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Recursive partitioning methods have become popular and widely used tools for nonparamet-
ric regression and classification in many scientific fields. Especially random forests, which
can deal with large numbers of predictor variables even in the presence of complex interac-
tions, have been applied successfully in genetics, clinical medicine, and bioinformatics within
the past few years. High-dimensional problems are common not only in genetics, but also in
some areas of psychological research, where only a few subjects can be measured because of
time or cost constraints, yet a large amount of data is generated for each subject. Random
forests have been shown to achieve a high prediction accuracy in such applications and to
provide descriptive variable importance measures reflecting the impact of each variable in
both main effects and interactions. The aim of this work is to introduce the principles of the
standard recursive partitioning methods as well as recent methodological improvements, to
illustrate their usage for low and high-dimensional data exploration, but also to point out
limitations of the methods and potential pitfalls in their practical application. Application of
the methods is illustrated with freely available implementations in the R system for statistical
computing.
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Prediction, classification, and the assessment of variable
importance are fundamental tasks in psychological research.
A wide range of classical statistical methods—including
linear and logistic regression as the most popular represen-
tatives of standard parametric models—is available to ad-
dress these tasks. However, in certain situations, these clas-
sical methods can be subject to severe limitations.

One situation where parametric approaches are no longer
applicable is the so-called small n large p case, where the
number of predictor variables, p, is greater than the number
of subjects, n. This case is common, for example, in genet-
ics, where thousands of genes are considered as potential
predictors of a disease. However, even in studies with much
lower numbers of predictor variables, the combination of all
main and interaction effects of interest—especially in the
case of categorical predictor variables—may well lead to
cell counts too sparse for reliable parameter estimation.
Thus, interaction effects of high order usually cannot be
included in standard parametric models.

Additional limitations of many standard approaches in-
clude the restricted functional form of the association pat-
tern (with the linear model as the most common and most
restrictive case), the fact that ordinally scaled variables,
which are particularly common in psychological applica-
tions, are often treated as if they were measured on an
interval or ratio scale, and the fact that measures of variable
importance are available only for a small range of methods.
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The aim of this article is to provide an instructive review
of a set of statistical methods adopted from machine learn-
ing that overcome these limitations. The most important of
these methods is the random forest approach of Breiman
(2001a): A random forest is a so-called ensemble (or set) of
classification or regression trees (CART; Breiman, Fried-
man, Olshen, & Stone, 1984). Each tree in the ensemble is
built on the basis of the principle of recursive partitioning,
where the feature space is recursively split into regions
containing observations with similar response values. A
detailed explanation of recursive partitioning is given in the
next section.

In the past years, recursive partitioning methods have
gained popularity as a means of multivariate data explora-
tion in various scientific fields, including, for example, the
analysis of microarray data, DNA sequencing, and many
other applications in genetics, epidemiology, and medicine
(cf., e.g., Bureau et al., 2005; Diaz-Uriarte & Alvarez de
Andrés, 2006; Gunther, Stone, Gerwien, Bento, & Heyes,
2003; Huang et al., 2005; Lunetta, Hayward, Segal, &
Eerdewegh, 2004; Qi, Bar-Joseph, & Klein-Seetharaman,
2006; Segal, Barbour, & Grant, 2004; Shih, Seligson, Bell-
degrun, Palotie, & Horvath, 2005; Ward, Pajevic, Dreyfuss,
& Malley, 2006).

A growing number of applications of random forests in
psychology indicates a wide range of application areas in
this field, as well: For example, Oh, Laubach, and Luczak
(2003) and Shen, Ong, Li, Hui, and Wilder-Smith (2007)
applied random forests to neuronal ensemble recordings and
EEG data, which are too high dimensional for the applica-
tion of standard regression methods. An alternative ap-
proach to cope with large numbers of predictor variables
would be to first apply dimension reduction techniques,
such as principle components or factor analysis, and then
use standard regression methods on the reduced data set.
However, this approach has the disadvantage that the orig-
inal input variables are projected into a reduced set of
components, so that their individual effect is no longer
identifiable. As opposed to that, random forests can process
large numbers of predictor variables simultaneously and
provide individual measures of variable importance.

Interesting applications of random forests in data sets of
lower dimensionality include the studies of Rossi,
Amaddeo, Sandri, and Tansella (2005) on determinants of
once-only contact in community mental health service and
Baca-Garcia et al. (2007) on attempted suicide under con-
sideration of the family history. For detecting relevant pre-
dictor variables, Rossi et al. (2005) pointed out that the
random forest variable importance ranking proves to be
more stable than stepwise variable selection approaches
available for logistic regression, which are known to be
affected by order effects (see, e.g., Austin & Tu, 2004;
Derksen & Keselman, 1992; Freedman, 1983). Moreover, a
high random forest variable importance of a variable that

was not included in stepwise regression may indicate that
the variable works in interactions that are too complex to be
captured by the parametric regression model. As another
advantage, Marinic et al. (2007) pointed out, in an applica-
tion to the diagnosis of posttraumatic stress disorder, that
random forests can be used to automatically generate real-
istic estimates of the prediction accuracy on test data by
means of repeated random sampling from the learning data.

Luellen, Shadish, and Clark (2005) explored another field
of application in comparing the effects in an experimental
and a quasi-experimental study on mathematics and vocab-
ulary performance: When the treatment choice in the quasi-
experimental study is chosen as a working response, clas-
sification trees and ensemble methods can be used to
estimate propensity scores (i.e., treatment probabilities).
However, some of these seminal applications of recursive
partitioning methods in psychology also reveal common
misperceptions and pitfalls. For example, Luellen et al.
(2005) suspected that ensemble methods could overfit (i.e.,
adapt too closely to random variations in the learning sam-
ple, as discussed in detail later) when too many trees are
used to build the ensemble—even though this has been
shown not to be the case—whereas recent results have
indicated that other tuning parameters may be responsible
for overfitting in random forests.

More common mistakes in the practical use and interpre-
tation of recursive partitioning approaches are the confusion
of main effects and interactions (see, e.g., Berk, 2006) as
well as the application of biased variable selection criteria
and a significance test for variable importance measures
(see, e.g., Baca-Garcia et al., 2007) that has recently been
shown to have extremely poor statistical properties. Some of
these pitfalls are promoted by the fact that random forests
were not developed in a stringent statistical framework, so
their properties are less predictable than those of standard
parametric methods, and some parts of random forests are
still under construction (cf. also Polikar, 2006, for a brief
history of ensemble methods, including fuzzy and Bayesian
approaches). Therefore, the aim of this article is not only to
point out the potential of random forests and related recur-
sive partitioning methods to a broad scientific community in
psychology and related fields, but also to provide a thorough
understanding of how these methods function, how they can
be applied practically, and when they should be handled
with caution.

The next section describes the rationale of recursive par-
titioning methods, starting with single classification and
regression trees and moving on to ensembles of trees. Ex-
amples are interspersed between the technical explanations
and provided in an extra section to highlight potential areas
of application. A synthesis of important features and advan-
tages of recursive partitioning methods—as well as impor-
tant pitfalls—with an emphasis on random forests is given
in a later section. For all examples shown here, freely
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available implementations in the R system for statistical
computing (R Development Core Team, 2009) were used.
The corresponding code is provided and documented in an
online supplement as an aid for new users.

Methods

After the early seminal work on automated interaction
detection by Morgan and Sonquist (1963), the two most
popular algorithms for classification and regression trees
(abbreviated as classification trees in most of the follow-
ing), CART and C4.5, were introduced by Breiman et al.
(1984) and independently by Quinlan (1986, 1993). Their
nonparametric approach and the straightforward interpret-
ability of the results have added much to the popularity of
classification trees (cf., e.g., Hannöver, Richard, Hansen,
Martinovich, & Kordy, 2002; Kitsantas, Moore, & Sly,
2007, for applications on the treatment effect in patients
with eating disorders and determinants of adolescent smok-
ing habits). As an advancement of single classification trees,
random forests (Breiman, 2001a), as well as its predecessor
method, bagging (Breiman, 1996a, 1998), are termed en-
semble methods, because an ensemble or committee of
classification trees is aggregated for prediction. This section
introduces the main concepts of classification trees, which
are then used as so-called base learners in the ensemble
methods bagging and random forests.

How Do Classification and Regression Trees Work?

Classification and regression trees are a simple nonpara-
metric regression approach. Their main characteristic is that
the feature space (i.e., the space spanned by all predictor
variables) is recursively partitioned into a set of rectangular
areas, as illustrated later. The partition is created such that
observations with similar response values are grouped. Af-
ter the partition is completed, a constant value of the re-
sponse variable is predicted within each area.

The rationale of classification trees is explained in more
detail by means of a simple psychological example: Inspired
by the study of Kitsantas et al. (2007) on determinants of
adolescent smoking habits, an artificial data set was gener-
ated for illustrating variable and split selection in recursive
partitioning. Our aim is to predict the adolescents’ intention
to smoke a cigarette within the next year (binary response
variable intention_to_smoke) from four candidate
risk factors (the binary predictor variables lied_to_
parents, indicating whether the subject has ever lied to
the parents about doing something they would not approve
of, and friends_smoke, indicating peer smoking of one
or more among the four best friends, as well as the numeric
predictor variables age, indicating the age in years, and
alcohol_per_month, indicating how many times the
subject drank alcohol in the past month).

