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Abstract

This paper presents a probabilistic event-driven fault localization technique, which uses a probabilistic symptom-

fault map as a fault propagation model. The technique isolates the most probable set of faults through incremental

updating of a symptom-explanation hypothesis. At any time, it provides a set of alternative hypotheses, each of which is

a complete explanation of the set of symptoms observed thus far. The hypotheses are ranked according to a measure of

their goodness. The technique allows multiple simultaneous independent faults to be identified and incorporates both

negative and positive symptoms in the analysis. As shown in a simulation study, the technique offers close-to-optimal

accuracy and is resilient both to noise in the symptom data and to inaccuracies of the probabilistic fault propagation

model.
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1. Introduction

Fault diagnosis is a central aspect of network fault management. The core of fault diagnosis is fault

localization [1–3]––a process of analyzing external symptoms of network disorder to isolate possibly

unobservable faults responsible for the symptoms’ occurrences. Until recently, fault localization con-

centrated mostly on diagnosing faults related to network connectivity in lower layers of the protocol

stack (typically the physical and data-link layers), and its major goal was to isolate faults related to the

availability of resources, such as broken cable, inactive interface, etc. Recent advances in the deployment of
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enterprise services such as e-commerce, telecommuting, virtual private networks [4], application service

provisioning [5], grid services [6], and Web services [7,8] require that fault localization also focus on

diagnosing performance problems in multiple layers of the protocol stack including the application and

service layers. Modern enterprise environments impose several challenges on the fault localization problem,

which include modeling and reasoning about (1) the system state in various protocol layers, (2) interactions

between protocol layers, (3) versatile types of failures, and (4) non-determinism within the system structure
and its observed state.

Most fault management systems rely on an explicit fault propagation model (FPM) representing either

causal relationships among events [3,9,10] or dependencies among communication system entities [2,11–13].

An event is an exceptional condition occurring in the operation of the hardware or software of the managed

network. An event that may not be explained by any other event is considered a root cause or a fault. Most

events are not observable to the management system. Events that are observable are called symptoms. A

fault localization technique uses a given FPM to identify a set of faults that constitutes the best explanation

of observed symptoms. In the management of modern communication systems, a fault localization tech-
nique should:

• Allow reasoning under uncertainty about the system model and its state [2,14–17], which is necessary to

diagnose Byzantine problems, as their consequent observable failures are not guaranteed to occur or,

when they occur, may not be severe enough to be detected by the management system. A non-determin-

istic model is also needed when causal relationships among system events cannot be learned with cer-

tainty, for example, if they change dynamically, or when information about these dependencies

provided to the management system is not guaranteed to be accurate.
• Be able to isolate multiple simultaneous faults even if their symptoms overlap [2,15]. The single-fault

assumption used by some fault localization techniques limits their scalability, since in large systems

the probability that two or more faults exist at the same time may not be neglected.

• Be event-driven as opposed to window-based. Window-based techniques work with a set of symptoms

observed over a specified period of time, which are analyzed together to propose their explanation.

These techniques are inflexible, as they do not allow different time-windows in the analysis of different

problems [18]. They may also be inaccurate by excluding some symptoms or including to many symp-

toms, when the time-window is set incorrectly. In contrast, event-driven techniques maintain a state
which encodes partial fault-localization results computed based on previous symptoms’ analysis. Symp-

toms are analyzed when they arrive independently of other symptoms. Results of their analysis are in-

cluded in the fault-localization state. Thus, event-driven techniques are not prone to inaccuracies

resulting from an incorrect time-window specification. In addition, they allow fault localization to

be interleaved with testing, since, at any time, partial fault localization results may be used to find a

set of tests with the highest information content given a current knowledge of the system state. (This

problem is studied in [19,20].)

• Be resilient to lost and spurious symptoms [3,14,16], which may dramatically reduce fault localization
accuracy if their presence is not taken into account by a fault localization algorithm.

• Have a high accuracy and a low-polynomial computational complexity.

