
Intrusion Detection System to Detect Wormhole
using Fault Localization Techniques 1

Maitreya Natu
Dept. of Computer and Information Science

University of Delaware
Newark, DE, USA, 19716
Email: natu@cis.udel.edu

Adarshpal S. Sethi
Dept. of Computer and Information Science

University of Delaware
Newark, DE, USA, 19716
Email: sethi@cis.udel.edu

Abstract— In this paper, we present a strategy to detect an
intrusion using fault localization tools. We propose an intrusion
detection system to detect a self-contained in-band wormhole
attack using a combination of active probing and passive
monitoring tools. We exploit anomaly in the end-to-end delay
and per-hop delay patterns to identify the nodes involved in a
wormhole attack. We present an architecture and an algorithm
for wormhole detection and support the proposed approach with
simulation results.

Index Terms— Intrusion detection, Wormhole, Probing, Fault
localization.

I. INTRODUCTION

Intrusion detection is beginning to assume enormous im-
portance in today’s computing environment. A large array of
intrusions occur via the network by exploiting the network
vulnerabilities and spreading in a stealthy manner. In the
past, various network-based approaches have been proposed
for building intrusion detection systems [6] [5]. In such
network-based intrusion detection systems, the sensors are
located at choke points in the network or at the network
borders. The sensors capture and analyze the network traffic
to detect intrusions. Analysis is done by identifying malicious
traffic content, malicious traffic pattern etc. These systems
perform analysis at various levels of granularity like networks,
protocols, applications, hosts etc.

Many intrusions hold a close resemblance to faults in their
manifestation [11]. For instance, a symptom such as increased
end-to-end delay could be caused by a failure like loss of
some link connectivity, poor performing routers etc. The same
symptom can also be observed due to a denial of service attack
or malicious routing. Similarly, increased loss rate on a path
could be the result of either node failure or an intrusion. The
similarity in the manifestation of faults and intrusions provides
motivation to integrate the intrusion detection and fault lo-
calization mechanisms. Moreover, an integrated approach will
minimize the network overhead and redundancy involved in
performing the two tasks independently.

1Prepared through collaborative participation in the Communications and
Networks Consortiumsponsored by the U.S. Army Research Laboratory under
the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

In this paper, we propose to use fault localization tools
to perform intrusion detection. We had made a case for
integrated intrusion detection and fault localization in [11];
Here we focus on the specific intrusion detection task, which
is identifying in-band wormhole attacks in mobile ad-hoc
networks [1], [3]. An in-band wormhole is an attack in which
colluding nodes create an illusion that two remote regions of a
MANET are directly connected through nodes that appear to
be neighbors, but are actually distant from each other [7]. The
illusory shortcut is created by connecting the purported neigh-
bors using a covert tunnel through other unsuspecting nodes.
The wormhole undermines shortest path routing calculations,
allowing the attacking nodes to attract traffic from other parts
of the network such that it is routed through them and can
be subsequently controlled, e.g., to delay, damage, discard,
or misroute packets. In this paper, we propose to perform
detection of a wormhole using probing, passive monitoring,
and event correlation.

II. IN-BAND WORMHOLE ATTACK

Wormhole refers to an attack on MANET routing proto-
cols in which colluding nodes create an illusion that two
remote regions of a MANET are directly connected through
nodes that appear to be neighbors but are actually distant
from one another. This shortcut is created by connecting the
purported neighbors through a covert communication channel.
A wormhole thus allows an attacker to create two attacker-
controlled choke points to which traffic is attracted and which
can be utilized by the attacker to degrade or analyze traffic
at a desired time. The covert communication channel used by
the attackers could be a separate communication mechanism
not generally used by the network, forming an out-of-band
wormhole attack. On the other hand, an in-band wormhole
attack uses the primary link layer to develop the covert tunnel.