The data were generated to resemble the key results of
Kitsantas et al. (2007). However, the variables age and
alcohol_per_month, which were used only in a dis-
cretized form by Kitsantas et al. (2007), were generated as
numeric variables to illustrate the selection of optimal cut-
points in recursive partitioning. The generated data set, as
well as the R code used for all examples, are available as
online supplements.

The classification tree derived from the smoking data is
illustrated in Figure 1A and shows the following: From the
entire sample of 200 adolescents, a group of 89 adolescents
is separated from the rest in the first split. This group
(represented by Node 2, where the node numbers are mere
labels assigned sequentially from left to right starting from
the top node) is characterized by the fact that none of their
four best friends smoked and that within this group only a
few subjects intended to smoke within the next year. The
remaining 111 subjects are further split into two groups
(Nodes 4 and 5) according to whether they drank alcohol (a)
on fewer than one or one or (b) on more than one occasion
in the past month. These two groups again vary in the
percentage of subjects who intended to smoke.

The model can be displayed either as a tree, as in Figure
1A, or as a rectangular partition of the feature space, as in
Figure 1B: The first split in the variable friends_smoke
partitions the entire sample, whereas the second split in the
variable alcohol_per_month further partitions only those
subjects whose value for the variable friends_smoke is
one or more. The partition representation in Figure 1B is
even better suited than the tree representation to illustrating
that recursive partitioning creates nested rectangular predic-
tion areas corresponding to the terminal nodes of the clas-
sification tree. Details about the prediction rules derived
from the partition are given later.

Note that the resulting partition is one of the main differ-
ences between classification trees and, for example, linear
regression models: Whereas in linear regression the infor-
mation from different predictor variables is combined lin-
early, here the range of possible combinations includes all
rectangular partitions that can be derived by means of
recursive splitting—including multiple splits in the same
variable. In particular, this includes nonlinear and even
nonmonotone association rules, which do not need to be
specified in advance but are determined in a data driven
way.

Of course, there is a strong parallel between tree building
and stepwise regression, where predictors are also included
one at a time in successive order. However, in stepwise
linear regression, the predictors still have a linear effect on
the dependent variable, whereas extensions of stepwise pro-
cedures, including interaction effects, are typically limited
to the inclusion of twofold interactions, because the number
of higher order interactions—that would have to be consid-
ered simultaneously when starting the selection proce-
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dure—is too large. In contrast to this, in recursive partition-
ing, only those interactions that are actually used in the tree
are generated during the fitting process. The issue of includ-
ing main effects and interactions in recursive partitioning is
discussed in more detail later.

Splitting and stopping. Both the CART algorithm of
Breiman et al. (1984) and the C4.5 algorithm (and its
predecessor ID3) of Quinlan (1986, 1993) conduct binary
splits in numeric predictor variables, as depicted in Figure 1.
In categorical predictor variables (of nominal or ordinal
scale of measurement), C4.5 produces as many nodes as
there are categories (often referred to as k-ary or multiway
splitting), whereas CART again creates binary splits be-
tween the ordered or unordered categories. We concentrate
on binary splitting trees in the following and refer to Quin-
lan (1993) for k-ary splitting.

For selecting the splitting variable and cutpoint, both
CART and C4.5 follow the approach of impurity reduction,
which we illustrate by means of our smoking data example:
In Figure 2, the relative frequencies of both response classes
are displayed not only for the terminal nodes, but also for
the inner nodes of the tree previously presented in Figure 1.
Starting from the root node at the top, we find that the
relative frequency of yes answers in the entire sample of 200
adolescents is about 40%. By means of the first split, the
group of 89 adolescents with the lowest frequency of yes
answers (below 20%, Node 2) can be isolated from the rest,
which have a higher frequency of yes answers (about 60%,

Node 3). These 111 subjects are then further split to form
two groups: one smaller group with a medium (below 40%,
Node 4) and one larger group with a high (about 80%, Node
5) frequency of yes answers to the intention-to-smoke ques-
tion.

From this example, we can see that, following the prin-
ciple of impurity reduction, each split in the tree-building
process results in daughter nodes that are more pure than the
parent node in the sense that groups of subjects with a
majority for either response class are isolated. The impurity
reduction achieved by a split is measured by the difference
between the impurity in the parent node and the average
impurity in the two daughter nodes. Entropy measures, such
as the Gini Index or the Shannon Entropy, are used to
quantify the impurity in each node. These entropy measures
have in common that they reach their minimum for perfectly
pure nodes with the relative frequency of one response class
being zero and their maximum for an equal mixture with the
same relative frequencies for both response classes, as il-
lustrated in Figure 3.

Although the principle of impurity reduction is intuitive
and has added much to the popularity of classification trees,
it can help our statistical understanding to think of impurity
reduction as merely one out of many possible means of
measuring the strength of the association between the split-
ting variable and the response. Most modern classification
tree algorithms rely on this strategy and use the p values of
association tests for variable and cutpoint selection. This
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Figure 1. Partition of the smoking data by means of a binary classification tree. The tree
representation (Panel A) corresponds to a rectangular recursive partition of the feature space (Panel
B). In the terminal nodes of the tree, the dark and light gray shaded areas represent the relative
frequencies of yes and no answers to the intention-to-smoke question in each group, respectively.
The corresponding areas in the rectangular partition are shaded in the color of the majority response.
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approach has additional advantages over the original impu-
rity reduction approach, as outlined later.

Regardless of the split selection criterion, however, in
each node the variable that is most strongly associated with
the response variable (i.e., that produces the highest impu-
rity reduction or the lowest p value) is selected for the next
split. In splitting variables with more than two categories,
which offer more than one possible cutpoint, the optimal

cutpoint is also selected with respect to this criterion. In our
example, the optimal cutpoint identified within the range of
the numeric predictor variable alcohol_per_month is
between the values 1 and 2, because subjects who drank
alcohol on one or fewer occasions have a lower frequency
of yes answers than those who drank alcohol in two or more
occasions.

After a split is conducted, the observations in the learning
sample are divided into the different nodes defined by the
respective splitting variable and cutpoint, and in each node
splitting continues recursively until some stop condition is
reached. Common stop criteria are to split until (a) a given
threshold for the minimum number of observations left in a
node is reached or (b) a given threshold for the minimum
change in the impurity measure is not met any more by any
variable. Recent classification tree algorithms also provide
statistical stopping criteria that incorporate the distribution
of the splitting criterion (e.g., Hothorn, Hornik, & Zeileis,
2006), whereas early algorithms relied on pruning the com-
plete tree to avoid overfitting.

The term overfitting refers to the fact that a classifier that
adapts too closely to the learning sample not only discovers
the systematic components of the structure that is present in
the population, but also the random variation from this
structure that is present in the learning data because of
random sampling. When such an overfitted model is later
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Figure 3. Shannon entropy and Gini index as functions of the
relative frequency of one response class. Pure nodes containing
observations of only one class receive an impurity value of zero,
whereas mixed nodes receive higher impurity values.
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cation tree for the smoking data. The dark and light grey shaded areas again represent the relative
frequencies of yes and no answers to the intention-to-smoke question in each group respectively.
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applied to a new test sample from the same population, its
performance is poor because it does not generalize well.
However, it should be noted that overfitting is an equally
relevant issue in parametric models: With every variable,
and thus every parameter, that is added to the regression
model, its fit to the learning data improves, because the
model becomes more flexible.

This is evident, for example, in the R2 statistic reflecting
the portion of variance explained by the model, which
increases with every parameter added to the model. For
example, in the extreme case where as many parameters as
observations are available, any parametric model shows a
perfect fit on the learning data, yielding a value of R2 � 1,
but performs poorly in future samples.

In parametric models, a common strategy to deal with this
problem is to use significance tests for variable selection in
regression models. However, one should be aware that in
this case, significance tests do not work in the same way as
in a designed study, where a limited number of hypotheses
to be tested are specified in advance. In common forward
and/or backward stepwise regression, it is not known be-
forehand how many significance tests will have to be con-
ducted. Therefore, it is hard to control the overall signifi-
cance level, which controls the probability of falsely
declaring at least one of the coefficients as significant.

Advanced variable selection strategies, which have been
developed for parametric models, use model selection cri-
teria, such as Akaike’s information criterion and the Bayes-
ian information criterion, which include a penalization term
for the number of parameters in the model. For a detailed
discussion of approaches that account for the complexity of
parametric models, see Burnham and Anderson (2002) or
Burnham and Anderson (2004).

Because information criteria, such as Akaike’s informa-
tion criterion and the Bayesian information criterion are,
however, not applicable to nonparametric models (see, e.g.,
Claeskens & Hjort 2008), in recursive partitioning the clas-
sic strategy to cope with overfitting is to prune the trees after
growing them, which means that branches that do not add to
the prediction accuracy in cross-validation are eliminated.
Pruning is not discussed in detail here, because the unbiased
classification tree algorithm of Hothorn et al. (2006), which
is used here for illustration, uses p values for variable
selection and as a stopping criterion and therefore does not
rely on pruning. In addition to this, ensemble methods,
which are our main focus here, usually use unpruned trees.

Prediction and interpretation of classification and re-
gression trees. Finally, a response class is predicted in
each terminal node of the tree (or each rectangular section in
the partition, respectively) by means of deriving from all
observations in this node either the average response value
in regression or the most frequent response class in classi-
fication trees. Note that this means that a regression tree
creates a piecewise (or rectanglewise for two dimensions

and cuboidwise in higher dimensions) constant predic-
tion function.

