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Abstract—Active probing is an active network monitoring 
technique that has potential for developing effective solutions for 
fault localization. In this paper we use active probing to present 
an approach to develop tools for performing fault localization. 
We discuss various design issues involved and propose 
architecture for building such a tool. We describe an algorithm 
for probe set selection for problem detection and present 
simulation results to show its effectiveness.  We demonstrate 
through analysis and experiments that active probing has the 
potential to greatly reduce the probe traffic and the fault 
diagnosis time. 
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I.  INTRODUCTION 
Monitoring techniques are used in computer networks to 

support a wide range of activities involving network design 
and operation [7, 9, 17, 18]. Network monitoring can be 
separated into two broad categories: Active and Passive 
monitoring. Active monitoring involves sending traffic onto a 
network to sample its behavior. This traffic is sent in the form 
of probes which can vary from simple probes such as pings to 
complex test transactions. 
 

Passive monitoring does not produce additional traffic. 
Rather it listens to traffic that transits through a particular point 
on a network. At its simplest, counts are made of packets; in 
more sophisticated implementations, analysis is done by 
inspecting packet headers. Passive measurements are mainly 
used to measure metrics pertaining to a certain network 
element, e.g., at-a-point metrics such as link throughput, and 
packet size statistics. However from an application point of 
view, end-to-end quality of service metrics might be of 
concern and for these the passive approach is inappropriate as 
the presence of traffic between the two end-points is not 
guaranteed. Active monitoring is typically used to obtain end-
to-end statistics such as latency, loss, and route availability.  
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Besides generating traffic between selected points of 
interest, there are other advantages of active monitoring. It 
provides flexibility in the design of probe streams with 
particular properties to match measurement requirements. For 
example, after localizing a problem to a particular network 
point by measuring quantities like average delay and loss on a 
route, finer probes can be sent to identify the bottleneck and 
available bandwidth[7, 17], or to estimate cross traffic[16]. 
The main disadvantage of active monitoring is its invasive 
character. Probes may modify route conditions and perturb the 
very traffic one is trying to monitor. To minimize these effects, 
probe streams of low average bandwidth are used [5]. 
 

Active monitoring techniques use probing for a variety of 
network monitoring applications. As discussed in Section II, 
probing can be used broadly in two ways: active and pre-
planned probing.  Active probing has the potential to develop 
effective solutions for network monitoring applications due to 
its fundamental end-to-end nature and flexibility. One such 
application is fault localization. Fault localization identifies the 
fault that can best explain the observed network disorders. 
Active probing can be used to perform efficient fault 
localization where probes can be selected in real time and sent 
to diagnose the root cause of a failure.  

In this paper, we present a general approach to using probing 
technology discussing various ways of developing such tools 
and their applications. We then propose architecture for using 
active probing to perform fault localization in networks. Active 
probing solutions for performing fault localization involve three 
main steps: probe station selection, problem detection, and 
problem determination. We discuss various design issues 
involved in probe station selection. We then discuss various 
factors affecting probe set selection for problem detection and 
determination. We develop an algorithm to select probes to 
perform problem detection and present simulation results to 
show the accuracy and effectiveness of the proposed algorithm. 
We demonstrate through analysis and experiments that active 
proving can be a powerful and effective technique for fault 
localization. 

II. GENERAL APPROACH TO PROBING 
Probing is used in network monitoring in a variety of ways 

and for a variety of purposes [9,14,19,20]. Probing is an 



information gathering approach, performed by using test-
transactions sent by a probe station to the nodes in the network 
under observation. The probe results are then analyzed to infer 
the state of the network. Network parameters and conditions 
can be inferred from probe results, e.g., the variance in delay, 
loss percentage etc. 
 

Probing has been used in network monitoring applications 
broadly in two ways:  

• Preplanned probing: It involves offline selection of 
a set of probes [3]. These probes are periodically sent 
out in the network. This is followed by a passive data-
mining approach to infer the network state by 
analyzing the probe results. This approach generates a 
large amount of management traffic, a large part of 
which might be wasteful. Another significant 
drawback in this approach is the involved difficulty in 
envisaging all possible problems and generating a 
probe set for it. Also as the probes are sent at periodic 
intervals of time, the inference procedure can involve 
a delay. The involved delay can cause a certain degree 
of inaccuracy in the network state inferred from the 
probe results. Preplanned probing, however, imposes 
less overhead on the manager for selecting probes.  