In this paper we focus on the self-contained in-band worm-
hole attack on MANETs. MANET routing protocols such
as OLSR have been shown to be vulnerable to wormhole
attacks [6]. [1] explains the wormhole attack in detail and also
presents variations of the attack. Figure 1 shows a scenario of a
wormhole attack where three attacker nodes, nodes 2, 5, and
11, develop an in-band wormhole tunnel to attract network
traffic. The two end nodes, nodes 2 and 11, create an illusion

2

1

3

4
5

8

11

13

14

12

9

10

6

7

Fig. 1. Network topology with wormhole created by nodes 2, 5, and 11.
Figure shows actual paths with dotted lines and advertised paths with solid
lines. Actual path between nodes 1 and 12 is different from advertised path.
Actual path and the advertised path between nodes 4 and 6 stays the same
but overlaps with the wormhole tunnel.

that they are neighbors, thus attracting traffic from other parts
of the network. The traffic is then forwarded through a tunnel
with the help of the third attacker node, node 5. The illusion is
created by making the two tunnel end nodes falsely advertise
a 1-hop symmetric link between them without exchanging
HELLO messages. The false link information is propagated
to other nodes across the network via a broadcast of TC
messages. Traffic is attracted towards the end-points due to
the advertised shorter path and is forwarded by the attackers
through the tunnel.

In the past, work has been done in detecting out-of-band
wormhole attacks. Hu et. al. [6] described the out-of-band
wormhole concept and presented several countermeasures to
detect remote forwarding of packets. Hafslund et. al. [4] and
Hong et. al. [5] defined security extensions to OLSR to prevent
generation of false OLSR messages or replay of legitimate
OLSR messages. Lazos et. al. [8] proposed a geography-based
countermeasure to defend the wormhole attack. Some of these
methods propose to defend by temporally or geograhically
limiting the spread of HELLO messages. However, a self-
contained in-band wormhole attack does not require exchange
of HELLO messages and can defeat such defenses. Also some
approaches rely on using source authentication using signing
keys. Such defenses can be defeated if a node is compromised
and the attacker has access to secured information.

Baras et. al. [1] proposed a mechanism to detect a self-
contained in-band wormhole by observing the anomaly be-
tween the cumulative path loss and delay and the perceived
path length. Cardenas et. al. [3] proposed an approach based
on the space-time framework to detect the changed hop count
distribution caused by a wormhole. These approaches detect
the wormhole endpoints. They cannot identify the intermediate
tunnel nodes that knowingly or unknowingly participate in
forming a wormhole tunnel. Kruus et. al. [7] propose sev-
eral countermeasures for wormhole detection and prevention.
These countermeasures include 1) OLSR protocol extensions
that incorporate link quality in routing decisions, 2) higher
protocol layer measurements of packet loss and round-trip
delays over 1-hop and 3-hop routing paths, and 3) monitoring

for the presence of asymmetric links and other potential
indicators.

We propose to use the fast real-time fault localization
algorithms together with active and passive techniques for
network monitoring to detect a wormhole attack. We exploit
the anomaly between the end-to-end delays and the sum of hop
queuing delays. We use probing to compute end-to-end delays
and passive monitoring to obtain the hop queuing delays. We
present the anomalies that can be observed at various places
in the wormhole affected network and report the observed
anomalies as symptoms for the symptom-fault correlation. We
then use event correlation algorithms to localize the wormhole
end-points and the intermediate tunnel nodes.

III. FAULT LOCALIZATION ARCHITECTURE

Fault localization refers to the task of determining the loca-
tion of a failure in the network. This task becomes challenging
because of a variety of reasons. A single fault can cause
numerous alarms in a variety of domains. This situation is
compounded when there are multiple concurrent failures or
when the failures are transient. Moreover, the presence of
incomplete and inaccurate information about the underlying
network further aggravates the problem.

In the past, various approaches have been proposed to
perform fault localization. The proposed approaches vary in
various aspects like the network models, involved complexities
etc. The approaches proposed can be broadly classified into
active and passive approaches. Passive approaches do not
insert additional traffic in the network but instead perform
analysis based on the anomalies observed at the passive
network monitors. Active approaches on the other hand send
out probe traffic over the network to collect end-to-end statis-
tics and deduce the network health. Passive approaches hold
the advantage of not adding additional traffic, while active
approaches provide an additional power of probing any area
of the network as required. Active approaches also provide
the capability of measuring various end-to-end monitoring
statistics. We propose to use a combination of active and
passive monitoring approaches for detecting a wormhole in
a network. We present details of the proposed approach in
Section IV.