Even though the idea of piecewise constant functions
may appear very inflexible, such functions can be used to
approximate any functional form, in particular nonlinear
and nonmonotone functions. This is in strong contrast to
classical linear or additive regression, where the effects of
predictors are restricted to the additive form—the interpre-
tation of which may appear easier, but which may also
produce severe artifacts, because in many complex applica-
tions, the true data-generating mechanism is neither linear
nor additive. We see later that ensemble methods, by com-
bining the predictions of many single trees, can approximate
functions more smoothly, too.

The predicted response classes in our example are the
majority class in each node in Figure 1A, as indicated by the
shading in Figure 1B: Subjects who had no friends who
smoked as well as those who had one or more friends who
smoked but who drank alcohol on one or fewer occasions
were not very likely to intend to smoke, whereas those who
had one or more friends who smoked and who drank alcohol
on two or more occasions were likely to intend to smoke
within the next year.

For classification problems, it is also possible to predict
an estimate of the class probabilities from the relative fre-
quencies of each class in the terminal nodes. In our exam-
ple, the predicted probabilities for answering yes to the
intention-to-smoke question would thus be approximately
17%, 34%, and 79%, respectively, in the three groups—
which may preserve more information than the majority
vote that merely assigns the class with a relative frequency
of �50% as the prediction.

Reporting the predicted class probabilities more closely
resembles the output of logistic regression models and can
also be used (e.g., for estimating treatment probabilities or
propensity scores). Note, however, that no confidence in-
tervals are available for the estimates, unless, for example,
bootstrapping is used in combination with refitting to assess
the variability of the prediction.

The easy interpretability of the visual representation of
classification trees, which we have illustrated in this exam-
ple, has added much to the popularity of this method (e.g.,
in medical applications). However, the downside of this
apparently straightforward interpretability is that the visual
representation may be misguiding, because the actual sta-
tistical interpretation of a tree model is not trivial. Espe-
cially the notions of main effects and interactions are often
used rather incautiously in the literature, as seems to be the
case in Berk (2006, p. 272), where it is stated that a branch
that is not split any further indicated a main effect. How-
ever, when splitting continues in the other branch created by
the same variable, as is the case in the example of Berk
(2006), this statement is not correct.
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The term interaction commonly describes the fact that the
effect of one predictor variable, in our example alcohol_
per_month, on the response depends on the value of
another predictor variable, in our example friends_
smoke. For classification trees, this means that, if in one
branch created by friends_smoke it is not necessary to
split in alcohol_per_month, whereas in the other
branch created by friends_smoke it is necessary, as in
Figure 1A, an interaction between friends_smoke and
alcohol_per_month is present.

We further illustrate this important issue and source of
misinterpretations by means of varying the effects in our
artificial data set. The resulting classification trees are
given in Figure 4. Only Figure 4A, where the effect of
alcohol_per_month is the same in both branches
created by friends_smoke, represents two main ef-
fects of alcohol_per_month and friends_smoke
without an interaction: The main effect of friends_
smoke shows in the higher relative frequencies of yes
answers in Nodes 6 and 7 as compared to Nodes 3 and 4.
The main effect of alcohol_per_month shows in the
higher relative frequencies of yes answers in Nodes 4 and
7 as compared to Nodes 3 and 6, respectively.

As opposed to that, both Figure 4B and Figure 1A represent
interactions, because the effect of alcohol_per_month is
different in both branches created by friends_smoke. In
Figure 4B, the same split in alcohol_per_month is con-
ducted in every branch created by friends_smoke, but the
effect on the relative frequencies of the response classes is
different: For those subjects who have no friends who smoke,

the relative frequency of a yes answer is higher if they drank
alcohol in two or more occasions (Node 4 as compared to
Node 3), whereas for those who have one or more friends that
smoke, the frequency of a yes answer is lower if they drank
alcohol on two or more occasions (Node 7 as compared to
Node 6). This example represents a typical interaction effect as
known from standard statistical models, where the effect
of alcohol_per_month depends on the value of
friends_smoke.

In Figure 1A, on the other hand, the effect of alcohol_
per_month is also different in both branches created by
friends_smoke, because alcohol_per_month has
an effect only in the right branch, but not in the left branch.
Although this kind of asymmetric interaction is very com-
mon in classification trees, one is unlikely to discover a
symmetric interaction pattern like that in Figure 4B or even
a main effect pattern like that in Figure 4A in real data. The
reason for this is that, even if the true distribution of the data
in both branches were very similar, because of random
variations in the sample and the deterministic variable and
cutpoint selection strategy of classification trees, it is ex-
tremely unlikely that the same splitting variable—and also
the exact same cutpoint—would be selected in both
branches. However, even a slightly different cutpoint in the
same variable would, strictly speaking, represent an inter-
action. Thus, only if the two main effects and their respec-
tive cutpoints are very clear—and no other competitor vari-
able is strong enough to outperform the two original
variables in either node—the main effects pattern would be
identified by a tree.

friends_smoke
p < 0.001

1

none one or more

alcohol_per_month
p < 0.001

2

≤≤ 1 >> 1

Node 3

ye
s

no

0

0.2

0.4

0.6

0.8

1 Node 4

ye
s

no

0

0.2

0.4

0.6

0.8

1

alcohol_per_month
p < 0.001

5

≤≤ 1 >> 1

Node 6

ye
s

no

0

0.2

0.4

0.6

0.8

1 Node 7

ye
s

no

0

0.2

0.4

0.6

0.8

1

friends_smoke
p < 0.001

1

none one or more

alcohol_per_month
p < 0.001

2

≤≤ 1 >> 1

Node 3

ye
s

no

0

0.2

0.4

0.6

0.8

1 Node 4

ye
s

no

0

0.2

0.4

0.6

0.8

1

alcohol_per_month
p < 0.001

5

≤≤ 1 >> 1

Node 6

ye
s

no

0

0.2

0.4

0.6

0.8

1 Node 7

ye
s

no

0

0.2

0.4

0.6

0.8

1

A B

Figure 4. Classification trees based on variations of the smoking data with two main effects (Panel
A) and interactions (Panel B). The tree depicted in Figure 1 that is based on the original data also
represents an interaction.
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Therefore, it is stated in the literature that classification
trees cannot (or, rather, are extremely unlikely to) represent
additive functions that consist only of main effects, al-
though they are perfectly well suited for representing com-
plex interactions. As opposed to that, standard regression
models are—by definition—perfectly well suited for repre-
senting strictly additive functions but may not be able to
identify complex interaction patterns and nonlinear effects.

In this sense, each statistical model imposes different
limitations on the range of functions that can be represented
by it—and may thus be more or less well suited to describ-
ing the (unknown) true structure of the data set at hand,
which hardly ever follows a strict linear additive or strict
stepwise recursive pattern. (Again, we find later that the
ensemble methods bagging and random forests, which com-
bine all patterns identified by a large set of single trees, can
serve as a more flexible means for approximating different
functional forms.)

Accordingly, what is easy for one class of statistical
models may prove very hard for another class: Although it
may seem surprising that classification trees cannot deal
with such an easy problem as that of two main effects, one
should note, for example, that logistic regression cannot
deal with the—may be even easier—problem of perfectly
separable response classes (in which case the coefficient
estimates become infinite, i.e., there is no unique maximum-
likelihood solution unless, e.g., a penalty term is used).

For exploratory data analysis, further means for illustrat-
ing the effects of particular variables in classification trees
are provided by the partial dependence plots described in
Hastie, Tibshirani, and Friedman (2001, 2009) and the
CARTscans toolbox (Nason, Emerson, & Leblanc, 2004).

Model-based recursive partitioning. A variant of recur-
sive partitioning, which can also be a useful aid for data
exploration, is model-based recursive partitioning. Here, the
idea is to partition the feature space not to identify groups of
subjects with similar values of the response variable, but to
identify groups of subjects with similar values of the pa-
rameters of a model of interest.

For example, linear regression could be used to model the
dependence of a clinical response on the dose of medication.
However, the slope and intersect parameters of this regres-
sion may be different for different groups of patients: older
patients, for example, may show a stronger reaction to the
medication; therefore, the slope of their regression line
would need to be steeper than that of younger patients, or a
group of nonresponders with a flat regression line may be
identified by means of a combination of covariates. In this
example, the model of interest is the regression between
dose of medication and clinical response—however, the
model parameters need to be chosen differently in the two
or more groups defined by the covariates. Another example
and visualization are given in the “Further Application
Examples” section.

The model-based recursive partitioning approach of Zeil-
eis, Hothorn, and Hornik (2009) offers a way to partition the
feature space to detect parameter instabilities in the para-
metric model of interest by means of a structural change test
framework. Similar to latent class or mixture models, the
aim of model-based partitioning is to identify groups of
subjects for which the parameters of the parametric model
differ. However, in model-based partitioning, the groups are
usually not defined by a latent factor but by combinations of
observed covariates, which are searched heuristically. Thus,
model-based partitioning can offer a heuristic but easy-to-
interpret alternative to latent class—as well as random or
mixed effects—models.

An extension of model-based partitioning for Bradley–
Terry models is suggested by Strobl, Wickelmaier, and
Zeileis (2009). An application to mixed models, including
the Rasch model as a special case (as a generalized linear
mixed model, see Doran, Bates, Bliese, & Dowling, 2007;
Rijmen, Tuerlinckx, Boeck, & Kuppens, 2003), has been
presented by Sanchez-Espigares and Marco (2008).