 
• Active probing: It adapts the probing strategy to the 

observed network state. Instead of sending probes for 
locating all potential problems in the network, it sends 
a minimal number of probes initially and then adapts 
the probe set to the observed network state [3, 19]. The 
probe stations then send probes that provide most 
information gain. This approach can greatly reduce 
management traffic and provide more accurate and 
timely diagnosis. Key goal of active probing based 
network measurement is to be able to obtain accurate, 
reliable estimates using only a small number of probes 
and using probe streams of low average traffic. 

A. Probe Types 
Various types of probes have been used in the past for 

monitoring different network characteristics.  
• 1-packet: V. Jacobson in his ‘pathchar’ tool used 1-

packet method, to estimate link bandwidth from round 
trip delays of different sized packets from successive 
routers along the path [6]. One packet methods are 
based on the assumption that the transmission delay 
grows linearly with the packet size.  

 
• Packet pair: These methods are based on spacing 

effect of the bottleneck link. They use the minimum 
inter-departure time of consecutive packets sent back-
to-back on a link to estimate the bottleneck 
bandwidth. Some methods estimate available 
bandwidth based on the observation of inter-departure 
time of consecutive probe packets [1,4]. 

 
• Packet train: A sequence of packet pairs is called 

packet train. Different methods vary in their use of 
packet trains based on how the packet pair gaps are 

controlled by the sender, Methods like pathload [10], 
IGI, PTR [8] use packet trains with uniform intervals. 
In contrast in PathChirp [18] and Spruce [23], packet 
intervals are statistically constructed, forming a non-
uniform packet train.  

 
• Packet tailgating: This method uses packet trains 

consisting of large packets interleaved with small 
tailgating packets. Large packets exit midway due to 
limited TTL but small packets travel to the destination 
while capturing important timing information. Many 
packet dispersion based bandwidth tools have been 
developed in the past [10]. They are based on self-
induced congestion. Probe packets temporarily induce 
network congestion if and only if the probing bit rate 
exceeds the available bandwidth on the path, thus 
increasing queuing delay significantly. The minimum 
probing bit rate that causes network congestion hence 
gives an estimate of available bandwidth. 

• Hybrid methods: These methods exploit both the 1-
packet and packet-pair effects, e.g., Packet Quartet 
[15] uses packet quartet probe class where probes are 
replaced by probe and pacesetter pair. Different 
estimation methods are built on this framework based 
on delay variation and peak detection. 

B. Probing at Different Levels of Granularity 
End-to-end active probing is mainly used for behavioral 

monitoring. Simple behavior like connectivity is monitored by 
basic tools like ping. There are more complex behaviors that 
can be monitored such as bandwidth, traffic levels, loss and 
jitter, path MTU and other characterizations using different 
types of probes. 
 

Probing can be used to detect SLA violation, which might 
be defined in terms of response time thresholds, packet loss 
thresholds etc. Probes to test SLAs can compose of a set of 
requests to the target application. In order to perform a deeper 
diagnosis, e.g. to detect the exact bottleneck server, more 
sophisticated probes can be sent. Such probes can be 
specifically designed application requests that invoke the 
specific servers that need to be monitored. For even deeper 
diagnosis, probes can be sent to test specific EJBs, servlets, 
SQL queries by sending appropriate test transactions, HTTP 
requests etc. 
 

Probing can also be used at the system or middleware level, 
where probes can be sent to identity performance bottleneck at 
disk, processors, memory or incorrect settings of thread pool, 
heap size or other parameters. 
 

Simple probes like pings or traceroutes are used to detect 
network layer failures like link or node failures. Different 
characteristics of probes like loss, delay etc. can be used to infer 
various aspects of the network state, e.g. available bandwidth, 
bottlenecks, lossy links, presence of noise etc. 



C. Applications of Probing 
Existing large scale active measurement programs [11, 12, 

24] have used probe traffic to measure connectivity, delay and 
loss statistics. Methods have also been employed to measure 
bottleneck bandwidth [7, 17] and available bandwidth. Also 
detailed statistics of delay and loss measurement can be done 
using active probing. Measurements collected in the Internet 
focus on topology, workload, performance, and routing. 
 

