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ABSTRACT 

Future battlefield networks require extensive fault man-
agement mechanism. Most existing fault localization algo-
rithms assume availability of complete and/or determinis-
tic dependency model. Such assumptions can not be made 
in the dynamic environment of a battlefield network where 
nodes may move, causing periodic changes in routes. This 
paper is aimed at developing a fault diagnosis architecture 
and algorithm, which address the issue of dynamically 
changing dependencies in battlefield networks. 

1. INTRODUCTION 

Battlefield networks require an extensive fault localization 
mechanism to provide robust networking services in the 
presence of random failures. This demand becomes more 
critical in the Army’s future battlefield networks to meet 
the challenge of service survivability which requires effi-
cient and accurate fault localization algorithms to isolate 
the root cause of failure. The failure information can then 
be used to perform healing measures for providing uninter-
rupted services in the ad-hoc battlefield environment [1, 
14]. The task of fault localization [5] is complex and chal-
lenging. The challenges become more critical in a battle-
field environment because of the following reasons: _ 

• Battlefield networks are usually ad-hoc networks, thus 
no static infrastructure can be assumed in the design, 

• _A higher degree of non-determinism is present in the 
environment because of dynamically changing topology 
and lack of accurate and timely information,  

• _Large array of possible reasons can explain an observed 
behavior, e.g., soft and hard failures, transient and non-
transient failures, failures due to hostile or unintentional 
attacks, etc., 

• Various battlefield applications have varying levels of 
tolerance in delays and losses, e.g., mission critical ap-
plications require quick and assured delivery while non 
mission critical applications are tolerant to some delays 
and losses. Thus the fault localization mechanism needs 
to balance the performance and survivability require-
ments of various applications. 
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Many algorithms have been developed in the past [4, 11, 
12, 13] for localizing a fault through correlation of alarms 
or symptoms observed in the network. These algorithms 
vary in the network models used, complexity involved in 
computation, the assumption made about the underlying 
network etc. Recently a promising new algorithm called 
Incremental Hypothesis Updating (IHU) [2] was designed 
which processes symptoms one at a time in an incremental 
fashion, thereby providing increased efficiency. As part of 
a multi-year research task under the Army Research Lab 
(ARL) Collaborative Technology Alliance (CTA) pro-
gram, we have designed and implemented the IHU algo-
rithm and provided a set of preliminary results on its per-
formance. The IHU algorithm has been shown to be fast, 
scalable, and accurate with the potential of being deploy-
able in real-time. However a number of issues arise in us-
ing this algorithm in wireless ad-hoc battlefield networks. 
An important issue that needs to be addressed in such an 
environment is the presence of mobility in the managed 
network. Most of the existing fault diagnosis methodolo-
gies [1, 6] assume availability of a complete and determi-
nistic dependency model. This assumption can not be 
made in battlefield networks, as the nodes may not be 
static and thus the topology may keep changing with time 
[10]. In this scenario, the fault localization algorithm needs 
to adapt to the changing dependencies. 

This paper is aimed at developing a fault localization algo-
rithm that takes into account the dynamically changing 
dependencies in battlefield networks. The paper has three 
main contributions. First, it presents models to incorporate 
temporal information to associate time with fault-symptom 
relationships, and with each reported symptom. This time 
information indicates the relevance of the dependency 
model for processing a particular symptom. The second 
contribution is a fault correlation algorithm that adapts to 
the dynamically changing dependencies. The algorithm 
uses the dependency model to process the observed symp-
toms incrementally as they are received, and modifies the 
hypothesis on receiving the changed topology information. 
The algorithm reports a set of hypothesis as possible 
causes of the reported failure symptoms and ranks them 
based on the degree of confidence that the hypothesis is 
the possible root cause of failure. These ranks (beliefs) are 
computed based on the probabilistic dependency model 
and the temporal information present in the dependency 
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model, and the reported symptom. As a the third contribu-
tion, in the paper we present simulation results done in 
Qualnet to show the correctness and efficiency of the algo-
rithm to be deployed in real time battlefield networks. 

