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ABSTRACT 
Images form a significant and useful source of information in 
published biomedical articles, which is still under-utilized in 
biomedical document classification and retrieval. Much current 
work on biomedical image retrieval and classification employs 
simple, standard image features such as gray scale histograms and 
edge direction to represent and classify images. We have used such 
features as well to classify images in our early work [5], where we 
used image-class-tags to represent and classify articles.  
In the work presented here we focus on a different literature 
classification task, motivated by the need to identify articles 
discussing cis-regulatory elements and modules in the context of 
understanding complex gene-networks. The curators who try to 
identify such articles in the vast literature use as a major cue a 
certain type of image in which the conserved cis-regulatory region 
on the DNA is shown. Our experiments show that automatically 
identifying such images using common image features (like those 
mentioned above) can be highly error prone. However, using 
Optical Character Recognition (OCR) to extract alphabet characters 
from images, calculating character distribution and using the 
distribution parameters as image features, allows us to form a novel 
representation of images, and identify DNA-content in images with 
high precision and recall (over 0.9). Utilizing the occurrence of 
such DNA-rich images within articles, we train a classifier that 
identifies articles pertaining to cis-regulatory elements with a 
similarly high precision and recall.  The use of OCR-based image 
features has much potential beyond the current task, to identify 
other types of biomedical sequence-based images showing DNA, 
RNA and proteins. Moreover, the ability to automatically identify 
such images has much potential to be widely applicable in other 
important biomedical document classification tasks. 
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1. INTRODUCTION 
Classifying biomedical documents based on their relevance with 
respect to a specific topic is a fundamental step in biomedical 
database curation; it is also a major component in a variety of 
biomedical text mining applications. One example is the process 
used by the Mouse Genome Informatics (MGI) resource at the 
Jackson labs [1]. Part of the resource includes extensive gene 
expression information, for which MGI’s curators are tasked with 
identifying published literature containing information about gene 
expression in the mouse [2]. Doing this requires, as a first step, to 
obtain all and only articles describing experiments relevant to gene 
expression in the mouse. The articles are then read, and pertinent 
information is extracted and curated. Another example is the 
identification of articles that may contain experimental evidence for 
protein-protein interaction. Automating the latter task was part of 
the challenge posed in BioCreative III [4].  
Images shown within articles form a rich source of information, 
and provide significant cues to curators when deciding the 
relevance of an article to certain biological domains. We are 
interested in using both images and text to classify biomedical 
articles, as we have shown in an earlier work [5].  

Much research has been done during the past decade on image 
categorization and content-based retrieval, both within and outside 
the biomedical domain [5]. Most of the work is concerned with 
contents-based categorization and retrieval of images (not of 
documents). To do so, a corpus of images is defined (for testing 
and training), certain features are extracted from the images, the 
images are represented as feature-vectors, and a classifier is trained 
to identify certain types of images within the corpus, under the 
specified feature-vector representation. Features that are often used 
for image representation include, among others, statistics based on 
gray-level histograms [17], Haralick’s texture-features [18], and 
values from edge direction histograms [19]. We have used such 
features as well to classify images in our early work [5] where we 
used image-class-tags to represent and classify documents.  

In the work presented here we focus on a specific and different 
literature classification task, motivated by the need to identify 
articles discussing cis-regulatory elements and modules in the 
context of understanding complex gene-networks. The group 
working on the CYRENE cis-regulatory browser project at Brown 
University [20,21] noted that to identify such articles in the vast 
literature, one can use as a major cue a certain type of image 
showing the DNA and denoting the conserved cis-regulatory 
elements. An example of such a diagram is shown in Figure 1. We 
refer to images that show DNA content as DNA-rich images. 
 

Automatically identifying such images using common image 
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features (like those mentioned above) proves highly error prone, as 
our experiments show. However, using Optical Character 
Recognition (OCR) to extract alphabet characters from images, 
calculating character distribution and using the distribution 
parameters as image features, allows us to form a novel 
representation of images, and identify DNA-content in images with 
high accuracy. Using such DNA-rich images, we then train a 
classifier that identifies documents pertaining to cis-regulatory 
elements or modules with high precision and recall.   

