
LEARNING ALGORITHMS FOR CLASSIFICATION:

A COMPARISON ON HANDWRITTEN DIGIT RECOGNITION

Yann LeCun, L. D. Jackel, L�eon Bottou*, Corinna Cortes,

John S. Denker, Harris Drucker, Isabelle Guyon, Urs A. M�uller,

Eduard S�ackinger, Patrice Simard, and Vladimir Vapnik

AT&T Bell Laboratories,

Holmdel, NJ 07733, USA

E-mail: yann@research.att.com

ABSTRACT

This paper compares the performance of several classi�er algorithms on a stan-
dard database of handwritten digits. We consider not only raw accuracy, but
also training time, recognition time, and memory requirements. When available,
we report measurements of the fraction of patterns that must be rejected so that
the remaining patterns have misclassi�cation rates less than a given threshold.

1. Introduction

Great strides have been achieved in pattern recognition in recent years. Particu-
larly striking results have been attained in the area of handwritten digit recognition.
This rapid progress has resulted from a combination of a number of developments in-

cluding the proliferation of powerful, inexpensive computers, the invention of new
algorithms that take advantage of these computers, and the availability of large
databases of characters that can be used for training and testing. At AT&T Bell
Laboratories we have developed a suite of classi�er algorithms. In this paper we con-

trast the relative merits of each of the algorithms. In addition to accuracy, we look
at measures that a�ect implementation, such as training time, run time, and memory
requirements.

2. Databases

We begin by describing the databases we have used as benchmarks in the past
and present. When we �rst began our research in character recognition we assembled
our own database of 1200 digits, which is sometimes known as the "AT&T" database
7. This database consisted of 10 examples of each digit from 12 di�erent writers.
The writers, who were cooperative friends of the researchers, were instructed to write
each character in a box. This database was made available to other researchers in

di�erent institutions in Europe and the US. Usually, data from the �rst six writers
comprised the training set, with the second six writers used for testing. We quickly
discovered that this data was "too easy," since our recognizers and others' 5 soon
achieved better than 99% accuracy on the test set. We therefore abandoned this

database. Nevertheless, it is still occasionally used by other groups.

2.1. A Zipcode database

In order to obtain a database more typical of real-world applications, we contacted
the US Postal Service and its consultants at Arthur D. Little, Inc. in Washington,
DC. Through them we acquired a database of 7064 training and 2007 test digits

that were clipped from images of handwritten Zipcodes. The digits were machine
segmented from the Zipcode string by an automatic algorithm. As always, the seg-
mented characters sometimes included extraneous ink and sometimes omitted critical
fragments. These segmentation errors often resulted in characters that were unrec-

ognizable or appeared mislabeled. (For example, a vertical fragment of a "7" would
appear as a mislabeled "1".) These butchered characters comprised about 2% of test
set, and limited the attainable accuracy. We could improve the accuracy of our recog-
nizers by removing the worst o�enders from the training set, but in order to maintain

objectivity, we kept the butchered characters in our test set.
This database of cleaned training data, and uncleaned test data served for a time

as a standard for our internal AT&T benchmarking. The US Postal Service requested
that we not distribute this database ourselves and instead, the USPS, through Arthur

D. Little, Inc., supplied other researchers with the unsegmented Zipcodes from which
our database was derived. Segmenting was done by the users, often by hand. Thus
no common database was available for meaningful comparisons.

Another shortcoming of this database was the relatively small size of the training
and test sets. As our recognizers improved, we soon realized that we were starved
for training data and that much better results could be had with a larger training
set size. The size of the test set was also a problem. As our test error rates moved

into the range of 3% (60 errors), we were uncomfortable with the large statistical
uncertainty caused by the small sample size.