An important task in fault localization is to correlate the
various symptoms reported either by active or passive mon-
itors. Recently a promising new algorithm has been devel-
oped called Incremental Hypothesis Updating (IHU) [10].
The algorithm uses a probabilistic dependency model that
represents the causal relationship between the faults and the
symptoms. When a symptom is received, a set of hypotheses
is constructed using the dependency model. The hypotheses
set is incrementally updated with each received symptom.
The IHU algorithm has been shown to be fast, scalable, and
accurate, with the potential to be deployable in real-time.
The traditional fault localization techniques do not take the
dynamics of a MANET into consideration. Mobility may cause
a change in dependencies which if not taken into account
can lead to incorrect diagnosis. In [9], we have extended the

2

IHU algorithm to adapt it to the changing dependencies in
a dynamic environment of a MANET. We use a dynamic
dependency model to track the changing dependencies and
use a temporal correlation algorithm to perform localization
in the presence of such a dynamic dependency model.

IV. PROPOSED APPROACH FOR WORMHOLE DETECTION

In this section we propose our approach to detect a worm-
hole intrusion using probing and event correlation. Certain
paths get affected by the presence of a wormhole attack. The
advertised properties for such paths are different from the
actual properties. We aim to exploit these properties to detect
a wormhole attack.

We focus on two types of anomalies that are caused by a
wormhole.
Incompatible hop queuing delays and end-to-end delay: The
paths that are attracted by a wormhole have different advertised
and actual routes. The advertised routes in this case are much
shorter than the actual routes which go through the wormhole
tunnel. For instance, consider the path between nodes 1 and
12 in Figure 1. The advertised route for this path goes through
nodes 2 and 11, while the actual route taken by packets
between nodes 1 and 12 goes through nodes 2, 3, 5, 8, and
11. A large part of the end-to-end delay for a path consists of
queuing delays at each hop. Thus, with the available advertised
information, the end-to-end delay for such a path will not be
explained by the sum of queuing delays of the hops present
on its advertised path. We exploit this observation to detect an
anomaly.
Increased end-to-end delay: Another anomaly can be observed
on the nodes that form the wormhole tunnel. The traffic
received by these nodes is not explained by the overall end-
to-end traffic. Given the advertised routes and the amount
of end-to-end traffic, the amount of traffic received by these
nodes should be significantly less than what the nodes ac-
tually receive. The additional unexplained traffic is due to
the wormhole tunnel traffic. Thus due to the wormhole, the
queuing delay of tunnel nodes would increase. This in turn
would increase the end-to-end delay of the routes that do not
get attracted by the wormhole but pass through some of the
tunnel nodes. For instance, in Figure 1, the path between nodes
4 and 6 does not get attracted by the wormhole but actually
goes through nodes 3 and 5 that are part of the wormhole
tunnel. Nodes 3 and 5 would have increased queuing delay
due to the wormhole traffic, leading to an increased end-to-
end delay on the path between nodes 4 and 6. Thus, unlike
the previous anomaly, paths belonging to this anomaly show
a consistent end-to-end delay and hop queuing delay sum.
However, they show an abrupt increase in the end-to-end delay
and the hop queuing delay values that are not explained by
the traffic supposedly flowing through these nodes.

We use the above explained anomalies to propose an algo-
rithm for detecting endpoint and tunnel nodes of a wormhole.
We send out probes and compute an average end-to-end
queuing delay for various paths. As the probes incur additional
network traffic, the end-to-end paths to be probed should be