While this paper focuses on the specific task of identifying cis-
regulatory-related publications, the use of OCR as image features 
has much potential beyond the current task, to identify other types 
of biomedical sequence-based images, and automatically 
identifying such images has much potential to be widely applicable 
in computational biomedicine. Throughout the rest of the paper we 
describe our approach, experiments and results. Section 2 provides 
a brief survey on image analysis in biomedical documents 
highlighting the difference between previous work and the research 
presented here. Section 3 provides more information about the 
specific problem we are addressing in the context of the CYRENE 
project. Section 4 discusses the datasets and the methods we use to 
process and to represent images and articles. Section 5 presents 
experiments and results, while Section 6 concludes and outlines 
future work. 

2. BACKGROUND and RELATED WORK 
Among the earliest work on using images within biomedical 
articles is the research by Murphy et al. [6,7,8,9], which uses image 
categorization for identifying images and articles discussing protein 
subcellular localization. They provide an extensive in-depth 
investigation of a specific task: identifying and interpreting a 
certain type of microscopy image, characteristic of localization 
experiments. In their image processing they use standard image-
features like the ones mentioned above. Notably their tools are 
centered around the protein-subcellular-localization task, and not 
around biomedical text/image retrieval as a whole. Work by 
Rafkind et al. [10] explored retrieval of biomedical images from 
the literature in a more general context, while work by Shatkay et 
al. [5] started to examine the integration of text and image data for 
bioemedical document retrieval. Both used similar, standard image 
features such as gray-scale and edge-direction statistics. 
Another area that focuses on image processing is content-based 
retrieval of medical images and medical documents. In this type of 
retrieval one may look, for instance, for all x-ray images of a 
fractured wrist, or for all documents that contain such images. The 
shared tasks of ImageClef [11] in the past few years have included 
challenges of this type, and lead to quite a few systems addressing 
such challenges [e.g. 12]. Again, typically standard image features 
like the ones mentioned earlier (texture features, gray-scale-based 
features etc.) are used to represent the images.  
Taking advantage of text that is associated with images for 
document retrieval or for identifying relevant images typically 

involved using the text of the figures caption (an idea introduced by 
Regev et al. [23]) or possibly also the text referencing the image 
from within the article’s body [13].  

Last, as a way to improve indexing and retrieval of biomedical 
images, Xu et al. [15] and later Rodriguez-Estaban and Iossifov 
[[16] proposed to use optical character recognition (OCR) to 
extract text from within biomedical images, using the extracted 
words/terms to index images [15] or help classify them [[16]. 
Notably, in contrast to the work presented here, that research 
viewed OCR as a way to extract text-words associated with images, 
rather than as an independent source of useful, distributional 
image-features. This latter idea, which to the best of our knowledge 
was not pursued before, is the focus of our work as presented here. 

3. The Article Classification Task for CYRENE 
The CYRENE project [20,21] is concerned with obtaining, 
providing and displaying highly reliable information  about cis-
regulatory genomics and gene regulatory networks (GRN). Two of 
its components include the cisGRN-Lexicon and the cisGRN-
Browser. The lexicon is a database containing high-quality 
information  about the sites, function, operation mechanism and 
other aspects of cis-regulatory elements, currently including 200 
transcription factors encoding genes and 100 other regulatory 
genes. (Primarily in human, mouse, fruit fly, sea urchin and 
nematode, with some information pertaining to rat, chicken, and 
zebrafish). To be included in the lexicon, a regulatory mechanism 
must adhere to the stringent criteria of experimental validation, in-
vivo. Obtaining such highly reliable information that can be placed 
in the database requires scanning carefully through the literature, 
identifying the articles that describe the cis-regulatory mechanisms 
and the experiments validating them, annotating the relevant 
information within them, and depositing the information into the 
database. This paper is concerned with the first step, namely, that 
of identifying articles that are likely to contain the high-quality 
information that can be curated into the CYRENE database. 