What is wrong with trees? The main flaw of simple tree
models is their instability to small changes in the learning
data: In recursive partitioning, the exact position of each
cutpoint in the partition, as well as the decision about which
variable to split in, determines how the observations are
split up in new nodes, in which splitting continues recur-
sively. However, the exact position of the cutpoint and
the selection of the splitting variable strongly depend on the
particular distribution of observations in the learning sample.

Thus, as an undesired side effect of the recursive parti-
tioning approach, the entire tree structure could be altered if
the first splitting variable, or only the first cutpoint, was
chosen differently because of a small change in the learning
data. Because of this instability, the predictions of single
trees show a high variability.

The high variability of single trees can be illustrated, for
example, by drawing bootstrap samples from the original
data set and investigating whether the trees built on the
different samples have a different structure. The rationale of
bootstrap samples, where a sample of the same size as the
original sample is drawn with replacement (so that some
observations are left out, whereas others may appear more
than once in the bootstrap sample) is to reflect the variability
inherent in any sampling process: Random sampling pre-
serves the systematic effects present in the original sample
or population, but in addition to this, it induces random
variability. Thus, if classification trees built on different
bootstrap samples vary too strongly in their structure, this
proves that their interpretability can be severely affected by
the random variability present in any data set. Classification
trees built on four bootstrap samples drawn from our orig-
inal smoking data are displayed in Figure 5. Apparently, the
effect of the variable friends_smoke is strong enough to
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remain present in all four trees, whereas the further splits
vary strongly with the sample.

As a solution to the problem of instability, the average
over an ensembles of trees, rather than a single tree, is used
for prediction in ensemble methods, as outlined in the
following. Another problem of single trees, which is solved
by the same model-averaging approach, is that the predic-
tion of single trees is piecewise constant and thus may jump
from one value to the next even for small changes of the
predictor values. As described in the next section, ensemble
methods have the additional advantage that their decision
boundaries are more smooth than those of single trees.

How Do Ensemble Methods Work?

The rationale behind ensemble methods is to base the
prediction on a whole set of classification or regression
trees, rather than a single tree. The related methods bagging
and random forests vary only in the way this diverse set of
trees is constructed: In both bagging and random forests, a
set of trees is built on random samples drawn from the
learning sample. The only difference between bagging and
random forests is that in bagging, variable selection follows

the same principle as in single classification trees, whereas
in random forests, variable selection is also randomized by
means of random sampling from the set of all predictor
variables to make the resulting set of trees even more
diverse. Thus, first we explain the bagging procedure, which
is based solely on random sampling from the learning data,
and second we explain in more detail the random sampling
from the predictor variables that distinguishes random for-
ests from bagging.

Bagging. In each step of the algorithms for bagging and
random forests, either a bootstrap sample (of the same size,
drawn with replacement) or a subsample (of smaller size,
drawn without replacement) of the learning sample is drawn
randomly, and an individual tree is grown on each sample.
As we saw earlier, each random sample reflects the same
data-generating process but differs slightly from the original
learning sample because of random variation. Keeping in
mind that each individual classification tree depends highly
on the learning sample as outlined earlier, the resulting trees
can differ substantially. Another feature of the ensemble
methods bagging and random forests is that usually trees are
grown very large, without any stopping or pruning involved.
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Figure 5. Classification trees based on four bootstrap samples of the smoking data, illustrating the
instability of single trees.
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As illustrated again for four bootstrap samples from the
smoking data in Figure 6, large trees can become even more
diverse and include a large variety of combinations of
predictor variables.

By combining the prediction of such a diverse set of trees,
ensemble methods utilize the fact that classification trees are
unstable but, on average, produce the right prediction (i.e.,
trees are unbiased predictors), which has been supported by
several empirical as well as simulation studies (cf., e.g.,
Bauer & Kohavi, 1999; Breiman, 1996a, 1998; Dietterich,
2000) and especially by the theoretical results of Bühlmann
and Yu (2002), which show the superiority in prediction
accuracy of bagging over single classification or regression
trees: Bühlmann and Yu (2002) were able to show by means
of rigorous asymptotic methods that the improvement in the
prediction is achieved by means of smoothing the hard cut
decision boundaries created by splitting in single classifica-

tion trees, which in return reduces the variance of the
prediction (see also Biau, Devroye, & Lugosi 2008). The
smoothing of hard decision boundaries also makes ensem-
bles more flexible than single trees in approximating func-
tional forms that are smooth rather than piecewise constant.

Grandvalet (2004) also pointed out that the key effect of
bagging is that it equalizes the influence of particular ob-
servations—which proves beneficial when bad leverage
points are downweighted but may be harmful when good
leverage points that could improve the model fit are down-
weighted. The same effect can be achieved not only by
means of bootstrap sampling as in standard bagging, but
also by means of subsampling (Grandvalet, 2004), which is
preferable in many applications because it guarantees unbi-
ased variable selection (Strobl, Boulesteix, Zeileis, &
Hothorn, 2007; see also section Bias in Variable Selection
and Variable Importance). Ensemble construction can also
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Figure 6. Classification trees (grown without stopping or pruning) based on four bootstrap samples
of the smoking data, illustrating the principle of bagging.
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be viewed in the context of Bayesian model averaging (cf.,
e.g., Domingos, 1997; Hoeting, Madigan, Raftery, &
Volinsky, 1999, for an introduction). For random forests,
which we consider in the next section, Breiman (2001a)
stated that they may also be viewed as a Bayesian procedure
but continued as follows: “Although I doubt that this is a
fruitful line of exploration, if it could explain the bias
reduction, I might become more of a Bayesian” (p. 25).

Random forests. In random forests, an extra source of
diversity is introduced when the set of predictor variables to
select from is randomly restricted in each split, producing
even more diverse trees. The number of randomly prese-
lected splitting variables, termed mtry in most algorithms,
as well as the overall number of trees, usually termed
ntree, are parameters of random forests that affect the
stability of the results and are discussed further in the
“Features and Pitfalls” section. Obviously, random forests
include bagging as the special case where the number of
randomly preselected splitting variables is equal to the
overall number of variables.

Intuitively speaking, random forests can improve the
predictive performance even further as compared to bag-
ging, because the single trees involved in averaging are even
more diverse. From a statistical point of view, this can be
explained by Breiman (2001a)’s theoretical results showing
that the upper bound for the generalization error of an
ensemble depends on the correlation between the individual
trees, such that a low correlation between the individual
trees results in a low upper bound for the error.

In addition to the smoothing of hard decision boundaries,
the random selection of splitting variables in random forests
allows predictor variables that were otherwise outplayed by
a stronger competitor to enter the ensemble: If the stronger
competitor cannot be selected, a new variable has a chance
to be included in the model—and may reveal interaction
effects with other variables that otherwise would have been
missed.

The effect of randomly restricting the splitting variables
is again illustrated by means of four bootstrap samples
drawn from the smoking data: In addition to growing a large
tree on each bootstrap sample, as in bagging, now the
variable selection is limited to mtry � 2 randomly pre-
selected candidates in each split. The resulting trees are
displayed in Figure 7: We find that, because of the random
restriction, the trees have become even more diverse; for
example, the strong predictor variable friends_smoke is
no longer chosen for the first split in every single tree.

The reason that even suboptimal splits in weaker predic-
tor variables can often improve the prediction accuracy of
an ensemble is that the split selection process in regular
classification trees is only locally optimal in each node: A
variable and cutpoint are chosen with respect to the impurity
reduction they can achieve in a given node defined by all
previous splits, but regardless of all splits yet to come. Thus,

variable selection in a single tree is affected by order effects
similar to those present in stepwise variable selection ap-
proaches for parametric regression (which is also unstable
against random variation of the learning data, as pointed out
by Austin & Tu 2004). In both recursive partitioning and
stepwise regression, the approach of adding one locally
optimal variable at a time does not necessarily lead (or,
rather, hardly ever leads) to the globally best model over all
possible combinations of variables.

Because, however, searching for a single globally best
tree is not computationally feasible (a first approach involv-
ing dynamic programming was introduced by van Os &
Meulman 2005), the random restriction of the splitting
variables provides an easy and efficient way to generate
locally suboptimal splits that can improve the global per-
formance of an ensemble of trees. Alternative approaches
that follow this rationale by introducing even more sources
of randomness are outlined later.

Besides intuitive explanations of how ensemble methods
work, recent publications have contributed to a deeper un-
derstanding of the statistical background behind many ma-
chine learning methods: The work of Bühlmann and Yu
(2002) provided the statistical framework for bagging;
Friedman, Hastie, and Tibshirani (2000) and Bühlmann and
Yu (2003) provided the framework for the related method of
boosting; and, most recently, Lin and Jeon (2006) and Biau
et al. (2008) provided the framework for random forests. In
their work, Lin and Jeon explored the statistical properties
of random forests by placing them in a k nearest neighbor
(kNN) framework, where random forests can be viewed as
adaptively weighted k nearest neighbors with the terminal
node size determining the size of the neighborhood. How-
ever, to be able to mathematically grasp a computationally
complex method like random forests, which involves sev-
eral steps of random sampling, simplifying assumptions are
often necessary. Therefore, well-planned simulation studies
still offer valuable assistance for evaluating statistical as-
pects of the method in its original form.

Alternative ensemble methods. Alternative approaches
for building ensembles of trees with a strong randomization
component are the random split selection approach of Di-
etterich (2000), where cutpoints from a set of optimal can-
didates are randomly selected, and the perfect random trees
approach of Cutler (1999) and Cutler (2000), where both the
splitting variable and the cutpoint are chosen randomly for
each split.