2.2. The NIST test

Responding to the community's need for better benchmarking, the US National
Institute of Standards and Technology (NIST) provided a database of handwritten
characters on 2 CD ROMs. NIST organized a competition based on this data in
which the training data was known as NIST Special Database 3, and the test data

was known as NIST Test Data 1.
After the competition was completed, many competitors were distressed to see

that although they achieved error rates of less than 1% on validation sets drawn
from the training data, their performance on the test data was much worse. NIST

disclosed that the training set and the test set were representative of di�erent distri-
butions: the training set consisted of characters written by paid US census workers,

while the test set was collected from characters written by uncooperative high school
students. Examples from these training and test sets are shown in Figure 1. Notice

that the test images contain some very ambiguous patterns. Although this disparity
in distributions is certainly possible in a real world application, it is prudent (and
usually possible) to guard against it. In general we can expect best test results when
recognizers are tuned to the kind of data they are likely to encounter when deployed.

Fig. 1. a) Typical images from the NIST training set, and b) Typical images from the NIST test
set.

A more subtle, but, for us, a more serious problem arises from having the training
and test data belonging to di�erent distributions. Most of our machine learning

techniques now use the principles of Structural Risk Minimization 15 in which the
capacity (roughly speaking, the number of free parameters) of a classi�er is adjusted to
match the quantity and the complexity of the training data. Because of the di�erence
in distributions, we cannot use our full machine learning tool set on the NIST data

when it is partitioned in this way.

2.3. Modi�ed NIST (MNIST) training and test sets

For the reasons described above, we repartitioned the NIST data to provide large

training and test sets that share the same distribution. We now describe how our new
database was created. The original NIST test contains 58,527 digit images written
by 500 di�erent writers. In contrast to the training set, where blocks of data from
each writer appeared in sequence, the data in the NIST test set is scrambled. Writer

identities for the test set is available and we used this information to unscramble the
writers. We then split this NIST test set in two: characters written by the �rst 250
writers went into our new training set. The remaining 250 writers were placed in our
test set. Thus we had two sets with nearly 30,000 examples each. The new training

set was completed with enough examples from the old NIST training set, starting at
pattern # 0, to make a full set of 60,000 training patterns. Similarly, the new test
set was completed with old training examples starting at pattern # 35,000 to make
a full set with 60,000 test patterns. In the experiments described here, we only used

the �rst 10,000 test images, but we used the full 60,000 training samples.
All the images were size normalized to �t in a 20x20 pixel box (while preserving

Fig. 2. Linear Classi�er. Each input unit pixel value contributes to a weighted sum for each output
unit. The output unit with the largest sum indicates the class of the input digit.

the aspect ratio). For some experiments, the 20x20 images were deslanted before
being presented, i.e. slanted characters were straightened up using moment of inertia

methods. For other experiments they were only centered in a larger input �eld using
center of mass. Grayscale pixel values were used to reduce the e�ects of aliasing. Two
methods (LeNet 1 and Tangent Distance) used subsampled versions of the images to

16 by 16 pixels. These are the training and test sets used in the benchmarks described
in this paper. In this paper, we will call them the MNIST data.

3. The Classi�ers

In this section we briey describe the classi�ers used in our study. For more

complete descriptions readers may consult the references.

3.1. Baseline Linear Classi�er

Possibly the simplest classi�er that one might consider is a linear 4 classi�er shown

in Figure 2. Each input pixel value contributes to a weighted sum for each output
unit. The output unit with the highest sum (including the contribution of a bias
constant) indicates the class of the input character. In this kind of classi�er there are
10N weights +10 biases, where N is the number of input pixels. For this experiment,

we used deslanted 20x20 images of the MNIST characters. The network has 4010 free
parameters. Because this is a linear problem, the weight values can be determined
uniquely. The de�ciencies of the linear classi�er are well documented 11 and it is
included here simply to form a basis of comparison for more sophisticated classi�ers.

On the MNIST data the linear classi�er achieved 8.4% error on the test set.

3.2. Baseline Nearest Neighbor Classi�er

Another simple classi�er is a K-nearest neighbor classi�er with a Euclidean dis-
tance measure between input images. This classi�er has the advantage that no train-

ing time (nd no brain on the part of the designer) is required. However, the memory
requirement and recognition time are large: the complete 60,000 twenty by twenty
pixel training images (about 24 Megabytes at one byte per pixel, or 12 megabytes
at 4 bits/pixel) must be available at run time. Much more compact representations

could be devised with modest increase in recognition time and error rate. As in the
previous case, deslanted 20x20 images were used. The MNIST test error for k = 3
is 2.4%. Naturally, a realistic Euclidean distance nearest-neighbor system would op-
erate on feature vectors rather than directly on the pixels, but since all of the other

systems presented in this paper operate directly on the pixels, this result is useful for
a baseline comparison.