As noted by the group working on creating and curating CYRENE 
[20], (of which RT, KS, TJ and SI are a part), the publications in 
which the most relevant information is typically found often 
contain certain types of diagrams and graphs (referred to by the 
team as the quintessential diagrams and the quintessential graphs). 
We focus here on the diagrams, which typically display short 
sequences of DNA, particularly marking the conserved regions, the 
motifs or the sites involved in the regulatory module described in 
the paper.  Figure 1 shows an example of such an image, taken 
from one of the papers used to curate information into Cyrene [22]. 

The classification task is thus to identify publications, among a set 
of candidates already containing basic terms such as “regulation” 
or published in the relevant journals (such as Molecular and 
Cellular Biology), the documents that are most likely to contain 
experimentally validated information about cis-regulatory elements 
and modules. We pursue this task by using both a text-based 
classifier (briefly mentioned here), and an image-based document 
classifier, the latter is the main focus of this paper. The data and the 
methods used for training and testing such a classifier are discussed 
in the next section. 

4. DATA and METHODS 
4.1 The Dataset of CYRENE-related Articles 
For the purpose of this work, the CYRENE team of curators has 
initially identified a set of 271 publications as high-quality articles 
containing experimentally-validated information about cis-
regulatory modules. To obtain this set, they read through a subset 

Figure 1 An example of a DNA-rich diagram of the type that is 
over-represented in articles discussing cis-regulatory elements. 
Taken, with permission, from PMID 12972592, Figure 2. [22] 



of publications in a selected set of about 60 journals (primarily 
drawing on the main journals that publish in the area, including: 
The Journal of Biological Chemistry, Molecular and Cellular 
Biology, Development, Gene & Development, Developmental 
Biology, The EMBO Journal, Gene, Biochemical and biophysical 
research communications, PNAS, Nucleic Acids Research), 
published after 1985. About 90 of the relevant articles came from 
the first two journals, and additional 80 came from the next five in 
the above list. A keyword search (using keywords such as 
regulatory, transcription, DNA element, DNA motif) was applied to 
the many thousands of resulting articles, to further reduce the set to 
those articles likely to discuss gene regulation. The resulting set  
(several thousand articles) was examined by the curators to identify 
the high-quality articles, namely ones that experimentally validate 
cis-regulatory modules, forming the set of 271 articles. The latter is 
the positive set or the set of Relevant articles for our classification 
training/testing process. 

Many of the remaining published articles were rejected from the 
CYRENE-relevant dataset without further tracing. A small subset 
of those irrelevant publications, consisting of 78 articles, were 
identified and kept by the curators, and were provided as a negative 
set of Irrelevant articles. As the resulting overall set is highly 
unbalanced as far as classification goes, (271 positive examples and 
78 negative ones), we selected an additional set of 143 negative 
examples from the Journal of Molecular Cellular Biology – which 
is a journal in which close to 20% of the 271 relevant articles were 
found. The negative documents were selected by going into the 
same volumes from which relevant articles were obtained, and 
obtaining 10-20 articles from the same volume that were not judged 
to be relevant by the curators. By selecting irrelevant articles from 
the same volume from which relevant articles were selected we 
ensure that the general discourse and style of writing remains 
consistent across the relevant and the irrelevant articles. That is, 
there is no shift in time and in the overall areas of current interest 
between the corpus of relevant articles and the corpus of irrelevant 
articles. Such a shift, if existed, would over-simplify the learning 
task of separating between the relevant and irrelevant sets, as 
separation could then rely on differences in language and style, as 
opposed to on the difference in actual contents. 

The resulting final set thus consists of 271 positive examples 
(CYRENE-relevant articles) and 221 negative examples (articles 
that are irrelevant for CYRENE). The PDF of the complete articles 
was obtained for 264 of the relevant articles and for 220 of the 
irrelevant ones. We describe how the documents are used for 
testing and training an image-based document-classifier in Sec. 4.3. 