2. ADAPTIVE APPROACH TO FAULT 
LOCALIZATION IN BATTLEFIELD NETWORKS 

Battlefield networks, being wireless, mobile, and ad-hoc, 
possess many unique characteristics [7] because of which 
existing techniques of fault localization can not be directly 
used. Many fault localization algorithms depend on the 
dependency model [6] for fault localization. This model 
represents the causal relationships between faults and 
symptoms. Since causal relationships between faults and 
symptoms are difficult to determine, the dependency 
model is a probabilistic one, in which the fault nodes are 
associated with the probability of its independent occur-
rence, and the fault-symptom dependencies are represented 
with the probability of the causal implication between 
faults and symptoms. Accuracy of fault diagnosis relies 
upon the accuracy of the dependency model. Thus building 
a complete, consistent, and accurate dependency model is 
a critical task. Prior problem determination work assumes 
a prior knowledge of symptom-fault dependencies. How-
ever this requirement is not met completely and hence pe-
riodic update of the dependency model is required in most 
real-time situations for several reasons: _ 

• _Node mobility: In wireless ad-hoc networks, node mo-
bility makes the topology dynamic and unpredictable. 
Due to mobility, nodes and links in the managed net-
work continually get added, removed or reconfigured. 
These dynamic changes affect the symptom-fault de-
pendencies. 

• _Incomplete and inaccurate dependency information: 
Practical tools and techniques used to construct the de-
pendency model may fail to discover all the existing 
dependencies. Moreover the gathered dependency in-
formation might not be accurate. For instance, the prob-
lem of detecting end-to-end routes is aggravated by the 
presence of load balancers, multi-path routes, and dy-
namic route changes. The routes discovered in such 
scenarios might keep changing and hence provide par-
tial or inaccurate information about the existing symp-
tom-fault dependencies. 

• Gradual increase in the preciseness of the belief: With 
time, as more and more problem determination tasks 
are performed and the root-cause analysis is done, the 
strengths of the causal influences between symptoms 
and faults, represented by forward conditional prob-
abilities, can be changed to more precise values. 

 

A big challenge is to periodically update the model in par-
allel with the ongoing fault diagnosis process. The fault 

diagnosis process extracts information from the depend-
ency model to perform event correlation. Thus in presence 
of multiple dependency information, determining which 
dependency information to associate with the observed 
symptom is a challenging task. An appropriate data struc-
ture must be designed to represent the dependency model 
to incorporate: 

• Changes in the fault set and symptom set that would 
arise when network elements are added or removed, re-
sulting in the addition or deletion of faults and symp-
toms.  

• Changes in the fault-symptom relationships, which may 
occur when network topology changes. This can cause 
existing relationships to become obsolete. It may also 
add new relationships. 

• Changes in the probabilities associated with the fault-
symptom relationships, which may occur over time as a 
result of the learning process. 

We propose to develop an adaptive component to incorpo-
rate dynamically changing dependencies in the depend-
ency model and timestamp this information to perform 
temporal correlation of the symptoms.  

Event driven techniques [6] maintain a state which en-
codes partial fault-localization results computed on the 
basis of the observed symptoms. Symptoms are analyzed 
independent of the other symptoms and the fault localiza-
tion results are updated accordingly. However, by updating 
the partial fault-localization information with each arrived 
symptom, the information about the individual symptoms 
is lost. 

Maintaining the information about the sequence of indi-
vidual symptoms that contribute to the overall fault diag-
nosis can help to refine the algorithm results. We propose 
to build a hypothesis search space (HSS) to keep track of 
the reported symptoms, their associated data, and their ef-
fect on the hypothesis construction. This model represents 
the observed symptoms and their dependency relationship 
with the possible faults. Maintaining this data structure, 
instead of incrementally updating the hypothesis with each 
observed symptom, can help in various ways to refine the 
collected information about the network health.  

• _Removing spurious symptoms: The observation of net-
work behavior is frequently disturbed by the presence 
of spurious symptoms [2]. These are caused by tran-
sient network failures or due to overly restrictive 
threshold values. Considering these symptoms in the 
fault localization algorithm can reduce the accuracy of 
the algorithm. A symptom can be detected to be spuri-
ous if it is reported for small time duration. A spurious 
symptom can be removed from the HSS if a healthy re-
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sponse for the same probe is obtained within a certain 
time frame [3]. The length of the time frame can be de-
cided on the basis of the frequency of probing, response 
time, and other parameters.  

• _Incorporating the updated dependency information: As 
the probability values of the causal relationship be-
tween the symptoms and faults are updated, this infor-
mation can also be incorporated in the HSS by updating 
the probabilities representing the symptom-fault causal 
relationship. 

 

Because of the changed design of the dynamic dependency 
model, the incremental algorithm needs modification. The 
algorithm must be modified to deal with dynamic addition 
and deletion of symptoms, and faults in parallel with ongo-
ing hypothesis construction. It is also necessary to properly 
deal with symptoms that arise before and after such 
changes to the dependency model have occurred. One 
method of solving this problem is to incorporate temporal 
information into the dependency model and the incre-
mental algorithm. 