Another very intuitive approach, which resides somewhere
in between single classification trees and the ensemble meth-
ods we have covered so far, is the trees with extra splits
(TWIX) approach (Potapov, 2008; Potapov, Theus, &
Urbanek, 2006). Here, the building of the tree ensemble
starts in a single starting node but branches to a set of trees
at each decision by means of splitting not only in the best
cutpoint but also in reasonable extra cutpoints. A data-
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driven approach for selecting extra cutpoints is suggested in
Strobl and Augustin (2009).

However, although the approaches involving a strong
randomization component manage to overcome local opti-
mality as outlined earlier, the TWIX approach is still limited
to a sequence of locally optimal splits. It has been shown to
outperform single trees and even to reach the predictive
performance of bagging, but, in general, it cannot compete
because it becomes computationally infeasible for large sets
of trees that are standard in today’s ensemble methods.

Predictions From Ensembles of Trees

In an ensemble of trees, the predictions of all individual
trees need to be combined. This is usually accomplished by
means of (weighted or unweighted) averaging in regression
or voting in classification.

The term voting can be taken literally here: Each subject
with given values of the predictor variables is dropped through
every tree in the ensemble, so that each single tree returns a
predicted class for the subject. The class that most trees vote
for is returned as the prediction of the ensemble. This demo-
cratic voting process is the reason why ensemble methods are
also called committee methods. Note, however, that there is no
diagnostic for the unanimity of the vote. For regression and for
predicting probabilities (i.e., relative class frequencies), the
results of the single trees are averaged; some algorithms also
use weighted averages. A summary over several aggregation
schemes is given in Gatnar (2008). However, even with the
simple aggregation schemes used in the standard algorithms,
ensembles methods reliably outperform single trees and many
other advanced methods (examples of benchmark studies are
given in the “Discussion and Conclusions” section).
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Figure 7. Classification trees (grown without stopping or pruning and with a random preselection
of two variables in each split) based on four bootstrap samples of the smoking data, illustrating the
principle of random forests.
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Aside from the issue of aggregation, for bagging and
random forests there are two different prediction modes:
ordinary prediction and the so-called out-of-bag prediction.
Whereas in ordinary prediction each observation of the
original data set—or a new test data set—is predicted by the
entire ensemble, out-of-bag prediction follows a different
rationale: Remember that each tree is built on a bootstrap
sample that serves as a learning sample for this particular
tree. However, some observations, namely the out-of-bag
observations, were not included in the learning sample for
this tree. Therefore, they can serve as a built-in test sample
for computing the prediction accuracy of that tree.

The advantage of the out-of-bag error is that it is a more
realistic estimate of the error rate that is to be expected in a
new test sample than the naive and overoptimistic estimate
of the error rate resulting from the prediction of the entire
learning sample (Breiman, 1996b) (see also Boulesteix,
Strobl, Augustin, & Daumer, 2008, for a review on resam-
pling-based error estimation). For example, the standard
accuracy and the out-of-bag prediction accuracy for bagging
in our smoking data example are 78% and 76.5%, respec-
tively, where the out-of-bag prediction accuracy is more
conservative.

However, in this very simple artificial example, random
forests and even a single tree would perform as well as
bagging, because the interaction of friends_smoke and
alcohol_per_month, which was already correctly
identified by the single tree, is the only effect that was
induced in the data, whereas in most real data applica-
tions—especially in cases where many predictor variables
work in complex interactions—the prediction accuracy of
random forests is found to be higher than for bagging, and
both ensemble methods usually highly outperform single
trees.

Variable Importance

As described in the previous sections, single classifi-
cation trees are easily interpretable, both intuitively at
first glance and descriptively when looking in detail at
the tree structure. In particular, variables that are not
included in the tree did not contribute to the model—
at least not in the context of the previously chosen
splitting variables. As opposed to that, ensembles of trees
are not easy to interpret at all, because the individual
trees in them are not nested in any way: Each variable
may appear at different positions, if at all, in different
trees, as depicted in Figures 6 and 7, so that there is no
such thing as an average tree with a simple structure, that
could be visualized for interpretation.

On the other hand, an ensemble of trees has the advan-
tage of giving each variable the chance to appear in
different contexts with different covariates; thus, the
ensemble can better reflect that variable’s potentially

complex effect on the response. Moreover, order effects
induced by the recursive variable selection scheme used
in constructing the single trees are eliminated by averag-
ing over the entire ensemble. Therefore, in bagging and
random forests variable importance measures are com-
puted to assess the relevance of each variable over all
trees of the ensemble.

In principle, a possible naive variable importance mea-
sure would be to merely count the number of times each
variable is selected by all individual trees in the ensemble.
More elaborate variable importance measures incorporate a
(weighted) mean of the improvements of the individual
trees in the splitting criterion produced by each variable
(Friedman, 2001). An example for such a measure in clas-
sification is the Gini importance available in random forest
implementations. It describes the average improvement in
the Gini gain splitting criterion that a variable has achieved
in all of its positions in the forest. However, in many
applications involving predictor variables of different types,
this measure is biased, as outlined in the Bias in Variable
Selection and Variable Importance section.

The most advanced variable importance measure avail-
able in random forests is the permutation accuracy impor-
tance measure (termed permutation importance in the fol-
lowing). Its rationale is the following: By randomly
permuting the values of a predictor variable, its original
association with the response is broken. For example, in the
original smoking data, adolescents who drank alcohol on
more occasions were more likely to intend to smoke. Ran-
domly permuting the values of alcohol_per_month
over all subjects, however, destroys this association. Ac-
cordingly, when the permuted variable, together with the
remaining unpermuted predictor variables, is then used to
predict the response, the prediction accuracy decreases sub-
stantially. Thus, a reasonable measure for variable importance
is the difference in prediction accuracy (i.e., the number of
observations classified correctly; usually the out-of-bag pre-
diction accuracy is used to compute the permutation impor-
tance) before and after permuting a variable, averaged over
all trees.

If, on the other hand, the original variable was not asso-
ciated with the response, either it is not included in the tree
(and its importance for this tree is zero by definition), or it
is included in the tree by chance. In the latter case, permut-
ing the variable results in only a small random decrease in
prediction accuracy, or the permutation of an irrelevant
variable can even lead to a small increase in the prediction
accuracy (if, by chance, the permutated variable happens to
be slightly better suited than the original one). Thus, the
permutation importance can even show (small) negative
values for irrelevant predictor variables, as illustrated for the
irrelevant predictor variable age in Figure 8B.

Note that in our simple example, the two relevant predic-
tor variables friends_smoke and alcohol_per_
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month are correctly identified by the permutation variable
importance of both bagging and random forests, even
though the positions of the variables vary more strongly in
random forests (cf. again Figures 6 and 7). In real data
applications, however, the random forest variable impor-
tance may reveal higher importance scores for variables
working in complex interactions, which may have gone
unnoticed in single trees and bagging (as well as in para-
metric regression models, where modeling high-order inter-
actions is usually not possible at all).

Another important thing to note in the permutation im-
portance scores for bagging and random forests displayed in
Figure 8 is that, even though the two relevant predictor
variables are correctly identified in both cases, the absolute
values of the importance scores are not identical; they
depend on characteristics of the data set and the values of
tuning parameters (in this case, mtry � 4 for bagging and
mtry � 2 for random forests). Thus, the absolute values
of the importance scores should not be interpreted or com-
pared over different studies, and only a ranking of the most
important variables should be reported (see the “Features
and Pitfalls” section for more details).

Formally, the permutation importance for classification
can be defined as follows: Let B(t) be the out-of-bag sample
for a tree t, with t � {1, . . . , ntree}. Then, the importance
of variable Xj in tree t is

VI�t��Xj� �

�
i��
™ �t�

I�yi � ŷi
�t��

� �
™ �t� �

�

�
i��
™ �t�

I�yi � ŷi,�j

�t� �

� �
™ �t� �

, (1)

where ŷi
(t) � f (t)(xi) is the predicted class for observation i

before and where ŷi,�j
(t) � f (t)(xi,�j) is the predicted class for

observation i after permuting its value of variable Xj, that is,
with xi,�j � (xi,1, . . . , xi,j�1, x�j(i),j, xi,j�1, . . . , xi,p). Note
that VI(t)(Xj) � 0 by definition, if variable Xj is not in tree t.
The raw importance score for each variable is then com-
puted as the average importance over all trees:

VI�Xj� �

�
t�1

ntree

VI�t��Xj�

ntree . (2)

From this raw importance score, a standardized importance
score can be computed with the following rationale: The
individual importance scores VI(t)(xj) are computed from
ntree bootstrap samples, that are independent given the
original sample, and are identically distributed. Thus, if
each individual variable importance VI(t) has standard devi-
ation �, the average importance from ntree replications
has standard error �/�ntree. The standardized or scaled
importance, also called z score, is then computed as

z�xj� �
VI�xj�

�̂

�ntree
. (3)

When the central limit theorem is applied to the mean
importance VI(xj), Breiman and Cutler (n.d.) argued that the
z score is asymptotically standard normal. This property is
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Figure 8. Permutation variable importance scores for the predictor variables of the smoking data
from bagging and random forests.
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often used for a statistical test; however, it shows very poor
statistical properties as outlined in the “Features and Pit-
falls” section.