Probing can be used to identify the composition of 
application traffic, packet size distribution, packet inter arrival 
time, performance, path-length etc. Traffic flow matrices can 
also be computed using probe results to compute a table 
indicating traffic flowing from a given source to given 
destination. 
 

Probes can also be used for tracking and visualizing 
Internet topology: Tools like skitter [9] use traceroute like 
probes to identify topology details, e.g., specific backbones, 
traffic exchange points etc. 
 

Routing behavior e.g., effects of outages on surrounding 
ISPs, effect of topology changes on Internet performance, 
consequences of new routing policies, etc. can also be detected 
using probing. Probing can identify potential areas to improve 
the network’s ability to respond to congestion and potential 
vulnerabilities in the network. 
 

Probing can provide effective fault management solutions 
for fault diagnosis in a network. Probing solutions are 
developed for automated monitoring and management of a 
network at various layers. In the following sections, we discuss 
how active probing can be used to build efficient solutions for 
fault localization. We analyze the cost and benefits of active 
probing and discuss various design issues to build effective 
techniques for fault diagnosis.  

III. FAULT LOCALIZATION 
Fault localization is the process of analyzing external 

symptoms of network disorder to isolate the faults responsible 
for the symptoms’ occurrences. Fault localization is performed 
at various layers of the protocol stack. Tools are built to 
diagnose various symptoms ranging from end-to-end 
connectivity failure to more sophisticated symptoms like SLA 
violations. A commonly used approach to problem diagnosis is 
event correlation [22], in which every managed device is 
instrumented to emit an alarm when its status changes. 
However this approach requires heavy instrumentation to make 
each device capable to send alarms. Also, the alarms may not 
reach the manager due to packet loss or inability of the device. 

An alternative approach could be to use probing, where the 
managers can send probes to network nodes to diagnose 
network health. These probes are test transactions whose 
outcome depends on certain network components. Thus success 
or failure of a carefully selected set of such probes can be used 
to infer the health of the monitored network components. As 
discussed in Section II, probing solutions can be built using pre-
planned or active probing. Pre-planned probing can be 
expensive and inefficient for the task of fault localization in 

terms of the number of probes needed. However, active probing 
shows potential to build effective solutions for fault 
localization. In this section we discuss various design issues 
involved in developing active probing solution for fault 
localization.  

Active probing can be used to generate efficient fault 
localization solutions. As compared to traditional fault 
localization, active probing based solutions impose lesser fault 
management traffic and lesser delay in the fault diagnosis 
process. Moreover, as the network manager can actively select 
probes inferring the previous probe results, it can narrow down 
to a finer granularity in localizing the fault, by selecting probes 
specific to the localized area of the network.  
 

Figure 1 shows the architecture for an active probing system 
for fault localization. This system consists of 3 main 
components: probe station selection, problem detection, and 
problem determination. Probe station selection module selects 
the best locations to deploy the probe stations using the 
available dependency model information about the network 
routes. Based on the selected probe stations, a set of available 
probes from these probe stations are identified. Problem 
detection component selects the smallest set of probes from the 
available probes, which can be used to detect a failure in the 
managed network. Problem detection module triggers problem 
determination when a failure is detected. Problem 
determination module infers the network state from the 
observed probe results and the probe’s dependency 
information. It then selects additional probes online to obtain 
more information. It repeats this process of analysis and 
selection till the fault localization is complete. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Active probing system architecture for fault localization 
 

Fault localization using active probing involves two steps: 
problem detection and problem determination. Problem 
detection is the process of probing the network such that the 
occurrence of failure of any network component can be 
detected. Problem determination is triggered when some 
failure is detected. Problem determination involves analyzing 
probe results and sending additional probes to determine the 
exact cause of failure. 
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• Problem detection: During problem detection, probe 
stations periodically probe the network by sending a 
pre-selected set of probes. Probe results are analyzed 
to detect the presence of a fault or performance 
problem. The pre-selection of probe set for problem 
detection can be done offline. As these probes are run 
periodically even when the network is healthy, the 
probe set should be minimized to impose minimum 
network management traffic, but still be able to detect 
all possible problems in the network.  