4.2 Images, Image Panels, Representation and 
Classification 

It has been noted by multiple groups [6,5,13] that figures in 
biomedical publications often consist of multiple subfigures or 
panels, as shown in Figure 2. Each panel is typically an individual 
image, and as such, when considering images, we would like to 

separate figures into individual panels.  

To obtain images and image panels from the PDF file we use a tool 
that we have developed for this purpose, based on the Xerox 
Rossinante utility [24]. A full description of this tool and its 
features is beyond the scope of this paper and will be published 
separately.  

As we noted earlier, image panels containing DNA information, 
like the one shown in Figure 1, are typically over represented in 
articles that discuss cis-regulatory modules. As such, we 
hypothesized that the ability to identify such images automatically, 
and to identify articles that show an over-abundance of such images 
would prove helpful in identifying relevant documents for 
CYRENE database. As before, we refer to this type of image panel, 
which shows DNA regions, as DNA-rich image panel. In order to 
automatically identify such image panels, we would like to train a 
classifier that can perform this task, i.e. would distinguish between 
DNA-rich images and all other images. To achieve this goal we 
need:  
a) To obtain a set positive image panels that contain DNA 
sequences and a set of negative images panels, which do not 
contain DNA sequences;  and 
b) To represent images using a set of features that would expose 
the DNA-content. Once such features are identified, all the images 
in the positive and in the negative set can be represented as a 
weighted vector of these features, and a classifier that aims to 
distinguish between the two types of images can be trained and 
tested. 

To achieve the first sub-goal (a) above, we identified a set of 88 
DNA-rich image panels, and 100 image panels that do not show 
DNA sequence (although they may show other sequences, such as 
proteins or RNA). This set of 188 panels is the one to be used for 
training and testing a classifier that would aim to distinguish 
between DNA-rich and non-DNA-rich images. 

In order to represent images as feature-vectors, so that the panel-
classification task could be attempted (aim b above), we introduce 
a novel OCR-based representation. To do so, we apply an optical 
character recognition (OCR) tool, ABBYY Finereader [25], to all 
the panels, and obtain all the characters that occur in each panel. 
We count the number of times each character (A-Z, 0-9, Other) 
occurs, and represent each panel as a 37-dimentional feature vector 
<w1…w37>, where wi denotes the frequency of the ith character in 
the panel. An example of the character frequency distribution for 
two different image panels is illustrated in Figure 3 (in which we 
only show the first 26 characters A-Z). Panel A in the figure is a 
DNA-rich panel, and as such its character frequency distribution 
shows four distinct peaks at A, C, G and T. In contrast, panel B 
does not display a DNA sequence, and as such its associated 
character distribution assigns relatively low, similar values to quite 
a few characters including A, E, I, and L, and low values to C and 
G. Notably, the overall character-distribution is quite robust to 
OCR errors, as mis-reading some characters has only a small, local 
impact on the overall magnitude of character counts and on the 
distribution as a whole. 

We have also experimented with a similar, but more compact 
representation using a 5-dimensional vector, collapsing all 
characters except for A, C, G and T, into “Other”, while 
maintaining the frequencies of A, C, G, and T. As our results show, 
the two representations perform at about the same level in our 
experiments. For comparison, we have also used a simple gray-
scale histogram representation of all images and experimented with 
learning a classifier under this representation, as further discussed 
in Section 5. 

Figure 2  An Example of a composite figure, consisting of multiple 
image panels. Taken, with permission, from PMID 12972592, Fig. 3. 
[22]  



Each of the 188 image panels is represented as such a vector (under 
either 5-dimensional or 37-dimensional) representation. To train 
and test classifiers using these representations, we use the standard  
WEKA tools [28] to train and test a decision-tree classifier (the J48 
algorithm). Further details regarding these experiments are 
provided in Section 5.  

A summary of the datasets discussed above and their respective 
sizes is shown in Table 1. 