As already mentioned, the main advantage of the random
forest permutation accuracy importance, as compared to
univariate screening methods, is that it covers the impact of
each predictor variable individually as well as in multivariate
interactions with other predictor variables. For example,
Lunetta et al. (2004) found that genetic markers relevant in
interactions with other markers or environmental variables can
be detected more efficiently by means of random forests than
by means of univariate screening methods like Fisher’s exact
test.

This, together with its applicability to problems with
many predictor values, also distinguishes the random forest
variable importance from the otherwise appealing approach
of Azen, Budescu, and Reiser (2001) and advanced in Azen
and Budescu (2003) for assessing the criticality of a predic-
tor variable, termed dominance analysis: These authors
suggested using bootstrap sampling and selecting the best
regression model from all possible models for each boot-
strap sample to estimate the empirical probability distribu-
tion of all possible models. From this empirical distribution
for each variable the unweighted or weighted sum of prob-
abilities associated with all models containing the predictor
is computed and suggested as an intuitive measure of vari-
able importance. This approach, where for p predictor vari-
ables 2p � 1 models are fitted in each bootstrap iteration,
has the great advantage of providing sound statistical infer-
ence. However, it is computationally prohibitive for prob-
lems with many predictor variables of interest, because all
possible models have to be fitted on all bootstrap samples.

In random forests, on the other hand, a tree model is fit to
every bootstrap sample only once. Then, the predictor vari-
ables are permuted in an attempt to mimic their absence in
the prediction. This approach can be considered in the
framework of classical permutation test procedures (Strobl,
Boulesteix, Kneib, Augustin, & Zeileis, 2008) and is
feasible for large problems, but it lacks the sound statis-
tical background available for the approach of Azen et al.
(2001). Another difference is that random forest variable
importances reflect the effect of a variable in complex
interactions as outlined earlier, whereas the approach of
Azen et al. reflects the main effects—at least as long as
interactions are not explicitly included in the candidate
models. A conditional version of the random forest per-
mutation importance that resembles the properties of
partial correlations rather than those of dominance anal-
ysis was suggested by Strobl et al. (2008).

Literature and Software

Random forests have only recently been included in stan-
dard textbooks on statistical learning, such as Hastie et al.

(2009; the previous edition, Hastie et al. 2001, did not yet
cover this topic). In addition to a short introduction of
random forests, this reference gives a thorough background
on classification trees and related concepts of resampling
and model validation; it is therefore highly recommended
for further reading. For the social sciences audience, a first
instructive review on ensemble methods, including random
forests and the related method bagging, was given by Berk
(2006). We suggest this reference for the treatment of
unbalanced data (e.g., in the case of a rare disease or
mental condition), which can be treated either by means
of asymmetric misclassification costs or equivalently by
means of weighting with different prior probabilities in
classification trees and related methods (see also Chen,
Liaw, & Breiman, 2004, for the alternative strategy of
down sampling, i.e., sampling from the majority class as
few observations as there are of the minority class), even
though the interpretation of interaction effects in Berk
(2006) is not coherent, as demonstrated earlier. The orig-
inal works of Breiman (1996a, 1996b, 1998, 2001a,
2001b), to name a few, are also well suited and not too
technical for further reading.

For practical applications of the methods introduced here,
several up-to-date tools for data analysis are freely available
in the R system for statistical computing (R Development
Core Team, 2009). Regarding this choice of software, we
believe that the supposed disadvantage of command line
data analysis criticized by Berk (2006) is easily outweighed
by the advanced functionality of the R language and its
add-on packages at the state of the art of statistical research.
However, in statistical computing, the textbooks also lag
behind the latest scientific developments: The standard ref-
erence, Venables and Ripley (2002), does not (yet) cover
random forests either, whereas the handbook of Everitt and
Hothorn (2006) gives a short introduction to the use of both
classification trees and random forests. This handbook, to-
gether with the instructive examples in the following section
and the R code provided in an online supplement to this
work, can offer a good starting point for applying random
forests to data. Interactive means of visual data exploration
in R that can support further interpretation are described in
Cook and Swayne (2007).

Further Application Examples

For further illustration, two additional application exam-
ples of model-based partitioning and random forests are
outlined. The data and source code for reproducing all steps
of the following analyses as well as the examples in the
previous sections in the R system for statistical computing
(R Development Core Team, 2009) are provided as an
online supplement.
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Model-Based Recursive Partitioning

From a study on attitudes toward statistics among univer-
sity students, several covariates (gender, age, major subject
of study, and whether the person achieved his or her high
school diploma through continuing education) are available
for a sample of 430 first-year students together with their
scores on the Cognitive Competence scale of the Survey of
Attitudes Towards Statistics (Schau, Stevens, Dauphinee, &
Vecchio, 1995) and their statistics grade in the final exam
(see also Strobl, Dittrich, Seiler, Hackensperger, & Leisch,
2009, for details on the study).

As an example for model-based partitioning, we consider
a linear regression model for predicting the statistics grade
in the final exam from the Cognitive Competence scale
score obtained in the first week of the semester. (Although
the linear regression model may not be perfectly suited for
describing these data, it is very well suited for illustrating
the principle of model-based partitioning because it has only
two model parameters: intercept and slope.)

In the resulting partition, the parameters of the linear
regression model vary with respect to the students’ major
subject and age, whereas the remaining covariates show no
effect on the model parameters. As illustrated in Figure 9,

although the intercept is similar, the slope parameter varies
notably among all three groups.

The results imply a different impact of the cognitive
aspect of the attitude toward statistics in the different groups
of students: For students over the age of 20 with a business
science major (Node 4), an increase in their negative atti-
tude implies the strongest aggravation of the expected per-
formance in the final exam, whereas for students with a
social science major (Node 5), it implies the least, and for
students up to the age of 20 with a business science major
(Node 3), it implies a medium aggravation.

Of course, these differences among the groups of students
could also be modeled by means of, for example, random
effects or latent class models—but again the visual inspec-
tion of the model-based partition, which requires no further
assumptions, can provide a helpful first glance impression
of different association patterns present in the sample.

Random Forests

When the number of variables is very high, as, for exam-
ple, in gene expression studies, parametric regression mod-
els are no longer applicable, and ensemble methods are
often applied for prediction and the assessment of variable
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Figure 9. Model-based partition for the attitude toward statistics data. The model of interest relates
the final statistics grade to the Cognitive Competence score obtained in the first week. (For the
interpretation, note that the Cognitive Competence score was recoded such that high values
correspond to a negative attitude, i.e., agreement with items such as “I will find it difficult to
understand statistical concepts,” and numerically high grades indicate poor performance.)
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importance. For an exemplary analysis of gene data, we
adopted a data set originally presented by Ryan et al.
(2006): The data were collected in a case-control study on
bipolar disorder including 61 samples (from 30 cases and 31
controls) from the dorsolateral prefrontal cortex cohort. In
the original study of Ryan et al., no genes were clearly
found to be differentially expressed (i.e., to have an effect
on the disease) in this sample. Therefore, two genes were
artificially modified to have an effect, so that we can later
ascertain whether these genes are correctly identified.

To be able to illustrate the variable importances in a plot,
in addition to the two simulated genes and the three covari-
ates age, gender, and brain pH level, a subset of 100 genes
was randomly selected from the 22,283 genes originally
presented by Ryan et al. (2006) for the example. Note,
however, that the application to larger data sets is only a
question of computation time. The permutation importances
for all 105 variables are displayed in Figure 10. The effects
of the two artificially modified genes can be clearly identi-
fied. With respect to the remaining variables, a conservative
strategy for exploratory screening would be to include all
genes whose importance scores exceed the amplitude of the
largest negative scores (that can only be due to random
variation) in future studies.

A prediction from the random forest can be given either
in terms of the predicted response class or the predicted
class probabilities, as illustrated in Table 1 for some exem-
plary subjects, with a mismatch between the true and pre-
dicted class for Subject 29. For the entire learning sample,
the prediction accuracy estimate is overly optimistic
(90.16%), whereas the estimate based on the out-of-bag
sample is more conservative (67.21%). The confusion ma-
trices in Table 2 display misclassifications separately for
each response class.

Note that in this example, the application of logistic
regression would be problematic even for the reduced data
set with only 102 genes and even if only main effects are
considered: Obviously, estimating the full model including
all variables at a time is not possible when the number of
predictors exceeds the sample size. However, even in for-
ward stepwise selection, there are several occurrences of
perfectly separable classes (inducing unidentifiable coeffi-
cient estimates), so that—aside from the issue of order
effects—the model selection path is questionable.

In general, however, the complex random forest model,
involving high-order interactions and nonlinearity, should
be compared to a simpler model (e.g., a linear or logistic
regression model including only low-order interactions)
whenever possible to decide whether the simpler, interpret-
able model would be equally adequate. To further explore
and interpret the effects and interactions of the predictor
variables that were found relevant in a random forest, mul-
tivariate data visualization tools, such as those described in
Cook and Swayne (2007), are strongly suggested.

Features and Pitfalls

The way recursive partitioning methods—in particular the
ensemble methods bagging and random forests—work in-
duces some special characteristics that distinguish them
from other (even other nonparametric) approaches. Some of
these special features are mostly technical, whereas others
can prove very beneficial in applications, and yet others may
pose severe practical problems, which we want to address
here.