 
• Problem determination: Once some problem is 

detected by the initial probe set, probe results are 
analyzed to infer the most probable explanation of the 
observed probe results. These probe results only 
provide an indication of some failure in the network, 
but may not be able to locate the exact cause of 
failure. Thus observing the probe results, new probes 
are selected online to obtain more information for 
performing problem determination. These probes are 
selected to minimize the time required to diagnose the 
fault while keeping the extra traffic as low as 
possible. Moreover the probe selection is done online 
to select the best set of probes that can give most 
information for the problem determination process. 

 
Thus developing active probing solutions involves three 
main steps: 

• Selecting probe stations 
• Selecting probe set for problem detection 
• Selecting probe set for problem determination 

IV. SELECTING PROBE STATIONS 
Location and responsibilities assigned to probe stations 

must be decided while building an active probing solution. 
These decisions are based on nature of routes, nature of 
targeted failures, availability of dependency information etc. 
Below we discuss various such factors that contribute to the 
overall decision making of probe station selection: 

• Nature of targeted failures: Probe station selection 
depends on the nature of faults that need to be 
diagnosed. Assuming a connected network, to detect a 
single node failure, a single probe station can be 
sufficient. However in the same network, to detect an 
edge failure, we might need more than one probe 
station because, while the probe paths from a single 
probe station though can reach all other nodes, they 
might not cover all the edges. For instance, consider 
the network shown in Figure 2. Consider node 1 to be 
a probe station. The bold lines form a spanning tree 
rooted at node 1 and show routes used by probes 
transmitted from node 1 to all other nodes in the 
network. Probe station 1 can detect any single node 
failure in this network. However, it can detect failure 
of only those links that are used in reaching the other 
nodes in the network, i.e., the links shown in bold. 

• Maximum number of failures: The assumption of 
maximum number of faults that need to be detected in 

a network is an important factor in selecting the probe 
stations. In a connected network, a single node failure 
can be detected by just one probe station. However a 
single probe station might not be sufficient to detect 
two faults, if both faults occur on the same probe 
path. For instance, in Figure 2 with node 1 as the only 
probe station, consider a scenario where nodes 3 and 
8 fail. This results in failure of probes from node 1 to 
nodes 3, 8, and 9. Probe station 1 can only infer 
failure of node 3 but can not make any inference 
about the health of nodes 8 and 9. 
Considering the extreme case where all nodes’ failure 
needs to be detected, the probe stations then need to 
be placed at the vertex cover of the graph formed 
from the network topology. In that case, all nodes will 
be one hop away from some probe station, making the 
closest probe station detect that node’s health. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: An example network with node 1 as probe station. The bold lines 
show the links used by node 1 to reach other nodes in the network. 

 
• Probe station failure: The problem becomes even 

more challenging when the probe station failure is 
taken into consideration. In case of probe station 
failure, probe stations must be chosen to provide the 
ability to detect such failures and make another probe 
station perform the job of the failed probe station. 

• Topological constraints: Another important criterion 
involved in probe station selection is the topological 
constraint. The nodes with less connectivity need 
special treatment. Special topology structures like 
chains and rings also demand specific probe station 
placement requirements. One approach to simplify 
this problem could be to devise a solution by reducing 
the network into smaller sub-networks connected by 
such specific network structures like rings, chains, 
leaves etc.      

• Static vs. dynamic probe station instantiations: The 
probe station selection criteria differ if a probe station 
location can be selected actively based on current 
diagnosis requirements. As opposed to static probe 
station selection, this approach provides more 
flexibility, but deploying probe stations dynamically 
on any node might not be possible at all places in the 
network.  

• Nature of routes: Probe station selection is also 
affected by the nature of routes taken by probes. 
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Considering source routing, a node can probe another 
node through multiple routes which enhances its 
probing capacity. The symmetric or asymmetric 
nature of routes also provides additional information 
of the probing capacity of the probes. Special care 
needs to be taken in the presence of loops. If the 
routes dynamically change, due to load-balancers, 
source routing, mobility etc., the probe station might 
not be able to detect the same faults in the changed 
routing conditions.     

• Dependency information: The amount of routing 
information available for decision making poses some 
other practical problems in probe station selection. 
The accuracy and confidence in the information is 
expressed through the dependency model. Based on 
the information available this model could be 
deterministic or probabilistic. It can be complete or 
incomplete. Moreover based on the nature of the 
network, the model might change with time. Changes 
can occur due to route changes or because of 
availability of more precise information. 