4.3 Articles Representation and Classification 
While the above paragraphs discussed the representation and the 
classification of image panels, recall that our ultimate goal is to 
classify published articles based on their relevance (or there lack-
of) to the CYRENE dataset. The dataset of articles we used consists 
of 271 positive (relevant) examples, and 221 negative (irrelevant) 
examples, where we have obtained the full PDF text files for 264 
positive and 220 negative articles respectively, as discussed in 
Section 4.1. 

Given an article d in the dataset, we create an image-based 
representation for it, by examining each image panel within the 
article and tagging it as DNA-rich or non-DNA-rich. While 
ultimately this step will be done automatically using the classifier 
trained on image data as described at the end of Section 4.2, in the 
experiments described here we used manual tagging of the images, 
to ensure independence between the results reported here for the 
image-classification step and those reported for the document-
classification step. This issue is revisited in Section 6.  
We then count how many panels in the article are DNA-rich and 
how many are not. For an article d, let Ad denote the number of 
DNA-rich panels in it, and Nd denote the number of non-DNA-rich 
panels. The article d is then represented as a simple 2-dimensional 
vector of the form:  
                         < Ad /(Nd +Ad) ;  Nd /(Nd+Ad) >,               (Eq. 1) 
that is, the article is represented based on the relative frequency of 
its DNA-rich panels, and its relative frequency of non-DNA-rich 
panels. 
Using this simple representation of all 484 articles for which we 
have access to the full PDF, we again test and train a decision-tree 
classifier using the standard WEKA tools [28]. 
Finally, to compare the image-based classification to a text-based 
classification, we obtain the title and abstract of each article as they 
appear in PubMed and represent each article using a set of 

unigrams and bi-grams derived directly from the resulting corpus 
of text. Stop-words are excluded, and rare and frequent terms are 
removed. Moreover, as was done before [29], terms that are 
uninformative for distinguishing between relevant and irrelevant 
documents (as measured within the training set, in each iteration of 
the cross-validation runs) are removed from the vocabulary. 

The vector representation for each article d is a simple binary 
vector of the form <dt1,…,dtn>, where dti = 1 if the ith term in the 
corpus-vocabulary is present in article d, and 0 otherwise. 

Given the still relatively large number of features involved in such 
a representation (about 550 terms per vector), we use the WEKA 
naïve Bayes rather than decision tree, to train/test a classifier from  
the text representation of articles. 

 

5. EXPERIMENTS and RESULTS 

5.1 Experimental Setting 
Notably, there are two main hypotheses we are examining. The first 
is whether the OCR-based representation discussed above is indeed 
an effective representation for automatically distinguishing 
between DNA-rich image panels and non-DNA-rich panels in 
articles. The second is whether the proportion of DNA-rich panels 
within an article can be used as an effective indicator for assessing 
the article’s relevance to the CYRENE dataset. 

Accordingly we perform two sets of experiments. The first is 
concerned with image panel classification using OCR-based 
representation of image panels. The second is concerned with 
article classification, using image-based representation of articles. 
These experiments are described in Sections 5.1.1 and 5.1.2 
respectively. 

Dataset # Positives # Negatives Total 
CYRENE-related articles 271 221 492 
CYRENE-related articles 

with full-text PDF 264 220 484 

DNA-rich panels 88 100 188 

Table 1. Summary of the datasets used for training/testing 
classifiers. Positives are items that satisfy the Dataset condition 
listed on the left, while Negatives are items that do not satisfy the 
Dataset condition listed on the left. 

A 

C 
G 

T A 
C 

G 

T 

A  B 

Figure 3 An example of two panels, A ([26], Fig. 5b) and B ([27], Fig. 2b); obtained with permission. The respective character frequency 
distribution (shown only for the letters a-z) is provided below each image. Panel A shows a DNA-rich image, which translates to peaks on A, 
C, G and T in the character distribution, while panel B does not. 