3.3. Large Fully Connected Multi-Layer Neural Network

Another classi�er that we tested was a fully connected multi-layer neural network
with two layers of weights (one hidden layer). The network was implemented on the
MUSIC supercomputer 10 (for purposes of comparison, numbers quoted in Figures
8 and 9 are for equivalent times on a Sparc 10), and trained with various numbers

of hidden units. Deslanted 20x20 images were used as input. The best results were
1.6% on the MNIST test set, obtained with a 400-300-10 network (approximately
123,300 weights). It remains somewhat of a mystery that networks with such a large
number of free parameters manage to achieve reasonably low error rates on the test

set, even though comparing their size to the number of training samples makes them
appear grossly over-parameterized. Classical feed-forward multilayer networks seem
to possess a built-in \self-regularization" mechanism. We conjecture that, due to the
nature of the error surface, gradient descent training invariably goes through a phase

where the weights are small. Recent theoretical analyses seem to con�rm this (Sara
Solla, personal communication). This is due to the fact that the origin of weight space
(all the weights zero) is a saddle point that is attractive in almost every direction.

Small weights cause the sigmoids to operate in the quasi-linear region, making the
network essentially equivalent to a low-capacity, single-layer network. As the learning
proceeds, the weights grow, which progressively increases the e�ective capacity of the
network. A better theoretical understanding of these phenomena, and more empirical

evidence, are de�nitely needed.

3.4. LeNet 1

To solve the dilemma between small networks that cannot learn the training set,
and large networks that seem overparameterized, one can design specialized network
architectures that are speci�cally designed to recognize two-dimensional shapes such

as digits, while eliminating irrelevant distortions and variability. These considerations
lead us to the idea of convolutional network 8. There are well-known advantages to
performing shape recognition by detecting and combining local features. We can
require the network to do this by constraining the connections in the �rst few layers

to be local: each unit takes its input from a local \receptive �eld" on the layer below.
Furthermore, salient features of a distorted character might be displaced slightly
from their position in a typical character, or the same feature can appear at di�erent
locations in di�erent characters. Therefore a feature detector that is useful on one

part of the image, is likely to be useful on other parts of the image as well. Specifying
this knowledge we can be performed by forcing a set of units, located at di�erent
places on the image, to have identical weight vectors. The outputs of such a set
of units constitute a feature map. A sequential implementation of this would be to

scan the input image with a single unit that has a local receptive �eld, and store the
states of this unit at corresponding locations in the feature map. This operation is
equivalent to a convolution with a small size kernel, followed by a squashing function.

The process can be performed in parallel by implementing the feature map as a
plane of unitss that share a single weight vector. That is, units in a feature map are
constrained to perform the same operation on di�erent parts of the image.

An interesting side-e�ect of this weight sharing technique, is to reduce greatly the

number of free parameters, since a large number of units share the same weights. In
addition, this builds a certain level of shift invariance into the system. In practice,
multiple feature maps, extracting di�erent features types from the same image, are
needed. It is important to stress that all the weights in the network are trained

by gradient descent. Computing the gradient can be done with a slightly modi�ed
version of the classical backpropagation procedure.

The idea of local, convolutional feature maps can be applied to subsequent hidden
layers as well, to extract features of increasing complexity and abstraction. Interest-

ingly, higher level features require less precise coding of their location. Reduced
precision on the position is actually advantageous, since a slight distortion or trans-
lation of the input will have reduced e�ect on the representation. Thus, each feature

extraction layer in our network is followed by an additional layer which performs a
local averaging and a subsampling, reducing the resolution of the feature map. Sub-
sampling layers introduce a certain level of invariance to distortions and translations.
The resulting architecture is a \bi-pyramid": The loss of spatial resolution in the

INPUT
28x28

feature maps
4@24x24

feature maps
4@12x12

feature maps
12@8x8

feature maps
12@4x4

Subsam
pling

Convolution

Convolution

Subsam
pling

Convolution

OUTPUT
10@1x1

Fig. 3. Architecture of LeNet 1. Each plane represents a feaure map, i.e. a set of units whose
weights are constrained to be identical. Input images are sized to �t in a 16 x 16 pixel �eld, but
enough blank pixels are added around the border of this �eld to avoid edge e�ects in the convolution
calculations.

feature maps (due to subsampling) is partially compensated by an increase in the
number of feature types. It is important to stress that all the weights in the network

are adaptive. The training process causes convolutional networks to automatically
synthesize their own features.

