Fall Semester, 2015
Tue, Thu, 9:30 - 10:45 am
223 Gore Hall

Professor: Adarsh Sethi
Office: 422 Smith Hall
Phone: 831-1945
Email: sethi@udel.edu
Office Hours: Mondays
10 am - 12 pm, and by appt.

Textbook:

The text will be supplemented by selected readings from other books or from the literature.

Goals:

CISC 650 is one of the core courses for CIS Graduate students. The aim of this course is to provide the student with a deep understanding of the principles, structure, and operation of computer networks. The student completing this course should have a strong knowledge of the protocols and mechanisms used in the Internet, and of the design and operation of both wide-area and local-area computer/communication networks. Mathematical models of protocol structures and their effects on network behavior are studied. The course will also involve implementation of simple protocols using application-level network programming. As compared to the similar course taught at the undergraduate level (CISC 450), this course will provide deeper coverage of the topics at a faster pace and will also use mathematical formulations whenever appropriate.

Required Background:

- An undergraduate level course in computer architecture and operating systems.
- Good programming skills in the C or C++ languages.
- Knowledge of basic probability theory and statistics.

Students cannot get credit for this course and any of the following courses: CISC 250, CPEG 419, CISC 450. Also, credit cannot be received for more than one of CISC 650, CPEG 651, and ELEG 651.

Contents:

1. Introduction: Network architectures and protocols; protocol layering; the Internet and OSI Reference Models; the role of standardization in network protocols. 3 weeks.
2. The Application Layer (Selected topics): Basic services; qualities of service; network programming; Domain Name System (DNS), HTTP. 2 weeks.

3. The Transport Layer: Basic principles; reliable data transfer; pipelined protocols; connection management; flow control in the Transport Layer; the TCP and UDP protocols; congestion control. 4 weeks.

4. The Network Layer: Service models; routing algorithms; routing in the Internet; the IP and IPv6 protocols; 3 weeks.

5. The Data Link Layer and Local Area Networks: Data link functions; error detection and correction; multiple access protocols; TDMA and FDMA; CSMA, CSMA/CD and ALOHA protocols; Ethernet; hubs, bridges, and switches; 802.11 Wireless LANs. 2 weeks.

Special Dates:

There will be no classes during the Fall Thanksgiving Break from November 23 through November 27.

Last day of class is Thursday Dec. 10.

Mid-Term Exam will be held approximately in the last two weeks of October at a time outside regular class hours. The exact date will be announced later.

Final Exam will be held according to the Final Exam schedule announced by the University. I have no control over this schedule.

Additional Reading:

6. Internet Engineering Task Force: This is the body responsible for developing the architecture of and protocols for the Internet. Its work is mostly done within Working Groups, and is initially published as Internet Drafts. All standards as well as some informational documents are published as RFCs (Request For Comments). All of these are accessible through IETF’s web page: http://www.ietf.org