5.1.1 Image-Panel Classification using OCR-based 
          Representation 
To evaluate the effectiveness of the OCR-based representation for 
supporting an automated distinction between DNA-rich and non-
DNA-rich image panels, we use the 188 image panels that were 
manually annotated for this purpose (as discussed in Section 4.2). 
For each of these image panels we construct three different 
representations, as follows: 

1) A 37-dimentional feature vector <w1
p  … w37

p >, where the 
weight in each of the first 36 positions corresponds to the relative 
abundance of each of the 36 characters (A-Z1, 0-9) in the panel, 
while the 37th position corresponds to the relative abundance of all 

other characters combined. Thus wi

p
 denotes the frequency of the 

ith  character among (A-Z,0-9,Other) in the image panel, that is: 

wi
p = # of times character ci  occurs in  panel p

Total #of  character occurrences in  panel p
 .  

 

(See Section 4.2 for further detail and Figure 3 for an example).  
 

2) A 5-dimentional feature vector <w1
p  …w5

p >, where the weight 

in each of the first 4 positions, w1
p -w4

p  is the respective frequency 

of the characters A, C, G and T in the panel p, while w5
p  is the 

frequency of all other characters combined.  

3) A simple gray-scale histogram representation. That is a 256-

dimensional vector <w1
p  … w256

p >, where the weight wi
p  is the 

number of pixels in panel p whose intensity level is i. 
Under each of the representations we use the WEKA [28] standard 
tools to train and test a decision tree classifier, using stratified 5-
fold cross validation. Under this setting both the 100 positive 
examples and the 88 negative examples are partitioned into 5 
subsets; 4/5 of both the positive and the negative examples are used 
for training and 1/5 is left out for testing. The process is iterated 5 
times with a different 1/5 of the data being left out at each iteration. 
To ensure stability of the results, we use five separate complete 
runs of 5-fold-cross-validation for each of the representations (a 
total of 25 runs per representation).   

5.1.2 Article Classification using image-based 
          Representation 
To evaluate the effectiveness of the image-based representation for 
supporting an automated distinction between CYRENE-relevant 
and non-CYRENE-relevant publications, we represent the 484 pre-
classified articles (264 CYRENE-related, 220 non-CYRENE-
related, as discussed in Section 4.1) using the simple 2-dimensional 
representation described by Eq. 1 in Section 4.1. 

We again use the WEKA standard tools for training/testing a 
decision tree, but this time the classification is of articles rather 
than of images, and the classes are CYRENE-related vs. non-
CYRENE-related. As before, we use five separate runs of 5-fold 
cross validation to ensure stability of the results. 

                                                                    
1 While we use the upper case notation A-Z here, any capital letter 

X denotes here an occurrence of either the small (x) or the capital 
(X) letter within the image; the counts of small and capital 
occurrences are combined for each letter. 

As a point of comparison, we also use a text-based representation 
of the articles, employing the bag-of-words model of text 
documents, which is commonly used in information retrieval and 
document classification applications. The text we use to represent 
each article is taken only from its title and abstract, rather than the 
full PDF. This is done for three reasons: 1) The use of full-text 
leads to very large representations that are both slower to work 
with and typically lead to sub-optimal results in terms of 
classification accuracy or clustering coherence. 2) While studies on 
biomedical information extraction, e.g. identifying protein or gene 
mentions in the literature, suggested that using full-text rather than 
abstracts allows an application to identify more instances to extract, 
no similar study suggests that document classification improves 
when using larger full-text documents. Our own experience in 
another curation-related task [30] supports the notion that text from 
title-and-abstract fits well for this type of document-classification 
application. 3) Full-text versions of the articles are not available in 
ASCII – only in PDF. Converting from PDF to ASCII text is often 
error-prone, thus introducing noise as an additional factor to 
consider in a comparative study. This problem does not arise when 
using titles and abstracts, as they are readily available as ASCII 
text. 
The titles and the abstracts of all 484 articles – both positive and 
negative examples – were tokenized to obtain a dictionary of terms 
consisting of single words (unigrams) and pairs of consecutive 
words (bigrams), where words were stemmed using the Porter 
stemmer [31] and standard stop-words removed. Rare terms 
(appearing only in a single article) as well as very frequent ones 
(occurring in more than 60% of the documents) were also removed.  
The remaining set of terms was further reduced by selecting only 
distinguishing terms. These are terms whose probability to occur in 
positive (CYRENE-relevant) articles is statistically significantly 
different from their probability to occur in negative (non-
CYRENE-relevant) articles. Statistical significance of the 
difference is determined using the Z-score test, as described in our 
earlier work [29].  
The resulting vocabulary of 551 terms is used to represent each 
article d as a 551-dimensional vector of binary values,                    