Queuing Delay
Monitor

End-to-End Delay
Monitor Probe Result

Probes

Topology Discovery
Agent

Statistic Collector/
Symptom Generator

Event correlation

Dynamic
Dependency

Model

Hypotheses
Search
Space

Events

Network Manager

Node Monitor

Fig. 2. System architecture representing various modules that cooperate to
perform intrusion detection

carefully selected such that the desired network coverage is
obtained while causing minimum management traffic. Various
approaches can be used to select end-to-end paths to probe.
Some work has been done in the past on a systematic selection
of probes to cover the area of interest in the network [2]. We
propose to send out probes from each node to its three-hop
neighbors. Such a probe set can allow us to analyze various
paths having different path properties and cover the anomalous
paths explained above in this section while maintaining probes
within a limited hop distance from a node. As a part of ongoing
research, we are looking at other approaches to select probes
to meet the requirements of traffic optimization and network
coverage. These probes will provide the end-to-end delays
for various paths in the network. Each node computes an
average of the end-to-end delay and standard deviation for its
3−hop paths over a sliding window of time. Nodes report the
average end-to-end path delay values to the central manager.
Nodes also report an alarm for a specific end-to-end path on
observing an unexpected increase in the end-to-end delay, for
instance, when the increase in the end-to-end delay is greater
than three times the standard deviation. Note that after the
wormhole attack, many new three hop paths emerge. These
paths could form the most relevant symptoms for diagnosis
of the wormhole. However these paths have no past history
to compare the end-to-end delays with. Hence nodes also
maintain a generic 3-hop average path end-to-end delay. This
value provides a benchmark for comparing the newly formed
3-hop paths to detect an abnormal increase in the end-to-end
delay.

We also need to monitor the hop queuing delays to check for
anomalies explained above. We deploy a passive monitoring
tool at each node to maintain an average queuing delay. The
queuing delay is measured as the amount of time elapsed from
the arrival of a packet till its forwarding to the appropriate
next hop. Each node maintains an average queuing delay over
a sliding window of time.

A. Architecture

Figure 2 presents the architecture for the proposed approach.
As explained above, each node computes the average queuing
delay over a sliding window of time. Each node sends out
probes to its 3−hop neighbors and maintains an average end-
to-end delay and standard deviation for these 3−hop paths.
Each node periodically reports the end-to-end delay statistics

3

and queuing delay to the manager and reports an alarm for a
particular probe path on observing an unexpected increase in
the end-to-end delay.

The manager node performs a periodic topology discovery
using the topology discovery agents and maintains a dynamic
dependency model. The dynamic dependency model contains
the dependencies between nodes and end-to-end paths at
different times. Dependencies are based on the advertised
paths computed from the OLSR routing table available at the
manager node. On receiving the end-to-end delay value for a
source-destination pair, the manager performs an analysis to
observe the compatibility between the end-to-end delay value
and the sum of the hop queuing delays of the nodes on the
advertised path between that source-destination pair. Based
on this analysis, the manager identifies the end-to-end paths
that can be used as symptoms to detect the wormhole tunnel
end-points and the intermediate nodes. If an end-to-end path
is reported to show a significant increase in the end-to-end
delay but shows consistency with the sum of queuing delays
on the nodes on its advertised end-to-end path, the path then
is used as a symptom for identifying the intermediate nodes
on a wormhole tunnel. An end-to-end path is reported as a
symptom for identifying wormhole tunnel endpoints, if the
end-to-end delay value is not consistent with the sum of hop
queuing delays on the nodes on its advertised path. We then
perform two separate diagnosis one for end-point diagnosis
and another for intermediate nodes diagnosis. We use the IHU
and the temporal correlation algorithm presented in [10] and
[9] respectively to correlate the symptoms and identify the
wormhole endpoints and the intermediate nodes. We present
the operations performed at each node and the manager
in Algorithm NodeMonitor and Algorithm NetworkManager
respectively.

The event correlation algorithm reports a relatively small set
of nodes as likely causes of failure. The set of nodes reported
by the algorithm includes the attacker nodes. However, the
set might contain some more nodes other than the actual
attacker nodes. Further analysis might be needed on the
inferred set of suspected nodes to identify the exact attackers.
Further analysis to refine the results can be done using various
properties that a wormhole affected network might show. We
list some such observations here:
Traffic anomaly: Traffic received at the tunnel nodes will not
be explained by the end-to-end traffic being sent through these
tunnel nodes. If an analysis is done of the end-to-end traffic
and the traffic received per node, the traffic routed by the
wormhole tunnel would show up in the per-node traffic of the
tunnel nodes; however, no end-to-end traffic would explain this
additional traffic. Attack nodes can defeat this observation by
incorrectly reporting end-to-end traffic between the attacker
nodes to explain the additional traffic received by the tunnel
nodes. However this incorrectly reported end-to-end traffic
would have to be large enough to represent the sum of all the
traffic routed through the tunnel. This high end-to-end traffic
between the attack nodes, coupled with other observations can
itself act as a symptom for further analysis.