One of our �rst convolutional network architecture, LeNet 1, shown in Figure 3,
was trained on the MNIST database. Because of LeNet 1's small input �eld, the

images were down-sampled to 16x16 pixels and centered in the 28x28 input layer.
Although about 100,000 multiply/add steps are required to evaluate LeNet 1, its
convolutional nature keeps the number of free parameters to only about 3000. The
LeNet 1 architecture was developed using our own version of the USPS database and

its size was tuned to match the available data. On the MNIST LeNet 1 achieved 1.7%
error.

3.5. LeNet 4

Experiments with LeNet 1 made it clear that a larger convolutional network was
needed to make optimal use of the large size of the MNIST set. LeNet 4 was designed
to address this problem. It is an expanded version of LeNet 1 that has a 32x32 input
layer in which the 20x20 MNIST images (not deslanted) were centered by center of

mass. It includes more feature maps and an additional layer of hidden units that is
fully connected to both the last layer of features maps and to the output units. LeNet
4 requires about 260,000 multiply/add steps and has about 17,000 free parameters.
LeNet 4 achieves 1.1% error on the MNIST test.

3.6. LeNet 5

LeNet 5, has an architecture similar to LeNet 4, but has more feature maps, a

larger fully-connected layer, and it uses a distributed representation to encode the
categories at the output layer, rather than the more traditional \1 of N" code. LeNet

5 has a total of about 340,000 connections, and 60,000 free parameters, most of them
in the last two layers. Again the non-deslanted 20x20 images centered by center
of mass were used, but the training set was augmented with distorted versions of
the original characters. The distorted characters were automatically generated using

small, randomly chosen a�ne transformations (shift, scaling, rotation, and skewing).
It achieves 0.9% error on the MNIST test.

3.7. Boosted LeNet 4

Several years ago, Schapire 13 proposed methods (called "boosting") for building
a committee of learning machines that could provide increased accuracy compared to
a single machine. Drucker et al. 6 expanded on this concept and developed practical
algorithms for increasing the performance of a committee of three learning machines.

The basic method works as follows: One machine is trained the usual way. A second
machine is trained on patterns that are �ltered by the �rst machine so that the second
machine sees a mix of patterns, 50% of which the �rst machine got right, and 50% of
which it got wrong. Finally, a third machine is trained on new patterns on which the

�rst and the second machines disagree. During testing, in the Drucker method, all
three machines are shown the unknown character and their output scores are added,
with the highest total score indicating the most likely classi�cation.

Notice that if the �rst machine is a version of LeNet 4, its 1% error rate means that
an enormous amount of data must �ltered to glean enough mis-classi�ed patterns to
train a second machine as complex as LeNet 4. Even more data is required to train the
third machine. For this MNIST database there was insu�cient data to train all three

machines. As with LeNet 5, an unlimited number of training patterns was generated
by distorting the training data with a set of a�ne transformations and line-thickness
variations. This choice of distortions, in e�ect, builds some of our knowledge about
character recognition into the training process. With this trick, a composite machine,

consisting of three versions of LeNet 4, was trained. It attained a test error rate of
0.7%, the best of any of our classi�ers. At �rst glance, boosting appears to require
three times as much time to perform recognition as a single machine. In fact, with
a simple trick, the additional computation cost is only about a factor of 1.75. This

is because usually the �rst machine classi�es patterns with high con�dence and the
outputs of the other two machines need not be evaluated.