3. SYSTEM ARCHITECTURE 

Figure 1 shows the different modules cooperating to per-
form adaptive fault localization. The topology discovery 
agents periodically report the topology updates. These up-
dates are incorporated into the dependency model by the 
adaptive component. Network monitors probe the network 
components and report the observed symptoms. These 
symptoms are stored in the Hypothesis Search Space 
(HSS). The network manager performs symptom-fault cor-
relation and temporal correlation of these symptoms to 
provide the most probable explanation. 

Figure 1. System Architecture  
 

3.1 Building the dependency model 

The dependency model is implemented as a matrix with 
rows representing the observable symptoms and the col-
umns representing the possible network faults. Each matrix 
cell (i, j) has a probability value [6] representing likelihood 
of the cause-effect implication between the ith symptom 
and jth fault. In our experiments we model end-to-end path 
failures as symptoms and the link failures as faults. The 
dependency information is computed based on the route 
information provided by the topology discovery agents. 
The routes obtained by the topology discovery agents indi-
cate the possible links that can cause the end-to-end path 
failure. The network manager uses this information to 
build the dependency matrix. The probability values are 
initialized to some constant value and are updated with 
time. As discussed earlier, the obtained dependency infor-
mation can be incomplete or inconsistent. Hence, in the 
presence of incomplete and changing dependency model, it 
is essential for the network manager to have an adaptive 
component. This component will constantly update the 
dependency model if it discovers any changes in the de-
pendencies, e.g., due to dynamic routing, addition/deletion 
of nodes etc. These topology changes are reported to the 
manager by the topology discovery agents. The changes 
are included into the model by updating the symptom-fault 
probability values. Addition/deletion of new nodes is done 
by adding/removing new rows and columns in the matrix. 
Another role of the adaptive component is to refine the 
probability values. These values are initially set to some 
constant value and are increased or decreased with time, 
based on the level of confidence in the obtained depend-
ency information. The results of the root cause analyzer 
are used to refine these probability values. 

3.2 Building the hypothesis search space 

The hypothesis search space (HSS) is also implemented as 
a matrix representing the symptom-fault relationship, but 
unlike the dependency model which contains information 
of all possible symptoms, HSS stores only the symptoms 
observed in a time window. On arrival of each symptom 
reported by the network monitors, the symptom is 
searched in the dependency model and a new row is added 
to the HSS indicating the symptom-fault dependencies be-
tween the symptom and its possible causes of failure. Thus 
this data structure changes more frequently than the de-
pendency model because of frequent addition/removal of 
symptoms. Maintaining this data structure allows remov-
ing symptoms that are too old and thus irrelevant to the 
current fault diagnosis process by maintaining a time win-
dow. It allows another task of updating the probability val-
ues with changes made in the dependency model. The 
event correlation algorithm described in the next section 
assigns temporal weights to the dependencies that explain 
the arriving symptoms. 
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4. INCORPORATING TEMPORAL INFORMATION 
IN FAULT LOCALIZATION 

The existing incremental algorithm does not have a notion 
of time while performing event correlation. In the dynami-
cally changing environment of a battlefield network, it be-
comes important to incorporate temporal information to 
improve the accuracy of the fault diagnosis. Temporal in-
formation can be introduced at following places in the ar-
chitecture:  

• _Associating time with fault-symptom relationships:  
Due to change in the topology the fault-symptom rela-
tionships might change with time. Thus these changing 
relationships might provide different explanations for 
the observed symptoms. These relationships need to be 
time stamped to judge the relevance of dependencies 
while processing a symptom which arrived at a particu-
lar point in time.  

• _Associating symptom with the symptom-arrival time: 
Putting a timestamp with each symptom allows the 
manager to infer an approximate time when the symp-
tom was generated. This helps the manager to infer the 
relevance of symptom fault dependencies for process-
ing the symptom. Another advantage of associating 
time with each symptom is to identify when a symptom 
gets too old to be discarded from the fault diagnosis.  

• _Associating time with a hypothesis: Hypothesis sets are 
built with the arrival of each new symptom. If a hy-
pothesis is too old then it is less likely to explain the 
current network situation. Thus discarding the old hy-
pothesis might allow the fault diagnosis algorithm to 
converge better to identify the root cause. Time-
stamping the hypothesis sets allows the manager to 
identify the relevance of hypothesis. 