NodeMonitor Monitoring at Node n {The algorithm is event based,
where the algorithm waits for the events and responds as programmed}

input : 3−hop neighbor nodes
output: symptom triggers, path average end-to-end delays
Define Th(n) : Average Hop queuing delay at node n;1
Define t

′
avg(p) : Current average delay for path p;2

Define t
′
avg(3hop) : Current average delay for 3-hop path;3

Define d(p) : Standard deviation of delay on path p;4
Define d(3hop) : Standard deviation of delay on 3-hop paths;5
Define tavg(p) : Average delay on path p;6
Define tavg(3hop) : Average delay on 3−hop paths;7
Define pingtimer : Timer to send pings;8
Define updatetimer : Timer to update the manager with statistics;9
Initialize tavg(3hop), d(3hop), tavg(p), d(p) from the sample values10
collected during the learning period;
if a packet received for forwarding then11

Update Th(n) with queuing delay for each forwarded packet;12
end13
if pingtimer expires then14

foreach 3−hop path p do15
Send ping and compute te(p);16

end17
foreach 3−hop path p do18

if (te(p) > (tavg(p)+3*d(p))) or (te(p) >19
(tavg(3hop)+3*d(3hop))) then

Report p to the manager node;20
end21
Update t

′
avg(p) and t

′
avg(3hop) with te(p);22

end23
end24
if update timer expires then25

Update d(p), tavg(p) with the values t
′
avg(p);26

Update d(3hop), tavg(3hop) with the values t
′
avg(3hop);27

Report Th(n) and t
′
avg(p) for all 3−hop paths p to the manager28

node;
end29

Increased 3−hop neighbors: The creation of a wormhole
would increase the 3−hop neighbors of all nodes around the
tunnel endpoints. For instance, node 1 in Figure 1 would find
nodes 8, 12, and 13 as its 3−hop neighbors after creation of
the wormhole.
Decreased path lengths: The creation of wormhole would
decrease the length of certain paths. For instance, before the
launch of a wormhole, path from node 1 to 14 goes through
nodes 2, 3, 5, 8, 11, and 13. However after the wormhole
creation, advertised hops for the same path are reduced to
nodes 2, 11, and 13.
Increased loss rate: Nodes will observe an increased loss rate
on the wormhole affected paths due to an increased number
of hops and an increased amount of traffic on the wormhole
tunnel nodes.

V. SIMULATION RESULTS

In this section, we present simulation results to show the
correctness of the observations discussed in this paper. We
simulated a wormhole attack and implemented the proposed
algorithm to detect the wormhole nodes. The algorithm suc-
cessfully detects the wormhole attackers. In this section, we
show how the anomalies discussed in this paper are manifested
in a wormhole attack scenario. These anomalies provide the
symptoms for the correlation algorithm.

4

1 3 5 7 9 11 13 1

6

11

0

0.2

0.4

0.6

0.8

1

1.2

End
-to

-en
d d

ela
y (i

n s
ec)

Source

Destination

End to end delay

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 1-1.2

1 3 5 7 9 11 13 1

6

11

0

0.2

0.4

0.6

0.8

1

1.2

Ho
p q

ueu
ing

 de
lay

Source

Destination

Sum of hop queuing delay

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 1-1.2

Fig. 3. The end-to-end delay and sum of queuing delay of the hops on various end-to-end paths

1 3 5 7 9 11 13 1

6

11

0

100

200

300

400

500

600

Rel
ativ

e d
ela

y d
iffe

ren
ce

Source

Destination

Relative difference in the end-to-end delay and sum of
hop queuing delay

0-100 100-200 200-300 300-400 400-500 500-600

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Relative delay
difference

Source

Destination

Relative difference in the end-to-end delay and sum of
hop queuing delay

0-100 100-200 200-300 300-400 400-500 500-600

Fig. 4. Two different views of the relative difference in the end-to-end delay and sum of the queuing delay of the hops on various end-to-end paths. The
relative difference is computed in this graph as ((end-to-end delay - sum of hop queuing delay)/end-to-end delay)*100.