Small n Large p Applicability

The fact that variable selection can be limited to random
subsets in each step of random forests makes them partic-
ularly well applicable in small n large p problems with
many more variables than observations and has added much
to the popularity of random forests. However, even if the set
of candidate predictor variables is not restricted as in ran-
dom forests, but covers all predictor variables as in bagging,
the search is only a question of computational effort: Unlike
logistic regression models, for example, where parameter
estimation is not possible (e.g., because of linear constraints
in the predictors or perfect separation of response classes in
some predictor combinations as in the previous example)
when there are too many predictor variables and too few
observations, tree-based methods like bagging and random
forests consider only one predictor variable at a time and
can thus deal with high numbers of variables sequentially.
Therefore, Bureau et al. (2005) and Heidema et al. (2006)
pointed out that the recursive partitioning strategy is a clear
advantage of random forests as opposed to more common
methods like logistic regression in high-dimensional set-
tings.

Nonlinear Function Approximation

Classification and regression trees are provably Bayes
consistent, that is, in principle they can approximate any
decision boundary, whether linear or highly nonlinear,
given a sufficiently large data set and if allowed to grow at
a proper rate (see, e.g., Devroye, Györfi, & Lugosi, 1996).
For linear functions, the problem from a practical point of
view is that a single tree’s step-function approximation is
rather poor. Ensembles of trees, however, can approximate
functions more smoothly by averaging over the step-func-
tions of the single trees.

Therefore, bagging and random forests can be used to
approximate any unknown function, even if it is nonlinear
and involves complex interactions. An advantage of ensem-
ble methods in this context is that, as compared to other
nonlinear regression approaches, such as smoothing
splines, neither the shape of the function nor the position
or number of knots needs to be prespecified (see, e.g.,
Wood, 2006, for knot selection approaches in generalized
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Figure 10. Variable importances for the original and modified gene data.
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additive models). On the other hand, the resulting func-
tional shape cannot be interpreted or grasped analytically
and (aside from measures of overall variable importance)
can only serve as a black box for prediction. This char-
acteristic of many machine learning approaches has fu-
eled discussions about the legitimacy and usefulness of
such complex, nonlinear models (see, e.g., Hand, 2006,
and the corresponding discussion).

In practice, for a given data set, where nonlinear associ-
ations or high-order interactions are suspected, complex
approaches like random forests can at least serve as a
benchmark predictor: If a linear or other parametric model
with a limited number and degree of interaction terms can
reach the (cross-validated or test sample) prediction accu-
racy of the more complex model, the extra complexity may
be uncalled for and the simpler, interpretable model should
be given preference. If, however, the prediction accuracy
cannot be reached with the simpler model, and, for example,
the high importance of a variable in a random forest is not
reflected by its respective parameters in the simpler model,
relevant nonlinear or interaction effects may be missing in
the simpler model, and it may not be suited to grasping the
complexity of the underlying process.

In addition to this, a black box method like random
forests can be used to identify a small number of potentially
relevant predictors from the full feature list, which can then
be processed (e.g., by means of a familiar parametric
method). This two-stage approach has been successfully
applied in a variety of applications (see, e.g., Ward et al.,
2006). Note, however, that variable selection should not be
conducted before applying another statistical method on the
same learning data (Ambroise & McLachlan, 2002;
Boulesteix et al., 2008; Leeb & Pötscher, 2006).

The XOR Problem and Order Effects

In the literature on recursive partitioning, you may come
across the so-called XOR problem (where XOR stands for
the logical exclusive or concatenation), which describes a
situation where two variables show no main effect but a
perfect interaction. In this case, because of the lack of a
marginally detectable main effect, none of the variables may
be selected in the first split of a classification tree, and the
interaction may never be discovered.

In such a perfectly symmetric, artificial XOR problem, a
tree would indeed not find a cutpoint to start with. However,
a logistic regression model would not be able to identify an
effect in any of the variables either, if the interaction was
not explicitly included in the logistic regression model—
and in that case a tree model, where an interaction effect of
two variables can also be explicitly added as a potential
predictor variable, would do equally well.

In addition to this, a tree, and even better an ensemble of
trees, is able to approximate the XOR problem by means of
a sequence of cutpoints driven by random fluctuations that
are present in any real data set. In this case, the random
preselection of splitting variables in random forests again
increases the chance that a variable with a weak marginal
effect is still selected, at least in some trees, because some
of its competitors are not available.

A similar argument applies to order effects when com-
paring stepwise variable selection in regression models with
the variable selection that can be conducted on the basis of
random forest variable importance measures: In both step-
wise variable selection and single trees, order effects are
present, because only one variable at a time is consid-
ered—in the context of the variables that were already
selected but regardless of all variables yet to come. How-
ever, the advantage of ensemble methods, which use several
parallel tree models, is that the order effects of all individual
trees counterbalance, so that the overall importance ranking
of a variable is much more reliable than its position in
stepwise selection (see also Rossi et al., 2005).

Out-of-Bag Error Estimation

A feature that was already mentioned and used in the
application example is that bagging and random forests
come with their own built-in test sample: the out-of-bag
observations, which provide a fair means of error estimation
(Breiman, 1996b). Of course, similar validation strategies,
based either on sample splitting or resampling techniques
(see, e.g., Boulesteix et al., 2008; Hothorn, Leisch, Zeileis,
& Hornik, 2005;) or ideally even on external validation

Table 1
Predicted Response Class or Class Probability for Part of
the Gene Data

Subject y ŷ p̂(y � 1)

28 1 1 .80
29 1 2 .46
30 1 1 .64
31 2 2 .48
32 2 2 .43

Table 2
Confusion Matrices With Prediction From Learning and Out-of-
Bag Sample for the Gene Data

Sample and y

ŷ

1 2

Learning sample

1 28 2
2 4 27

Out-of-bag sample

1 20 10
2 10 21
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samples (König, Malley, Weimar, Diener, & Ziegler, 2007),
can and should be applied to any statistical method. How-
ever, in many disciplines, intensive model validation is not
common practice. Therefore, a method that comes with a
built-in test sample, like random forests, may help sensitize
for the issue and relieve the user of the decision for an
appropriate validation scheme.

Missing Value Handling by Means of
Surrogate Splits

Besides imputation approaches offered by some random
forests algorithms, all tree-based methods provide another
intuitive strategy for missing-value handling: This strategy
is that, at first, observations that have missing values in the
variable that is currently evaluated are ignored in the com-
putation of the impurity reduction for this variable. How-
ever, the same observations are included in all other com-
putations, so that the method does not involve cancelation of
observations with missing values (which can result in heavy
data loss).

After a splitting variable is selected, it would be unclear
to what daughter node the observations that have missing
values in this variable should be assigned. Therefore, a
so-called surrogate variable is selected that best predicts the
values of the splitting variable. By means of this surrogate
variable, the observations can then be assigned to the left or
right daughter node (see, e.g., Hastie et al., 2001). A flaw of
this strategy is, however, that currently the permutation
variable importance measure is not defined for variables
with missing values.

Bias in Variable Selection and Variable Importance

In the classical classification and regression tree algo-
rithms CART and C4.5, variable selection is biased in favor
of variables with certain characteristics, even if these vari-
ables are no more informative than their competitors. For
example, variables with many categories and numeric vari-
ables or, even more unintuitively, variables with many
missing values are artificially preferred (see, e.g., Kim &
Loh, 2001; Strobl, Boulesteix, & Augustin, 2007; White &
Liu, 1994).

This bias is carried forward to ensembles of trees: Espe-
cially the variable importance can be biased when a data set
contains predictor variables of different types (Strobl,
Boulesteix, Zeileis, & Hothorn, 2007). The bias is particu-
larly pronounced for the Gini importance, which is based on
the biased Gini gain split selection criterion (Strobl,
Boulesteix, & Augustin, et al., 2007), but can also affect the
permutation importance. Only when subsamples drawn
without replacement, instead of bootstrap samples, in com-
bination with unbiased split selection criteria, are used in
constructing the forest, can the resulting permutation im-

portance be interpreted reliably (Strobl, Boulesteix, Zeileis,
& Hothorn, 2007).

For applications in R, the functions ctree for classifi-
cation and regression trees and cforest for bagging and
random forests (both freely available in the add-on package,
party; Hothorn et al., 2006; Hothorn, Hornik, & Zeileis,
2009) guarantee unbiased variable selection when used with
the default parameter settings, as documented in the online
supplement to this work.

The functions tree (Ripley, 2007) and rpart (Ther-
neau & Atkinson, 2006) for trees and randomForest
(Breiman, Cutler, Liaw, & Wiener, 2006; Liaw & Wiener,
2002) for bagging and random forests, on the other hand,
which resemble the original CART and random forests
algorithms more closely, induce variable selection bias and
are not suggested when the data set contains predictor
variables of different types.

Scaled and Unscaled Importance Measures

For the permutation importance, a scaled version, the z
score, is available or even the default in many implemen-
tations of random forests. The term scaled here is somewhat
misleading, however, for two reasons: First, the variable
importance does not depend on the scaling or variance of
the predictor variables in the first place (in fact, the whole
method is invariant against the scaling of numeric vari-
ables). Therefore, it is not necessary to account for the
scaling of predictors in the variable importance. Second, for
a scaled measure, one may assume that its values are com-
parable over different studies—which is not the case for the
z score in random forests that heavily depends on the choice
of tuning parameters, as outlined in the next section. There-
fore, we suggest not interpreting or comparing the absolute
values of the importance measures, not even the z scores,
but relying only on a descriptive ranking of the predictor
variables.