 
4.1 The event correlation process 

In this section we propose an adaptive approach to the 
event correlation algorithm. The approach presented in this 
paper uses the belief computation technique presented in 
the IHU algorithm [2] and extends it to incorporate tempo-
ral correlation and dynamic dependency changes. The 
manager correlates the observed symptoms reported by the 
network monitors and creates a set of the most likely hy-
potheses explaining the set of observed symptoms. It cre-
ates the hypotheses sets on a continuous basis and incre-
mentally updates them with the information learned from 
the arriving symptoms. The hypotheses are ranked using a 
belief metric, which expresses a relative confidence asso-
ciated with the hypothesis with respect to other hypothe-
ses. In other words a belief represents relative importance 
of the hypothesis.  

The algorithm proceeds in an incremental fashion, with 
arrival of each new symptom. To incorporate explanation 

for a symptom Si into hypothesis, faults explaining Si are 
incorporated in the HSS. This is done by adding a new row 
in the HSS from the dependency model, which explains 
the observed symptoms. With each new symptom the hy-
potheses are modified to incorporate explanation of the 
new symptom.  

As the dependency model is updated periodically, the ar-
riving symptoms can be explained by the dependency 
model built before the symptom arrival or the one that is 
built after symptom arrival. The relevance of the two ex-
planations can be weighed on the basis of temporal close-
ness between the build-time of the models with symptom 
arrival time. Each dependency model can be marked with 
the timestamp of creation and similarly each symptom can 
be marked with a timestamp of arrival. The inferred fault-
symptom dependencies can be weighed based on the dif-
ference in timestamp of the symptom and the model. The 
smaller the difference, higher is the relevance. Another 
thing to note is that the symptoms and dependency updates 
are not reported at the exact time of occurrence. Thus there 
exists some degree of uncertainty in the temporal informa-
tion. This needs to be modeled with appropriate probabil-
ity values while performing temporal correlation. 

One approach to this scheme could be to build the hy-
pothesis incrementally on receiving each new symptom, 
and then rebuild the hypothesis after obtaining the new 
dependency information. But this approach involves an 
overhead of redoing the entire hypothesis building process. 
On the other hand, deferring the hypothesis generation till 
the next topology update might cause unnecessary delay in 
producing the hypothesis if the topology update occurs a 
long time after the symptom is reported. This also reduces 
its probability of being relevant to the reported symptom. 
This approach does not make use of the capability of the 
Incremental algorithm to perform fault correlation in the 
inter-symptom arrival time.  

To meet this trade-off, the symptom processing is deferred 
for a certain time window. If no topology update is re-
ceived within this time window, the hypothesis is built for 
the symptom based on the available dependency informa-
tion. If a topology update arrives within the time window, 
the dependency information from both the available and 
the new topology information can be temporally weighted 
and used for generating the explanation for the symptom. 
This avoids the overhead of rebuilding the entire hypothe-
sis. The size of the time window can be decided based on 
the nature of the network. If the network topology changes 
periodically, and the topology updates are frequent, the 
time-window can be set to the time between arrivals of two 
topology updates. On the other hand, if the network is rela-
tively static and the topology updates are relatively infre-
quent, the time-window need not be as large as the time 
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between two topology updates. It can be set to some 
minimum time for a change to be reported to the manager. 

On processing of each new symptom, a new row is created 
in the HSS. If no topology update is received within the 
time window of this symptom, row contains dependency 
information obtained from the present dependency model. 
If however, a topology update is received within the symp-
tom’s time-window, row contains dependency information 
obtained for that symptom from both the dependency 
models. The dependency probabilities are weighted with 
the difference in the timestamp of the symptom and the 
dependency model. This process thus takes care of adapt-
ing the event correlation process with the continuously 
changing dependencies.  

An important task is to compute beliefs for each hypothe-
sis. As described in the IHU algorithm [2], beliefs can be 
computed as: 

      
On receiving a symptom si out of the possible observable 
symptoms SO,i, a hypothesis set Hi is created. Hi is a set of 
hypotheses hj. Each hypothesis hj is a collection of faults fk 
that explain the occurrence of symptoms s1 through si. Set 
Hi is created by updating Hi-1 with an explanation of symp-
tom si.  

In the ith iteration of fault localization, the belief metric 
bi(hj) is expressed using the probability that (1) all faults 
belonging to hj є Hi have occurred, and (2) hi explains 
every observed symptom sk є SO,i = s1,…, si

The belief values can be refined further by the fact that 
some possible indications of disorder have not been ob-
served. This lack of observation is considered a positive 
symptom. Thus the belief metric needs to contain a nega-
tive component and a positive component such that: 

      
The negative component is the same as the belief com-
puted previously. The positive component is defined as the 
probability that faults in hj have not generated any of the 
symptoms in SO,i. This probability is expressed through the 
following equation: 

      
This multiplier decreases the value of the belief metric as-
sociated with the hypothesis if many of the symptoms 
caused by the faults in hj have not been observed.  