3.8. Tangent Distance Classi�er (TDC)

The TDC is a memory-based, k-nearest-neighbor classi�er in which test patterns
are compared to labeled, prototype patterns in the training set. The class of the

training pattern "closest" to the test pattern indicates the class of the test pattern.
The key to performance is to determine what "close" means for character images. In

the naive approach, nearest-neighbor classi�ers use the Euclidean distance: we simply
take the squares of the di�erence in the values of corresponding pixels between the
test image and the prototype pattern. The aw in such an approach is apparent: a
misalignment between otherwise identical images can lead to a large distance. The

standard way of dealing with this problem is to use a hand-crafted feature extractor
to enhance dissimilarity between patterns of di�erent classes and decrease variability
within each class.

Instead Simard and his coworkers 14 modi�ed the distance measure, making it
invariant against small distortions, including line thickness variations, translations,
rotations, scale change, etc. If we consider an image as a point in a high dimensional
pixel space, where the dimensionality equals the number of pixels, then an evolving

distortion of a character traces out a curve in pixel space. Taken together, all these
distortions de�ne a low-dimensional manifold in pixel space. For small distortions,
in the vicinity of the original image, this manifold can be approximated by a plane,
known as the tangent plane. Simard et al. found that an excellent measure of

"closeness" for character images is the distance between their tangent planes. Using
this "tangent distance", a high accuracy classi�er was crafted for use on the postal
data. Tangent Distance was tested on the MNIST images downsampled to 16x16
pixels. An error rate of 1.1% was achieved. Pre�ltering techniques using simple

Euclidean distance at multiple resolutions allowed to reduce the number of necessary
Tangent Distance calculations. The �gure for storage requirement assumes that the
patterns are represented at multiple resolutions at one byte per pixel.

3.9. LeNet 4 with K-Nearest Neighbors

As an alternative to a smart distance measures like the one used in the TDC,
one can seek a change in representation so that Euclidean distance is a good measure
of pattern similarity. We realized that the penultimate layer of LeNet 4, which has

50 units, can be used to create a feature vector that is appropriate for a Euclidean
distance search. With these features, a 1.1% test error was attained, no improvement
over a plain LeNet 4.

3.10. Local Learning with LeNet 4

Bottou and Vapnik 9 employed the concept of local learning in an attempt to
get higher classi�er accuracy. They had observed that the LeNet family of classi�ers
performs poorly on rare, atypical patterns, and interpreted this behavior as a capacity

control problem. They surmised that the modeling capacity of the network is too large
in areas of the input space where the patterns are rare and too small in areas where

Class 1

Class 2

x

y

Class 1

Class 2

x

x +y2 2

a) b)
Fig. 4. The Optimal Margin Classi�er can transform patterns from an input space in which they
are not linearly separable to a new space in which they are linearly separable. a) shows the input
space in which class 1 and class 2 are not linearly separable. b) shows the transformed space in
which separation is possible.

patterns are plentiful. To alleviate this problem they proposed to retrain a simple
linear classi�er every time a new test pattern is presented. The linear classi�er is only

trained on the k patterns in the training set that are closest to the current test pattern,
thereby producing an ephemeral local linear model of the decision surface. The linear
classi�er operates on feature vectors produced by the penultimate layer of LeNet 4.
In order to control the capacity of these linear classi�ers, they imposed a weight decay

parameter g. The parameters k and g are determined by cross validation experiments.
Unlike with previous experiment on the USPS database, the local learning method
did not improve the test error rate over the original LeNet 4 on the MNIST test set:
1.1%.

3.11. Optimal Margin Classi�er (OMC)

The Optimal Margin Classi�er (OMC) is a method for constructing complex deci-
sion rules for two-group pattern classi�cation problems. For digit recognition several

such classi�ers are constructed, each one checking for the presence of a particular
digit. One way of constructing complex decision surfaces is to transform the input
patterns into higher-dimensional vectors, and then to use a simple linear classi�er
in the transformed space. A simple example of such a transformation is shown in

Figure 4. One classical transformation consists in computing products of k or less
input variables. A linear classi�er in that space corresponds to a polynomial deci-
sion surfaces of degree k in the input space. Unfortunately, this is impractical when
the input dimension is large, even for small k. OMC is based on the idea that only

certain linear decision surfaces in the transformed space are interesting, namely, the
ones that are at the maximum distance from the convex hulls of the two classes. In-
terestingly, such planes can always be expressed as linear combinations of generalized

dot products between the incoming pattern and a subset of training patterns, called
the \support vectors". Support vectors in the transformed space are illustrated in

Fig. 5. The support patterns (�lled squares and circles) de�ning the decision boundary are a subset
of the training patterns (all squares and circles).