V. PROBE SET SELECTION 
Once the probe stations are selected, another important step 

is the selection of probes. These probes are sent by probe 
stations and the probe results are analyzed to infer the network 
health. Note that probes need to be selected such that they 
should not impose significant network traffic. However for 
providing uninterrupted services, it is desirable to localize the 
fault as quickly as possible so that healing measures can be 
deployed. 
 

The probe selection process relies on the information 
available about the paths taken by the probes. This information 
is gathered by route discovery agents and is stored in a 
dependency model. The dependency model represents the 
dependency relationships between probe paths and the 
managed network components that it probes [13, 21]. The 
nature of this dependency information affects the probe 
selection decision: 

• Deterministic or Probabilistic dependency model: The 
confidence in the information about the path taken by 
probes determines the confidence in detecting the 
possible problem and further localizing the exact 
failure. Thus if the model is deterministic, the probe 
set selection process is easier than when the model is 
probabilistic. With a probabilistic model, in the 
absence of any deterministic information about the 
probe paths, the probe set which is most probable to 
detect the network fault is selected.  

• Fixed-Variable dependency model: Various network 
conditions, e.g. load-balancers, mobility, source 
routing etc., can cause a change in the routes taken by 
probes. Moreover new nodes may enter and old nodes 
may get removed from the managed domain. The 
probe selection algorithm then needs to be made 
adaptive to these changes. 

• Completeness and accuracy of dependencies: Another 
important factor that needs attention is the 

completeness and accuracy of the dependency model. 
At times route discovery agents might not be able to 
fetch the compete routes. Moreover in a dynamic 
environment, the routes may change, bringing an 
inconsistency between the routes in the dependency 
model and the actual routes. Different measures can 
be taken to deal with possibly inconsistent and 
incomplete routes. For instance, a certain degree of 
redundancy can be introduced by having multiple 
probes or probe stations to probe the same node. 
Another measure could be to associate belief values to 
the inferred hypothesis and reach conclusion only 
after significant confidence is obtained. Performing a 
regular update of the dependency model can also 
improve the accuracy of the problem determination 
solution. 

A. Selecting Probe Set for Problem Detection 
As discussed earlier, the problem of probe selection for 

problem detection involves selecting a minimal set of probes 
that can detect health of all managed components. These 
probes may not be able to pin-point the exact cause of the 
failure but should be able to detect the occurrence of some 
failure. The problem of selecting minimum probe set for 
problem detection is similar to the set cover problem, where 
components probed by each probe form a set. The goal is to 
come up with a minimum number of sets that cover all the 
nodes. The set cover problem is NP-Hard. Moreover it can not 
be approximated well. The execution time of the optimal 
algorithm to select minimum probes by analyzing all possible 
combinations increases exponentially with increase in network 
size. Thus there is a need to develop efficient solutions to find 
minimal probe set that is close to optimal and that executes in 
reasonable time. Such algorithm for probe set selection can be 
designed using heuristics.  
 

In the past, approximations have been proposed by using 
certain heuristics [2, 3]. Heuristics can be designed to compute 
the information gain from selection of a probe. Various 
measures can be used to compute the information gain, e.g. 
count of un-probed nodes that are probed by a probe. 
Information of the topology structure and the routes can also 
be exploited. E.g., certain nodes in the network are probed by 
very few probes. Since probe selection to probe such nodes 
needs to be done from a very limited probe space, it should be 
done before other nodes that have larger probe search space. 
 

In case of a single probe station, consider a spanning tree 
with the probe station as the root and where the branches 
describe the routes taken by probes. One approach to probe 
selection to cover all nodes in the network could be to send 
probes from the probe station to the nodes that lie on the leaves 
of the spanning tree. However with multiple probe stations, 
this strategy might be wasteful as it might probe same nodes 
multiple times in the region where the two spanning trees 
overlap.  
  

Also given the uncertainty in the routing information, a 
certain number of redundant probes can also be sent that probe 
nodes that are already being probed by another probe station. 



An average, minimum and maximum number of probes 
probing each network component can be decided by the 
network manager while doing probe set selection. 