<w1
d  …w551

d >, where wi
d =1 if the ith term, ti, occurs in document 

d, i.e. ti ∈ d , and wi
d =0 otherwise.  

As this is a relatively high-dimensional representation, we use the 
naïve Bayes classifier in the WEKA tools, employing again 5-fold 
cross validation to train and test the classifier. 

5.1.3 Evaluation Measures 
To assess the performance of all the classifiers described above, we 
use the standard measures widely used for classification evaluation, 
namely: Precision, Recall, F-measure, and overall accuracy (Acc) 
as defined below:  

Recall= TP
TP+FN

 ;  Precision= TP
TP+FP

;  

F =
2 ⋅Precision ⋅Recall
Precision+ Recall

 ;   Acc= TP+TN
TP+FN +TN +FP

  '  

where TP, FP, TN, and FN denote the number of true positives, 
false positives, true negatives and false negatives, respectively. 
Notably a “positive” instance is a DNA-rich panel for the panel-
classification task, while it is a CYRENE-relevant article for the 
article classification task.  



5.2 Results 
5.2.1 Image-Panel Classification Results 
Table 2 summarizes the average results obtained from running five 
separate panel-classification runs of stratified 5-fold cross 
validation, under each of the three image-panel representation we 
have used, as described in Section 5.1.1. The top two rows show 
the precision, recall, accuracy and F-measure when the OCR-based 
features are used to represent each image panel. The topmost 
results are of using a 37-dimensional vector, where the counts for 
each of the 26 alphabet letter and each digit (0-9) form separate 
feature values, and the counts for all other non-alphanumeric 
characters are grouped together into the 37th feature value. The 
middle-row shows the results for a more condensed 5-dimensional 
representation, where separate counts are calculated only for the 
letters A,C,G,T, and all other characters are grouped together into a 
fifth feature.  

The average precision for the top two rows is above 0.9 while the 
average recall is about 0.9 in both cases. While the second row 
shows slightly higher values than the first, the differences in 
performance between the two representations are not statistically 
significant (p>>0.1).  
In contrast, the third row, where image panels are represented 
based on their gray-scale histogram, shows a significantly lower 
performance on all measures. The difference in performance with 
respect to the top two rows is also extremely statistically significant 
(p<0.0001, using the two-sample t-test). 

Table 2. Image-panel classification results, averaged over 5 independent 
runs of 5-fold cross validation. The top two rows show results (Precision, 
Recall, Accuracy and F-measure) when the panel is represented using 
OCR-based features, while the bottom row shows results obtained using a 
gray-scale histogram representation. Standard deviation is shown in 
parentheses. 

 

5.2.2 Article Classification Results 
Table 3 summarizes the average results obtained from running five 
separate article-classification runs of stratified 5-fold cross 
validation, using the image-panel-based representation and the text-
based representation of articles. Recall that the image-based 
representation of an article is simply a 2-dimensional vector 
containing the proportion of DNA-rich panels and of non-DNA-
rich panels in the article. The text-based representation is a 551-
dimesnional vector of 0/1 denoting the absence/presence of each of 
the 551 distinguishing terms in the article. 

Table 3. Article classification results, averaged over 5 independent runs of 
5-fold cross validation. The top row shows the results from using an image-
panel based representation of each article, i.e. as a 2-dimensional vector 
representing the proportion of DNA-rich panels and of non-DNA-rich 
panels. The second row shows the results when using a standard binary 
term-vector representation, over a set of 551 distinguishing terms.  

