5, 832 figures were identified as logos using our

algorithm. Of these, 5, 830 were true logos. Notably, no

logos were missed by our system, only two incorrect labeling

of non-logo figures (false-positives) occurred; these non-logo

figures were initially defined outside the text margin and

were then rotated and translated back inside the margin, and

were therefore captured by our system.

For the task of merging subfigures into figures, our system

identified 40, 604 subfigures, and merged them into 2, 158
figures. Of these, 2, 149 were correctly merged using our

algorithm. Figure 5 shows two examples of the merged

subfigures. The first row shows our result on a figure

obtained from article PMID:16096643 [9] that is composed

of multiple subfigures. Column A shows a figure generated

using our method as explained in Section III. Column B

shows the manually extracted figure containing the corre-
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Figure 5. Figures generated by our system through merging subfigures.
(Figures generated by our system (A) vs. original figures (B).

sponding subfigures. It is important to note that the quality

of the figure produced by our system is typically higher than

that of the one manually extracted. This is because when a

figure is extracted using tools, such as screen capture, it is

often stored at a lower resolution [1]. Our method keeps

the original resolution and then merges the subfigures at a

user-defined resolution that can be dynamically adjusted.

The second row of Figure 5 shows a more challenging ex-

ample of a figure composed by thousands of heterogeneous

subfigures from PMID:18319344 [10]. each with a different

opacity. These subfigures provide no biological meaning

unless they merged together. Since our approach does not

attempt to recover the opacity value for each subfigure, our

merged result (Column A) slightly differs from the ground

truth (Column B).

Finally, to evaluate the performance of our figure-caption

matcher we used our system to obtain caption-figure pairs

and verified the results manually. Out of 12, 574 pairs, our

system correctly matched 12, 069, which is 95.98%. How-

ever, our algorithm cannot currently handle well complex

structures combined with inconsistent layouts. For example,

a figure and its caption may be separated between different

pages (e.g., Figure 2 in PMID:16362034 [11]), a single

caption can be associated with multiple figures (e.g, Figure

1 in PMID:19303849 [12]), figures and their captions

can be ordered inconsistently (e.g., Figures 1,2, and 3 in

PMID:16239925 [13]). While our system cannot handle

these cases, it can recognize them, and notify the user to

manually handle the case.

Concluding Remarks. We have presented a new au-

tomatic system for harvesting and associating figures and

captions from biomedical publications in PDF format. The

approach utilized constraints derived from the document

layout to guide the correct combination of subfigures into

figures and the figure-caption matching process. Specifi-

cally, we have developed filters that identify and remove

irrelevant figures, such as logos and equations, harvests

putative subfigures and captions, groups the subfigures into

their original figures and associates them with their match-

ing captions using geometric and structural cues from the

document layout. We have applied our system to a large,

publicly available biomedical corpus, demonstrating that our

system automatically extracts figures from the PDF files and

associates them with the respective captions, both with a

very high level of performance.
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