B. Selecting Probe Set for Problem Determination 
The problem determination process is invoked when any of 

the probes among the probe set for problem detection fails. 
This failure gives an indication of some fault in the network. 
However the probe set for problem detection does not have 
sufficient diagnostic power to localize the fault. Thus during 
the process of problem determination, additional probes are 
selected online, based on the analysis of previous probe results. 
The probe set selection is done actively and with the goal of 
minimizing the fault localization time. Moreover as the probe 
selection is done online, it should not take long time for 
selection. Various challenges arise in this task of active probe 
selection and the complexity of the process is affected by 
several factors: 

• Maximum number of faults: The assumption of 
maximum number of faults that can occur in the 
network affects the problem determination process. 
E.g. under the simplistic assumption of only a single 
failure, linearly probing each node on the failed probe 
path can identify the problem. This process can be 
optimized by searching for failure in a binary search 
fashion, i.e. by probing the node on the center of the 
probe, and based on the probe results, selecting the 
first half or the second half of the probe path for 
sending the next probe. Similar strategy can be used 
to detect two faults by probing the failed probes from 
both ends.  
For instance, consider the network in Figure 2. On 
failure of probe from probe station 1 to node 9, nodes 
on the path can be searched by sending probes to node 
3, 8 and 9. The number of probes sent can be reduced 
by probing in a binary search fashion. This involves 
first sending a probe to node 8. The success or failure 
of this probe narrows the search to node 9 or nodes 3 
and 8 respectively. Success of probe to node 8 
explains good health of node 3 and 8 and infers 
failure of node 9. On the other hand failure of probe 
to node 8 explains failure at either node 3 or node 8. 
Another probe to node 3 can localize the fault to node 
3 or node 8. 
However to detect larger number of faults, more 
complex strategies need to be adopted. Optimized 
strategies can be devised for this problem, based on 
the nature of probes and the faults.  

• Spurious probe failures: The observation of network 
state is frequently disturbed by the presence of 
spurious symptoms which are caused by unreliable 
communication, intermittent network faults, or by 
overly restrictive thresholds. Such situations can 
decrease the accuracy of the problem determination 
process. The problem determination algorithm tries to 
find explanation of all these spurious symptoms, 
thereby creating explanation for many non-existent 
faults.  

• Nature of available dependency information: The 
analysis of probes to infer the network state depends 
very much on the nature of dependency information. 
As discussed before, the dependency model stores 
information about the relationship between probes 
and network elements that are probed. The 
correctness and completeness of this dependency 
model affects the accuracy of problem determination. 
Many route discovery agents fail to provide complete 
routes due to certain network conditions. In a 
dynamic environment, e.g. in a MANET, due to 
mobility the routes taken by probes change. These 
route changes introduce inaccuracy in the previously 
built dependency model[13]. Thus building and 
maintaining the dependency model is a challenging 
task. The problem determination process needs to be 
robust against such dependency model limitations.  

• Old symptoms: A probe result explains the current 
network state. However with time the network state 
changes. This change could be because of mobility, 
healing measures, entry of new nodes in the network 
etc. Thus after some time a probe result gets old and if 
still considered in the problem determination process, 
can adversely affect its accuracy. 

• Storage of probe results: The network state inferred 
from probe results can be stored in different ways. 
Certain event driven techniques maintain state by 
encoding partial problem determination results derived 
from the observed probe results. This provides a 
condensed network state representation. However such 
a representation looses the information of each probe 
result contributing to the overall diagnosis. Instead, 
maintaining information about the sequence of 
individual probe results that contribute to overall fault 
diagnosis can help refine the results with time when 
more accurate information is available. Such state 
representations allow deleting old and spurious 
symptoms and updating the dependency information 
of previously observed symptoms [13]. 

C. Problem Detection Algorithm 
In this section, we present an algorithm for optimizing the 

selection of probes for detecting the occurrence of a fault in the 
network. 
 

1) Challenges involved 
• The problem of finding a minimal set of probes 

covering all the network components is precisely the 
Set-Cover problem, which is not only NP-Hard  but 
also can not be approximated well. 

• With increasing size of the network, the number of 
available probes also increases. This increases the 
search space to select the minimal set of probes. 

• In practice, it might not be possible to accurately 
obtain the route followed by each probe. Thus a 
probe success or failure might not have a 
deterministic relationship to the success or failure of 
the network elements it is expected to probe. This 
relationship between probes and network 



components then needs to be explained using a 
probabilistic model. 