 

On the whole, according to all performance measures, the image-
based classifier outperforms the text-based classifier. The 
differences in Precision, Recall, F-score and Accuracy are visible, 
and are also highly statistically significant (p<0.0001, using the 
two-sample t-test).  

While the image-based classifier does show here a better 
performance than the text-based classifier, we note that this is not 
the main message this study aims to convey. The results show that 
despite its simplicity, the image-based classifier performs at a level 
that is at least comparable to the one demonstrated by a text-based 
classifier. This relatively high level of performance suggests that 
our approach to image-based classification can be effective, and 
can aid in improving current biomedical document classification 
and retrieval efforts. We further discuss the results and their 
implications in the next section. 

6. DISCUSSION and CONCLUSIONS 
The work we described here presents two main contributions. First, 
we introduced a new method, based on OCR, to represent 
biomedical images as distributions of characters. Second, we have 
demonstrated that through the identification and the use of image 
types, (in this case DNA-rich images vs non-DNA-rich images), 
one can represent articles quite simply and effectively in support of 
biomedical document classification. 

In terms of image-representation, the results shown in Section 5.2.1 
strongly support the notion that OCR-based character distribution 
provides a very useful - yet simple - representation of images. The 
proposed approach is particularly suitable, applicable and 
significant in the context of biomedical publications, because so 
much of the data has the form of character sequences (RNA, DNA 
and proteins − which are readily distinguishable from other images 
based on character distribution), and so many of the images contain 
text for a variety of reasons ranging from organ- or cell-labels in 
fluorescence images, through DNA sequences, to tags and marks 
on graphs and diagrams. 

Moreover, by using the distributional properties of characters in the 
image − as opposed for instance to extracting complete words from 
images (which was done by others before [15][16]) − the method is 
robust to the typically noisy OCR process. Missing or mis-reading 
a few characters in an image is very unlikely to have a strong 
impact on the overall distribution of characters obtained from the 
image. 

 In terms of article-representation and classification, this work 
continues along the lines of our own work [5,14] and that by others 
[e.g. 10], suggesting that defining types of images and being able to 
automatically identify images of certain types within articles is 
useful not only for image retrieval in-and-of itself, but also as a 
basis for document classification. 

The methods and the results presented here will benefit from 
further exploration of the possible variants in the specific choice of 
vector representations, classifiers and even evaluation measures, 
which we plan to do as the next step in this work.  

As we have noted in Section 4.3, the image-based article 
representation, used for the article-classification task presented 
here, relied on the manual tagging of the DNA-rich images, rather 
than on automated tagging by the image-classifier. We used manual 
tagging of images to ensure that we indeed focus in that part of the 
work on the merits and shortcomings of the article-representation 
and classification, rather than on the possible issues involved in the 
image-classification step. Therefore, another important direction to 

Panel Representation Avg Prec. 
(STD) 

Avg Recall 
(STD) 

Avg Acc.  
(STD) 

Avg F  
 

OCR: A-Z,0-9; Other 0.92 (.015) 0.89 (.015) 0.91 (.012) 0.90 
OCR: ACGT; Other 0.93 (.006) 0.90 (.014) 0.92 (.007) 0.92 
Gray-scale Hist. 0.64 (.009) 0.66 (0.00) 0.67 (.008) 0.65 

Article 
Representation 

Avg Prec. 
(STD) 

Avg Recall 
(STD) 

Avg Acc.  
(STD) 

Avg F  
 

Img-panel distribution  
(2-dimensional vector) 0.87 (.000) 0.89 (.000) 0.89 (.000) 0.88 

Text (551-dimensional 
vector)  0.82 (.057) 0.82 (.061) 0.80 (.043) 0.82 



be pursued in the immediate future is that of assembling the image-
classifier and the article-classifier into a single pipeline that will 
serve in the curation process for CYRENE. We are also pursuing 
the integration of the text- and the image- based classifiers. The 
application of the proposed tools to larger and more diverse 
datasets is another part of our planned future research. 
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