1 2 3 4 5 6 4 8 9 10 11 12 13 14

1

5

9

13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

End
-to

-en
d d

ela
y (i

n s
ec)

So urce

D est inat io n

End-to-end delay before wormhole

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 1-1.2 1.2-1.4

1 2 3 4 5 6 4 8 9 10 11 12 13 14
1

5

9

13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

End
-to

-en
d d

ela
y (i

n s
ec)

Source

D est inat io n

End-to-end delay after wormhole

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 1-1.2 1.2-1.4

Fig. 5. End-to-end delay on various paths before and after the launch of wormhole attack.

5

NetworkManager Analysis at the manager node {The algorithm is
event based, where the algorithm waits for the events and responds as
programmed}

input : Nodes
output: Intrusion location
Define Th(n) : Queuing delay for node n;1
Define Se: Symptoms for endpoint detection;2
Define St: Symptoms for tunnel nodes detection;3
Define Threshold : Minimum unexplained per-hop delay to trigger a4
symptom;
Define MinSymptomSize : Minimum number of symptoms to trigger5
event correlation;
Define Report { Th(n), ∀p∈3−hoppathst

′
avg(p) } : Report received6

from a node n;
if a report r received from node n then7

Update Th(n);8
foreach path p ∈ r do9

UnexplainedPerHopDelay ← (t
′
avg(p) -10

(
∑

m∈PathNodes(p)

Th(n)))/|PathNodes(p)|;

if UnexplainedPerHopDelay > Threshold then11
Add p to Se;12

end13
end14

end15
if a symptom trigger for path p is received from a node then16

Add p to St;17
end18
if |Se| > MinSymptomSize then19

Run event correlation algorithm on Se to detect the wormhole20
tunnel end points;

end21
if |St| > MinSymptomSize then22

Run event correlation algorithm on St to detect the wormhole23
tunnel nodes;

end24

A. Simulation Model

We performed the simulation using Qualnet. We imple-
mented the topology presented in Figure 1 and launched
a wormhole as shown in the same figure. We used OLSR
routing protocol for this setup. The presented simulations do
not consider node mobility at this time; however defending
wormhole attacks in the presence of node mobility is part of
our future research plans. Each node periodically discovers
its 3−hop neighbors from OLSR tables and sends a train
of pings to these 3−hop nodes to collect end−to−end delay
values. Each node also monitors the average queuing delay in
forwarding packets. As explained in Section IV, each node
reports the average queuing delay and average end-to-end
delay for each of its 3−hop paths to the central manager. Each
node also reports an abnormal increase in the end-to-end delay
on a path as a symptom for wormhole tunnel node detection.

A central manager performs a periodic topology discovery
using OLSR tables, and builds a probabilistic dependency
model representing the path−node dependencies. The manager
uses this information to find anomalies between the path delay
and the sum of hop queuing delays to identify symptoms
for wormhole end-point detection. The manager collects the
symptoms reported by the nodes. These symptoms report end-
to-end paths that show an abrupt increase in the end-to-end
delay. The manager then performs event correlation on these

symptoms to identify possible wormhole attacker nodes.

B. Simulation observations

We observe that certain paths show a significant anomaly
between the end-to-end path delay and the sum of hop queuing
delays when a wormhole attack is launched. These are the
paths that get affected by the wormhole attack. Their actual
hop count is significantly larger than the hop count perceived
by the source nodes. Figure 3 shows the difference in the
end-to-end delay and the sum of hop queuing delays on such
3−hop paths. Figure 4 presents the relative difference in the
end-to-end delays and the sum of hop queuing delays for
these end-to-end paths. As discussed in Section IV, relative
difference in the value of end-to-end delays and the sum of
hop queuing delays forms a basis to trigger symptoms for
event correlation to detect the wormhole end-points. The event
correlation process then localizes a set of nodes as the possible
end-points of the wormhole tunnel.