As we are storing the individual symptom-fault dependen-
cies in the HSS, the above belief computations need not be 
done after arrival of each new symptom. Instead, the be-
liefs can be computed after collecting a set of symptoms or 
after a window of time has elapsed. However the hypothe-
sis sets need to be created with each new symptom arrival 
as these sets are built incrementally. Negative belief com-
putation for a hypothesis set H can be done by fetching the 
conditional probability values between the faults in a hy-
pothesis set and all the observed symptoms. Positive belief 
for a hypothesis set can be computed by obtaining the con-
ditional probability values between the faults in a hypothe-
sis set and all the unobserved symptoms. The positive be-
lief computation involves lesser computation than when 
done incrementally for each arriving symptom. 

5. EXPERIMENTS AND RESULTS 

In this section we evaluate the technique presented in this 
paper using the problem of end-to-end connectivity failure 
diagnosis as a case study. We deal with the problem of 
isolating interface failures responsible for an end-to-end 
connection failure in mobile ad-hoc networks. In this prob-
lem, the dependency matrix consists of end-to-end connec-
tion failure as rows which are reported as symptoms. The 
columns consist of interface failures that represent the pos-
sible faults. In an n-node network, there can be at most n2 
end-to-end connections, each composed of at most n hop-
to-hop services. We obtained the dependency information 
by periodically running trace-routes. End-to-end connec-
tion failure information is obtained by periodically sending 
pings to all the managed nodes in the network.  

We simulated networks of different sizes in Qualnet [9] 
and introduced interface failures for random time interval. 
To observe the effect of mobility and transmission power, 
we used random waypoint model and observed the accu-
racy of detection by varying the average speed and trans-
mission power. 

Figure 2 shows the relation between the detection rate and 
transmission power for a network with 15 nodes varying 
the nodes’ average speeds from 3m/s to 11m/s, and trans-
mission power from 11dBm to 20dBm. We observed that 
detection rate decreases for higher speeds. Figure 3 gives a 
better insight for this observation, where detection rate 
tends to decrease with increase in speed, for all values of 
transmission power. The decrease in detection rate with 
increased mobility can be explained by the lack of accu-
racy of the dependency information inferred about the 
network. With increase in speed, nodes change position 
faster causing changes in routes. These changes are not 
accurately retrieved by the traceroutes, causing an inaccu-
racy in the fault diagnosis. 
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Figure 2. Detection rate vs. transmission power for 

different values of speed  
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Figure 3. Detection rate vs. speed for different values of 

transmission power 
 

We also conducted experiments to observe the effect of 
transmission power on fault diagnosis and we observed 
that the detection rate improves with increase in transmis-
sion power. For low transmission power, low detection 
rate can be accounted to the inability of the node to report 
symptoms to network manager and inability of the network 
manager in extracting complete routing information result-
ing in incomplete dependency model. We also observed 
that detection rate reaches higher values beyond a cut-off 
point. With smaller speeds this cutoff point is reached for 
smaller transmission power while for higher speeds it takes 
higher transmission power to reach such cut-off point. E.g. 
In figure 2 for speed of 3m/s, cutoff is reached at transmis-
sion power of 14dBm while for speed of 11m/s, it is 
reached at transmission power of 17 dBm. 

 6. CONCLUSION AND FUTURE WORK 

In this paper, we described a strategy for fault diagnosis in 
a dynamically changing environment of mobile ad-hoc 
battlefield networks. We designed a system architecture 
that adapts to changing dependencies in the network. We 
illustrated a method to perform temporal correlation and 
proposed an adaptive fault diagnosis algorithm. We evalu-
ated the proposed method by simulations in Qualnet and 
observed the effect of mobility and transmission power on 
the detection rate of the fault diagnosis algorithm. We aim 
to conduct more detailed simulations of battlefield net-
works to understand the impact of mobility. Additionally 
we also aim to test the algorithm’s performance on net-
work with larger sizes. The experiments presented in this 
paper have a static time window size. As a continuing 
work, we will incorporate mechanism to adapt the window 
size to the observed degree of mobility.  
The views and conclusions contained in this document are those of the authors 
and should not be interpreted as representing the official policies, either ex-
pressed or implied of the Army Research Laboratory or the U.S. Government. 
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