Figure 5. The resulting architecture can be viewed as a 2-layer \neural network" in
which the weights of the �rst layer units are the support vectors. These units compute
the dot-product between the input and their weight, and pass the result through a

non-linear transformation (for a k-th degree polynomial surface, this transformation
is simply an elevation to the kth power). The products are then linearly combined
to produce the output. Finding the support vectors and the coe�cients amounts to
solving a high-dimensional quadratic minimization problem with linear constraints.

OMC can be seen as a memory-based technique, since it involves comparing patterns
to a set of prototypes, but it is less expensive than pure nearest-neighbor because only
a subset of the training set must be stored (about 25,000 prototypes in our case).

The original OMC algorithm, developed by Boser, Guyon, and Vapnik 1 , only
succeeds if the training set is linearly separable in the transformed space. The ex-
tended version of the technique, called Soft Margin Classi�er, was proposed by Cortes
and Vapnik to cover the non-separable case, and thus allows for labeling errors in the

training set 2. SMC yields a test error of 1.1% on the MNIST data.

4. Discussion

A summary of the performance of our classi�ers is shown in Figures 6 -10. Figure

6 shows the raw error rate of the classi�ers on the 10,000 example test set. Although
all the classi�ers, with the exception of the simple linear classi�er, did well on the test
set, Boosted LeNet 4 is clearly the best, achieving a score of 0.7%, closely followed by
LeNet 5 at 0.9%. This can be compared to our estimate of human performance, 0.2%.

Interestingly, substituting the last layer of LeNet 4 with more powerful classi�ers did
not change the raw accuracy.

Figure 7 illustrates another measure of accuracy, namely the number of patterns

 −−−− 8.4 −−−−>

1.6

1.7

1.1

1.1

1.1

0.9

0.7

2.4

1.1

1.1

400−10

400−300−10

LeNet 1

LeNet 4

LeNet 4 / Local

LeNet 4 / K−NN

LeNet 5

Boosted LeNet 4

K−NN Euclidean

Tangent Distance

Soft Margin

Test Error (%)

0 0.5 1 1.5 2 2.5 3

Fig. 6. Performance of classi�ers on the MNIST test set. The uncertainty in the quoted error rates
is about 0.1%.

 N/A

3.2

3.7

1.8

1.4

1.6

 N/A

0.5

8.1

1.9

1.8

400−10

400−300−10

LeNet 1

LeNet 4

LeNet 4 / Local

LeNet 4 / K−NN

LeNet 5

Boosted LeNet 4

K−NN Euclidean

Tangent Distance

Soft Margin

% Rejected to attain 0.5% Error

0 1 2 3 4 5 6 7 8 9

Fig. 7. Percent of test patterns rejected to achieve 0.5% error on the remaining test examples.

in the test set that must be rejected to attain a 0.5% error on the remaining test

examples. In many applications, rejection performance is more signi�cant than raw
error rate. Again, Boosted LeNet 4 has the best score. The enhanced versions LeNet
4 did better than the original LeNet 4, even though the raw accuracy were identical.

Classi�cation speed is also of prime importance. Figure 8 shows the time re-

quired on a Sparc 10 for each method to recognize a test pattern starting with a
size-normalized pixel map image. Here we see that there is an enormous variation
in speed. Expectedly, memory-based method are much slower than neural networks.
The times shown in Figure 8 represent reasonably well-optimized code running on gen-

eral purpose hardware. Using special purpose hardware, much higher speeds might be
attained, provided that the hardware matches the algorithm. Single-board hardware
designed with LeNet in mind performs recognition at 1000 characters/sec 12. Cost-

0.001

0.1

0.015

0.03

2

1

0.04

0.5

1

2

2

400−10

400−300−10

LeNet 1

LeNet 4

LeNet 4 / Local

LeNet 4 / K−NN

LeNet 5

Boosted LeNet 4

K−NN Euclidean

Tangent Distance

Soft Margin

Recognition Time (seconds)

0 0.5 1 1.5 2 2.5

Fig. 8. Time required on a Sparc 10 for recognition of a single character starting with a size-
normalized pixel map image.