Tests for Variable Importance and
Variable Selection

In addition to using variable importance measures as a
merely descriptive means of data exploration, different sig-
nificance tests and schemes for variable selection have been
suggested: On the official random forests Web site, a simple
statistical test based on the supposed normality of the z
score is proposed by Breiman and Cutler (n.d.); this test has
been applied in a variety of studies—ranging from the
investigation of predictors of attempted suicide (Baca-
Garcia et al., 2007) to the monitoring of a large area space
telescope on board a satellite (Paneque et al., 2007).

This approach may appear more statistically advanced
than a merely descriptive use of the random forest variable
importance. However, it shows such alarming statistical
properties that any statement of significance made with this
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test is nullified (Strobl & Zeileis, 2008): Among other
things, the power of this test depends on the arbitrarily
chosen number of trees in the ensemble ntree, over which
the importance is averaged (cf. Equations 2 and 3 in the
Variable Importance section; see also Lunetta et al., 2004).
Thus, reporting the significance of variable importance
scores (like, e.g., Baca-Garcia et al., 2007, who did not even
report the parameter settings they used for fitting the ran-
dom forest) can be highly misleading, because the number
of variables whose scores exceed a given threshold for
significance depends on the arbitrary choice of a tuning
parameter.

In addition to this, all statistical tests and variable selec-
tion schemes based on the original permutation importance,
such as those suggested by Diaz-Uriarte and Alvarez de
Andrés (2006) and Rodenburg et al. (2008), show another—
potentially unwanted—peculiarity that is induced by the
way the permutation importance is constructed: Correlated
predictor variables are systematically preferred over uncor-
related ones. This issue is addressed in a permutation test
framework by Strobl et al. (2008), who suggested a condi-
tional importance measure for random forests. The interpre-
tation of this conditional measure more closely resembles
that of partial correlations and parametric regression model
coefficients.

For selecting variables for further investigation in an
exploratory study, we suggest a conservative decision aid
for variable selection that was already hinted at in the
application example: All variables with importance that is
negative, zero, or positive but with a value that lies in the
same range as the negative values can be excluded from
further exploration. The rationale for this rule of thumb is
that the importance of irrelevant variables varies randomly
around zero. Therefore, positive variation of an amplitude
comparable to that of negative variation does not indicate an
informative predictor variable, whereas positive values that
exceed this range may indicate that a predictor variable is
informative.

Randomness and Stability

One special characteristic of random forests and bagging
that new users are often not entirely aware of is that they
are truly random models in the sense that, for the same data
set, the results may differ between two computation runs.
The two sources of randomness that are responsible for
these possible differences are (a) the bootstrap samples (or
subsamples) that are randomly drawn in bagging and ran-
dom forests and (b) the random preselection of predictor
variables in random forests. When the permutation impor-
tance is computed, another source of variability is the ran-
dom permutation of the predictor vectors.

Because of these random processes, a random forest is
only exactly reproducible when the random seed, a number

that can be set by the user and determines the internal
random number generation of the computer, is fixed. Oth-
erwise, the results vary between two runs of the same code.
To illustrate this point, random seeds are set in the online
supplement code for the random forest application example
whenever random sampling is involved.

The differences induced by random variations are, how-
ever, negligible—as long as the parameters of a random
forest have been chosen to guarantee stable results:

• The number of trees ntree highly affects the stability
of the model. In general, the higher the number of trees, the
more reliable the prediction and the interpretability of the
variable importance.

• The number of randomly preselected predictor vari-
ables mtry may also affect the stability of the model and
the reliability of the variable importance. In general, random
forests with random preselection perform better than bag-
ging with no random preselection at all, but small values of
mtry do not always prove beneficial: When predictor vari-
ables are highly correlated, the results of Strobl et al. (2008)
indicate that a higher number of randomly preselected pre-
dictor variables is better suited to reflect conditional impor-
tance. In addition to that, if the number of randomly prese-
lected predictor variables is very low, interactions of high
order may be missed in the tree-building process. In situa-
tions with few relevant variables, “small mtry results in
many trees being built that do not incorporate any of the
relevant [variables]” (Diaz-Uriarte & Alvarez de Andrés,
2006), which would lead to a decrease in prediction accu-
racy.

The number of randomly preselected predictor variables
can also be chosen to optimize prediction accuracy by
means of cross validation in some algorithms. Note, how-
ever, that the choice of tuning parameters in random forests
is not as critical as in other computer-intensive approaches,
such as support vector machines (Svetnik, Liaw, Tong, &
Wang, 2004), and random forests often produce good re-
sults even off the shelf without tuning.

• Note that the two tuning parameters, ntree and
mtry, also interact: To assess a high number of predictor
variables in a data set, a high number of trees or a high
number of preselected variables for each split, or ideally
both, are necessary so that each variable has a chance to
occur in enough trees. Only then is its average variable
importance measure based on enough trials to actually re-
flect the importance of the variable and not just a random
fluctuation.

In summary, this means that if you observe that, for a
different random seed, your prediction results and variable
importance rankings (for the top-scoring variables) differ
notably, you should not interpret the results but adjust the
number of trees and preselected predictor variables.
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Do Random Forests Overfit?

The study referred to in Breiman (2001b), where it is
stated (and has been extensively cited ever since) that ran-
dom forests do not overfit, may be a prominent example for
a premature conclusion drawn from an unrepresentative
sample. A variety of studies exploring the characteristics of
machine learning tools, such as random forests, are based on
only a few, real data sets that happen to be freely available
in some data repository. The particular data sets investigated
by Breiman (2001b) seem to enhance the impression that
random forests would not overfit, but this notion was
heavily criticized by Segal (2004).

The theoretical results of Breiman (1996a) do support the
fact that ensemble methods do not overfit with an increasing
number of trees. However, the real data “case studies”
referred to in Breiman (2001b) do not exclude the possibil-
ity that they overfit for other reasons. For further method-
ological investigations of machine learning algorithms, we
therefore strongly suggest the use of well-designed and
controlled simulation experiments, rather than case studies
with an unrepresentative selection of real data sets with
unknown distributional properties, where analytical results
are not feasible. With regard to the theoretical foundations
and practical applications of random forests, Segal (2004)
implied that the depth of the trees in random forests, rather
than the number of trees (as suspected, e.g., by Luellen et
al., 2005) may regulate overfitting.

Although most previous publications have argued that in
an ensemble, each individual tree should be grown as large
as possible and that trees should not be pruned, the recent
results of Lin and Jeon (2006) also showed that creating
large trees is not necessarily the optimal strategy. In prob-
lems with a high number of observations and few variables,
a better convergence rate (of the mean squared error as a
measure of prediction accuracy) can be achieved when the
terminal node size increases with the sample size (i.e., when
smaller trees are grown for larger samples). On the other
hand, for problems with small sample sizes or even small n
large p problems, growing large trees usually does lead to
the best performance.

Discussion and Conclusion

Recursive partitioning methods have become popular and
widely used tools in many scientific fields. Random forests
especially have been widely applied in genetics and related
disciplines within the past few years. First applications in
psychology show that random forests can be of use in a
wide variety of applications in this field as well. With this
review, we hope to have given the necessary background for
a successful—yet sensible—use of recursive partitioning
methods, in particular of random forests, which have drawn

much attention because of their applicability to even high-
dimensional problems.

Besides the applications to regression and classification
problems covered here, the function cforest (Hothorn et
al., 2006, 2009) used in the application example can even be
applied to survival data with a censored response and thus
can also serve as a means of data exploration in a broad
range of longitudinal studies. Of course, other recent statis-
tical learning methods, such as boosting (Freund & Scha-
pire, 1997) and support vector machines (cf. Vapnik, 1995,
for an introduction), can also be applied to the scope of
problems we suggested for the application of random for-
ests. The performance of these methods is within close
range of random forests; therefore, in some comparison
studies, random forests clearly outperform their competitors
(cf., e.g., Wu et al., 2003), whereas in others they are
slightly outperformed (cf., e.g., König et al., 2008, for a
comparison of several statistical learning methods in a med-
ical example of moderate size, where logistic regression was
also applicable).

In summary, one can conclude, in accordance with Hei-
dema et al. (2006), that high-dimensional data should be
approached by several different methods because each sin-
gle method has its strengths and weaknesses: Boosting, for
example, can be used for variable selection in linear and
other additive models (see Bühlmann, 2006; Bühlmann &
Hothorn, 2007, for an implementation in R). Similarly,
shrinkage approaches like the LASSO (least absolute
shrinkage and selection operator; cf., e.g., Hastie et al.,
2001), the elastic net (Zou & Hastie, 2005), and the recent
approach of Candes and Tao (2007) perform variable selec-
tion in linear models by means of penalization of the model
coefficients. However, in contrast to random forests, for
these methods it has to be assumed that the model is linear
or additive and that the problem is sparse (meaning that only
few predictor variables have an effect). For extremely small
sample sizes, on the other hand, exact methods like the
multivariate permutation tests described in Mielke and
Berry (2001) or Good (2005) may be more suited.

With respect to ease of application, the results of the
empirical comparisons between different supervised learn-
ing methods conducted by Caruana and Niculescu-Mizil
(2006) and Svetnik et al. (2004) indicate that random forests
are among the best performing methods even without extra
tuning. Therefore, random forests can be considered as a
valuable off-the-shelf tool for exploring complex data sets,
which may in a few years become as popular in psychology
as it is now in the fields of genetics and bioinformatics.
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