Figure 5 shows how the end-to-end delay values change for
cerain end-to-end paths after the wormhole attack is launched.
Figure shows end-to-end delay values for some end-to-end
paths before and after the wormhole. We can see that the delay
values significantly increase after the wormhole launch. As
explained in Section IV, these end-to-end paths are used as
symptoms to detect the intermediate tunnel nodes.

We used Incremental Hypothesis Updating (IHU) [10] algo-
rithm to correlate the symptoms to detect the end-points and
the tunnel nodes. The event correlation algorithm correlated
these symptoms and was able to successfully detect the worm-
hole. Figure 6 presents the event-correlation of the reported
symptoms to infer the wormhole end-points and tunnel nodes.
Figure shows the symptoms collected for the end-point node
detection. These symptoms consist of end-to-end paths that
show an inconsistency in the end-to-end delay and the sum
of hop queuing delay on that path. Figure shows that the
end-to-end delay and the sum of hop queuing delays for
these reported symptoms differ significantly. IHU algorithm
correlates theses symptoms to infer the root cause. As shown
in the figure, the algorithm declares a set of nodes as possible
cause of failure. The algorithm is able to successfully identify
the actual wormhole end-point nodes (Node 2 and Node 11)
in the reported set of nodes.

Figure 6 also shows the analysis done for detection of the
wormhole tunnel nodes. Figure shows the symptoms collected
to detect tunnel nodes. These symptoms consist of end-to-
end paths that do not get attracted by the wormhole, but their
paths overlap with the wormhole tunnel. These paths show a
significant increase in the end-to-end delay after the launch
of wormhole due to increased queuing delay at the tunnel
nodes. Figure shows the hypotheses computed by the event
correlation algorithm to infer the possible tunnel nodes. The
algorithm successfully reports the actual tunnel nodes (Node
3, Node 5, and Node 8) in its hypotheses.

The hypotheses reported by the algorithms are ranked based
on the belief values. These belief values are computed by the
algorithm for each hypothesis set and represent the algorithms

6

End-point detection (actual end-point nodes: node-v2, node-v11)

End-point detection symptoms Algorithm hypotheses
(Suspected end-point nodes)

node-V11 node-V1 | Rank 0
node-V11 node-V2 | Rank 1
node-V11 node-V4 | Rank 2

{ node-V11, node-V1, node-V2,
node-V4}

Symptom End-to-end
delay

Sum of hop
queuing delay

path-V2->V8 0.608997 0.046722

path-V3->V11 0.613258 0.046707

path-V8->V2 0.408844 0.046722

path-V11->V3 0.673510 0.046707

path-V11->V7 0.728440 0.282520

path-V14->V8 0.706576 0.147122

path-V4->V1 0.776509 0.302232

Symptom End-to-end
delay

Sum of hop
queuing delay

path-V12->V3 1.041048 0.118377

path-V1->V12 1.126465 0.198812

path-V3->V12 1.158543 0.118377

path-V1->V8 1.163029 0.142576

path-V3->V13 1.318174 0.150773

path-V13->V3 0.965026 0.150773

path-V1->V13 1.022991 0.231208

path-V13->V9 0.640050 0.199095

Tunnel nodes detection (actual tunnel nodes: node-V3, node-V5, node-v8)

Tunnel node detection symptoms Algorithm hypotheses
(Suspected tunnel nodes)

node-V13 node-V5 | Rank 0
node-V11 node-V5 | Rank 1
node-V8 node-V3 node-V12 | Rank 2

{node-V13, node-V11, node-V5, node-V8
node-V3 node-V12}

path-V8->V14 path-V5->V12 path-V7->V11 path-V12->V14

path-V9->V7 path-V3->V9 path-V4->V8 path-V8->V4

path-V4->V6 path-V2->V7 path-V1->V5 path-V7->V10

path-V9->V6 path-V9->V3 path-V10->V13 path-V5->V13

path-V5->V10 path-V13->V10 path-V13->V5 path-V9->V13

path-V12->V5 path-V7->V9 path-V11->V6 path-V14->V12

path-V10->V7 path-V2->V6 path-V7->V4

Fig. 6. The symptoms collected and hypotheses computed by the localization algorithm to detect the wormhole tunnel nodes and end points.