• Probe analysis becomes more challenging in 
presence of incomplete and inaccurate dependency 
information. Issues like transient failures, spurious 
symptoms, dynamic routing, load balancers, node 
mobility further aggravate the problem. 

 
2) Previous work 
The minimal set of probes covering all the nodes can be 

found by exhaustive search. All feasible combinations of 
probes can be explored until the minimal set is reached. This 
algorithm though optimal has a very high computational 
complexity, making it prohibitive to be deployed practically. 
This algorithm can be used only for very small networks.  
 

Rish et. al. [2, 3] propose some general approaches to be 
used for both probe set selection for problem detection and 
problem determination. These approaches attempt to find 
minimal set of probes using certain heuristics. [2] proposes 
subtractive search that starts with all probes, considers each 
probe in turn, and discards it if it does not add to the diagnostic 
capability of the probe set. The approach is faster but its 
effectiveness in finding minimal set depends very much on the 
order in which probes are explored. Another approach 
proposed in [2] is additive search, where at each step the probe 
giving most informative decomposition is added to the probe 
set. [19] proposes can active probing approach to select probes 
for problem detection by incrementally selecting probes that 
cover the nodes that are not yet covered. 

 
In [25], a technique is presented to integrate passive and 

active fault reasoning in order to reduce fault detection time, 
improve diagnosis accuracy, and to minimize the intrusiveness 
of fault reasoning. If the passive reasoning is insufficient to 
explain the problem, the proposed approach selects optimal 
probing actions to obtain better explanation.  
 

3) Probe set selection criteria 
Probe set selection criteria for problem detection varies from 

that for problem determination. Probe set for problem 
detection is selected such that all network elements are probed. 
However problem determination requires a probe set that 
uniquely diagnoses every network element. Probes for problem 
detection are sent periodically and thus the management traffic 
produced should be low enough that it does not affect the 
performance of other applications. Moreover the time-
constraints on probe set selection for problem detection are 
less stringent than that for problem determination. Problem 
determination is done only when some problem in 
encountered. Thus probes for problem determination should be 
selected such that fault localization can be done in minimum 
amount of time.  
 

We propose a Greedy approximation algorithm that explores 
the information contained in the dependencies between probes 
and network components. The algorithm selects the network 
element which is probed by least number of probes, using the 
dependency information between probes and probed elements. 

Out of all the probes probing element n, the algorithm selects 
the one which goes through maximum number of nodes that 
are not yet probed. 
 

Different nodes are probed by different number of probes, 
depending on the routes used. Nodes that are probed by less 
number of probes narrow down the search space for probe 
selection. Consider the case where a node n is probed by only 
one probe. In this case, the only probe probing node n must 
always be selected, irrespective of the number of nodes it 
covers. Consider another case, where only two probes pass 
through a node n. Then one of the two probes must be selected 
to cover node n. In this situation, the probe covering a larger 
number of uncovered nodes is the better choice. This leads to 
the algorithm presented in Table 1. 

As an example, consider the matrix in Figure 3, where rows 
represent probes and columns represent nodes. Cell (i,j)=1 
indicates that probe i probes node j. In this matrix, node 1 is 
probed by only one probe, i.e., probe C. Thus probe C must be 
selected. Nodes 1 and 5 are probed by probe C. Out of 
remaining nodes, i.e., nodes 2, 3, and 4, node 2 is probed by 
least number of probes (probe A and B). Thus next probe 
should be selected to probe node 2. Probe A covers 2 non-
probed nodes while probe B covers 3 non-probed nodes. Thus 
probe B is a better choice.  

 

 

 

 
 
Figure 3: Matrix representing dependencies between probes and nodes such 
that cell(i,j)=1 infers that probe i probes node j. 
 

We assume a deterministic and complete dependency model for 
this work and aim to relax this assumption in the continuing 
work. We present results to show the effectives and execution 
time of the Greedy algorithm. We first compare the algorithm 
with the Additive search presented in [2] and the Exhaustive 
search algorithm. Because Exhaustive search can not run on 
network with large number of nodes, we ran the three searches 
on a network with 8 nodes. We varied the average node degree 
from 2 to 5, setting the maximum node degree to 8. We 
observed the size of probe set computed by each algorithm. It 
can be seen from Figure 4 that the size of probe set computed 
by the Greedy algorithm is close to optimal and is smaller than 
that computed by the Additive algorithm. Figure 5 shows the 
time taken by the three searches in doing these computations 
and it can be seen that the Greedy algorithm takes significantly 
less time than the Exhaustive algorithm. The time taken by 
Greedy algorithm is comparable to that of the Additive 
algorithm. 