0.5

7

3

14

14

14

20

35

0

0

10

400−10

400−300−10

LeNet 1

LeNet 4

LeNet 4 / Local

LeNet 4 / K−NN

LeNet 5

Boosted LeNet 4

K−NN Euclidean

Tangent Distance

Soft Margin

Training Time (days)

0 5 10 15 20 25 30 35

Fig. 9. Training time, in days, on a Sparc 10.

e�ective hardware implementations of memory-based techniques are more elusive, due
to their enormous memory requirements.

Another measure with practical signi�cance is the time required to train the clas-
si�ers. For the enhanced LeNet 4, training time is the time required to train the basic
LeNet 4 which produces the feature vectors. For the other algorithms, again there is
signi�cant variation in the training time. Figure 9 shows the required training on a

Sparc 10 measured in days. It is important to note that the training time, though an
interesting measure for designers, is almost irrelevant to the customer.

Figure 10 shows a further measure of performance: the memory requirements of

our various classi�ers. Figures are based on 4 bit per pixel representations of the
prototypes for K-Nearest Neighbors, 1 byte per pixel for Soft Margin, and Tangent
Distance. They should be taken as upper bounds, as clever compression of the data

0.016

0.49

0.012

0.068

−−− 12 MBytes −−−>

−−− 12 MBytes −−−>

0.24

0.21

−−− 12 MBytes −−−>

−−− 25 MBytes −−−>

−−− 11 MBytes −−−>

400−10

400−300−10

LeNet 1

LeNet 4

LeNet 4 / Local

LeNet 4 / K−NN

LeNet 5

Boosted LeNet 4

K−NN Euclidean

Tangent Distance

Soft Margin

Memory Requirements (megabytes)

0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 10. Memory requirements for classi�cation of test patterns. Numbers are based on 4 bit/pixel
for K-NN, 1 byte per pixel for Soft Margin, and Tangent Distance, 4 byte per pixel for the rest.

and/or elimination of redundant training examples can reduce the memory require-
ments of some of the methods. Memory requirements for the neural networks assume
4 bytes per weight (and 4 bytes per prototype component for the LeNet 4 / memory-
based hybrids), but experiments show that one byte weights can be used with no

signi�cant change in error rate. Of the high-accuracy classi�ers, LeNet 4 requires the
least memory.

Many real-world applications require a multi-character recognizer. This can be

implemented by using a single-character recognizer to score character candidates pro-
vided by a heuristic segmenter. A graph search can be used to �nd the best consis-
tent interpretation. The recognizers must be designed and trained to �nd not only
the correct character (as discussed above), but also the correct segmentation 3. To

achieve this, the recognizer must be able to classify pieces of ink resulting from erro-
neous segmentations as non-characters. A big advantage of neural networks is that
they can be trained \in the loop" to simultaneously recognize characters and reject
non-characters. In addition, segmentation errors can cause small pieces of broken

characters to be sent to the recognizer for scoring. If such pieces are size-normalized
individually, they may be turned into shapes that the recognizer may have trouble
telling apart from real characters. Because of this, characters are not individually
normalized, rather, the normalization takes place at the string level. This causes

large variations in the position and size of individual characters presented to the rec-
ognizer. Convolutional neural nets seem to be particularly good at handling such
variations.

5. Conclusions

This paper is a snapshot of ongoing work. Although we expect continued changes

in all aspects of recognition technology, there are some conclusions that are likely to
remain valid for some time.

Performance depends on many factors including high accuracy, low run time,
low memory requirements, and reasonable training time. As computer technology
improves, larger-capacity recognizers become feasible. Larger recognizers in turn
require larger training sets. LeNet 1 was appropriate to the available technology �ve

years ago, just as LeNet 5 is appropriate now. Five years ago a recognizer as complex
as LeNet 5 would have required several months' training, and more data than was
available, and was therefore not even considered.