confidence in the hypothesis. The hypothesis with rank 0 has
the highest confidence associated with it. In Figure 6 we
present the top 3 hypotheses computed by the algorithm. The
algorithm successfully reports the end-point and tunnel nodes
in the hypotheses sets. Algorithm reports some additional
nodes in the inferred hypotheses. This happens due to incorrect
reporting of some symptoms. Thus additional analysis can be
done on the reported set of nodes to identify the wormhole
end-points and the tunnel nodes.

VI. CONCLUSION

We presented an approach to use fault localization tech-
niques to perform intrusion detection. We proposed an in-
trusion detection system to detect an in-band self-contained
wormhole attack using probing, passive monitoring, and event
correlation. We proposed an architecture and an algorithm for
wormhole detection using the anomalies in the path end-to-end
delay and sum of queuing delays at the hops on the advertised
path. We simulated the proposed approach using Qualnet and
presented the simulation observations and localization results.

As part of future research, we aim to find other ways to send
probes to monitor the network in a more efficient and effective
manner. We aim to perform experiments with a variety of
wormhole scenarios to see the effectiveness of probing and
fault localization algorithms in different cases. We also aim
to develop algorithms to detect intermediate tunnel nodes of a
wormhole while considering legitimate traffic variations. We
aim to distinguish the cases when legitimate traffic variations
develop similar patterns as manifested by a wormhole.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied of the Army Research Laboratory or the U.S.
Government.

REFERENCES

[1] J. S. Baras, A. A. Cardenas, and V. Ramezani. On-line detection of
distributed attacks from space-time network flow patterns. In ASC’04,
the 24th Army Science Conference, Orlando, FL, Nov. 2004.

[2] M. Brodie, I. Rish, and S. Ma. Optimizing probe selection for fault
localization. In Distributed Systems Operations Management, pages
1147–1157, 2001.

[3] A. A. Cardenas, J. S. Baras, and V. Ramezani. Distributed change
detection for worms, DDoS and other network attacks. In ASC’03, the
23rd Army Science Conference, 2003.

[4] A. Hafslund, A. Tonnesen, R. Bjorgum Rotvik, J. Anderson, and
O. Kure. Secure extensions to the OLSR protocol. In OLSR Interop
Workshop, San Diego, Aug. 2004.

[5] F. Hong, L. Hong, and C. Fu. Secure OLSR. In 19th International
Conference on Advanced Information Networking and Applications
(AINA’05), volume 1, pages 713–718, 2005.

[6] Y. Hu, A. Perrig, and D. Johnson. Packet leashes: A defense against
wormhole attacks in wireless ad hoc networks. In IEEE Infocomm, 2003.

[7] P. Kruus, D. Sterne, R. Gopaul, M. Heyman, B. Rivera, P. Budulas,
B. Luu, T. Johnson, and N. Ivanic. In-band wormholes and countermea-
sures in OLSR networks. In SecureComm2006, Baltimore, MD, Aug.
2006.

[8] L. Lazos, R. Poovendran, C. Meadows, P. Syverson, and L. W. Chang.
Preventing wormhole attacks on wireless ad hoc networks: A graph
theoretic approach. In IEEE Wireless Communications and Networking
Conference (WCNC), 2005.

[9] M. Natu and A. S. Sethi. Adaptive fault localization in mobile ad-hoc
battlefield networks. In MILCOM’05, Atlantic City, NJ, 2005.

[10] M. Steinder and A. S. Sethi. Probabilistic fault diagnosis in commu-
nication systems through incremental hypothesis updating. Computer
Networks, 45(4):537–562, July 2004.

[11] D. Sterne, S. Tsang, M. Natu, D. Balenson, P. Mouchtaris, and A. S.
Sethi. Integrating intrusion detection and fault localization in MANETs.
In Milcom-2006, IEEE Military Communications Conference, Washing-
ton, DC, Oct. 2006.

7