 1 2 3 4 5 
Probe A 0 1 0 1 0 
Probe B 0 1 1 1 0 
Probe C 1 0 0 0 1 
Probe D 0 0 1 1 1 
Probe E 0 0 1 0 1 



 

TABLE I.  ALGORITHM FOR PROBE SET SELECTION FOR PROBLEM 
DETECTION  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To test the algorithm on networks of larger sizes, we ran the 
Greedy and Additive algorithm on networks with 50 nodes, by 
varying the average node degree from 3 to 6, with maximum 
node degree of 7. The comparison of the two algorithms is 
shown in Figures 6 and 7. Figure 7 shows that execution time of 
the Greedy algorithm is significantly less than the Additive 
algorithm; while it can be seen from Figure 6 that the probe sets 
computed by the Greedy algorithm are smaller than those 
computed by the Additive algorithm. 
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Figure 4: Comparison of probe set 
size computed by Greedy, Additive, 
and Optimal algorithms, for a 
network with 8 nodes varying the 
average degree from 2 to 5 

Figure 5: Comparison of execution 
time of Greedy, Additive, and 
Optimal algorithms, for a network 
with 8 nodes varying the average 
degree from 2 to 5 
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Figure 6: Comparison of probe set 
size computed by Greedy and 
Additive algorithms, for networks 
with 50 nodes. 

Figure 7: Comparison of execution 
time of Greedy and Additive 
algorithms, for networks with 50 
nodes.  

VI. CONCLUSION 
This paper addresses development of active probing solution 

for fault localization in computer networks. We presented 
architecture for building such solutions and discussed various 
design issues for probe stations’ selection and probe set 
selection for problem detection and determination. As our 
initial work we presented an algorithm for problem detection 
using active probing. We also presented simulation results to 
show the accuracy and effectiveness of the proposed 
algorithm. Analysis and experiments show that active probing 
can greatly reduce the number of probes and the time required 
for fault localization as compared to the traditional techniques. 

 
Directions for future work include developing algorithm for 
probe station selection and real-time diagnosis algorithm for 
problem determination. We also aim to develop algorithms that 
can work with probabilistic, incomplete, and inaccurate 
dependency model. Active probing offers significant potential 
for problem determination, as well as other network 
monitoring applications.  
 

The views and conclusions contained in this document are those of the authors 
and should not be interpreted as representing the official policies, either 
expressed or implied of the Army Research Laboratory or the U.S. 
Government. 

 

 

 

1. Inputs 
a. N: The set of nodes 
b. PS: The set of probe stations 
c. AvailableProbes: Set of probes that can 

be sent from probe stations to other 
nodes in the network 

2. Initialization: 
a. SelectedProbes = Null 
b. NonProbedNodes = N 
c. For each probe p ∈ AvailableProbes, 

Nodes(p) = the set of nodes ∈ 
NonProbesNodes probed by p 

d. For each node j ∈ NonProbedNodes,  
Probes(j) = the set of probes ∈ 
AvailableProbes that probe node j 

3. For each node k ∈ PS 
a. Remove k from NonProbedNodes 

4. Select node l ∈ NonProbedNodes, that has 
smallest |Probes(l)| 

5. Select a probe q ∈ Probes(l), that has largest 
|Nodes(q)| 

6. Remove each node m ∈ Nodes(q) from 
NonProbedNodes 

7. Remove probe q from AvailableProbes 
8. Add probe q to SelectedProbes 
9. For each probe r ∈ AvaialbleProbes, update 

Nodes(r) with the modified set of 
NonProbedNodes 

10. For each node n ∈ NonProbedNodes, update 
Probes(n) with the modified set of 
AvailableProbes 

11. If ((NonProbedNodes ≠ Null) &  
     (AvailableProbes ≠ Null)) 

a. Repeat steps 4-11 
12. If (NonProbedNodes = Null) 

a. Exit and return the SelectedProbes 
13. If (AvailableProbes = Null) 

a. Exit 
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