For quite a long time, LeNet 1 was considered the state of the art. The local
learning classi�er, the optimal margin classi�er, and the tangent distance classi�er
were developed to improve upon LeNet 1 { and they succeeded at that. However, they
in turn motivated a search for improved neural network architectures. This search

was guided in part by estimates of the capacity of various learning machines, derived
from measurements of the training and test error (on the large MNIST database) as
a function of the number of training examples. We discovered that more capacity was
needed. Through a series of experiments in architecture, combined with an analysis

of the characteristics of recognition errors, LeNet 4 and LeNet 5 were crafted.
We �nd that boosting gives a substantial improvement in accuracy, with a rela-

tively modest penalty in memory and computing expense. Also, distortion models
can be used to increase the e�ective size of a data set without actually taking more

data.
The optimal margin classi�er has excellent accuracy, which is most remarkable,

because unlike the other high performance classi�ers, it does not include knowledge
about the geometry of the problem. In fact, this classi�er would do just as well if the

image pixels were encrypted e.g. by a �xed, random permutation. It is still much
slower and memory hungry than the convolutional nets. However, the technique is
relatively new, therefore there is some room for improvement.

When plenty of data is available, many methods can attain respectable accuracy.
Although the neural-net methods require considerable training time, trained networks
run much faster and require much less space than memory-based techniques. The
neural nets' advantage will become more striking as training databases continue to

increase in size.

6. References

1. B. E. Boser, I. Guyon, and V. N. Vapnik, A Training Algorithm for Optimal
Margin Classi�ers, in Proceedings of the Fifth Annual Workshop on Compu-
tational Learning Theory 5 144-152, Pittsburgh (1992).

2. Corinna Cortes and Vladimir Vapnik, The Soft Margin Classi�er, Machine
Learning, to appear (1995).

3. John S. Denker and Christopher C. J. Burges, Image Segmentation and Recog-
nition, in The Mathematics of Induction, D. H. Wopert (ed.), Addison-Wesley

(1994).
4. R. O. Duda and P. E. Hart, Pattern Classi�cation and Scene Analysis, Chapter

4, John Wiley and Sons (1973).
5. S. Geman, E. Bienenstock, and R. Doursat, Neural Networks and the

Bias/Variance Dilemma, Neural Computation 4 1-58 (1992).
6. H. Drucker, R. Schapire, and P. Simard, Boosting Performance in Neural Net-

works, International Journal of Pattern Recognition and Arti�cial Intelligence

7 705-720 (1993).
7. I. Guyon, I. Poujaud, L. Personnaz, G. Dreyfus, J. Denker, and Y. LeCun,

Comparing Di�erent Neural Net Architectures for Classifying Handwritten
Digits, in Proc. 1989 IJCNN II 127-132, Washington DC. IEEE, (1989).

8. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, R. Hub-
bard, and L. D. Jackel, Handwritten digit recognition with a back-propagation
network, in D. Touretzky (ed), Advances in Neural Information Processing
Systems 2, Morgan Kaufman, (1990).

9. L�eon Bottou and Vladimir Vapnik, Local Learning Algorithms, Neural Com-
putation 4, 888-900 (1992).

10. U. A. M�uller, Bernhard Baumle, P. Kohler, A. Gunzinger, and W. Guggen-
buhl, Achieving Supercomputer Performance for Neural Net Simulation with

an Array of Digital Signal Processors, IEEE Micro Magazine, 55-65, October
(1992).

11. M. L. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge Mass.
(1969).

12. Eduard S�ackinger and Hans Peter Graf, A System for High-Speed Pattern
Recognition and Image Analysis, Proc of the fourth International Conference
on Microelectronics for Neural Networks and Fuzzy Systems, IEEE (1994).

13. R. Schapire, The Strength of Weak Learnability, Machine Learning 5 197-227
(1990).

14. Patrice Y. Simard, Yann LeCun, and John Denker, E�cient Pattern Recog-
nition Using a New Transformation Distance, Neural Information Processing

Systems 5, 50-58, Morgan Kaufmann (1993).
15. V. N. Vapnik, Estimation of Dependencies Based on Empirical Data,

Springer-Verlag (1982).