This paper presents a probabilistic event-driven fault localization technique, which uses a probabilistic

symptom-fault map [2,3,9] as an FPM. A symptom-fault map is a bipartite directed graph that, for every

fault, encodes direct causal relationships between the fault and a set of symptoms observed when the fault

occurs. It has to be mentioned that relationships between faults and symptoms in real-life systems are

usually more complex than may be represented by a bipartite graph (in particular, they are frequently
indirect and involve chains of unobservable events). In our previous work, we applied belief networks to

fault localization based on such complex fault propagation models [21]. However, like many other fault
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localization techniques proposed in the literature [2,3,9], this paper uses a bipartite FPM. The focus on this

type of a model is justified by the following arguments:

• Performing fault localization with more complex representations is difficult. (In general, the problem is

NP-hard [2].) To avoid this complexity, more detailed models are frequently reduced to bipartite ones

through a sequence of graph reduction operations [3]. Constraining an FPM to a bipartite graph, allows
us to develop a fault localization algorithm whose computational complexity is an order of magnitude

lower than that of a more general algorithm proposed in [21].

• Building more complex models requires a profound knowledge of the underlying system, while symp-

tom-fault maps may be obtained through external observation. In many real-life problems, only bipartite

symptom-fault models are feasible [9].

• Some fault localization problems may be accurately represented by bipartite symptom-fault maps (e.g.,

the problem of end-to-end service failure diagnosis [21,22]), thereby necessitating fault localization algo-

rithms suitable for bipartite FPMs.

The technique proposed in this paper is able to accurately isolate multiple simultaneous faults with

overlapping sets of symptoms in the presence of observation noise. By using event-driven symptom pro-

cessing, the technique is free from the limitations of window-based approaches. In addition to providing these

features, the technique proposed in this paper is incremental, i.e., the interpretation of an observed symptom

is incorporated in a solution resulting from the interpretation of the previously observed symptoms without

re-analyzing them. Thanks to this feature, the algorithm continuously provides the system administrator with

information about which faults are likely to exist in the system given symptoms observed thus far. In non-
incremental techniques, such information is available on a periodic basis only [2,3]. The technique proposed

here produces a set of alternative hypotheses rather than just a single explanation. These hypotheses are

ranked according to the measure of goodness. As a result, the system administrator obtains a better

understanding of the system state. This feature also facilitates exchanging the hypotheses order as dictated by

hypothesis ranking schemes that are not easy to express through a goodness function, e.g., those taking into

account fault gravity, testing difficulty, or urgency of repair. Since an occasional inaccuracy of the most likely

hypothesis may not be avoided, the ability to replace the incorrect hypothesis with its alternative without

repeating the entire fault localization process improves the robustness of the fault management system.
This paper is structured as follows. We first present basic concepts used in this paper and a combina-

torial approach to fault localization, which is frequently used as an optimal technique for bipartite FPMs

(Section 2). Then, we discuss the basic ideas behind the incremental approach (Section 3). These ideas are

later refined to incorporate reasoning with positive and lost symptoms (Section 4) and to make the tech-

nique resilient against spurious symptoms (Section 5). The technique is evaluated using the problem of end-

to-end service failure diagnosis as a case study (Section 6). We also discuss extensions to the algorithm that

are necessary with other than noisy-OR canonical models of probability distribution (Section 7). Finally,

we compare the incremental algorithm to other fault localization techniques proposed in the literature that
are suitable for bipartite FPMs (Section 8).
2. Basic concepts

A symptom-fault map is a bipartite directed graph that, for every fault, encodes direct causal rela-

tionships between the fault and a set of symptoms observed when the fault occurs. We use F and S to

denote the sets of all possible faults and symptoms, respectively. In a non-deterministic model, with every
fault fi 2 F a probability of its independent failure is associated, which is denoted by pðfiÞ. The edge

between fi 2 F and sj 2 S indicates that fi may cause sj. The edge is weighted with the probability of the
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causal implication, pðsj jfiÞ. Following previous modeling approaches [2,17] and their justification intro-

duced in [23], we assume a noisy-OR model of probability distribution in which alternative causes of a

symptom are combined using the logical operator OR. A subset of symptoms observed by a management

application is denoted by SO ¼ SN [SP, where SN and SP are the sets of all observed negative and

positive symptoms, respectively. When positive symptoms are ignored, SO ¼ SN and the purpose of fault

localization is to find Fd � F that maximizes the probability that (1) all faults in Fd occur and (2) each
symptom in SO is explained by at least one fault from Fd .

When a fault propagation model is represented by a bipartite probabilistic graph, exact fault localization

may be performed with the combinatorial algorithm [24], which assumes a naive approach by evaluating all

possible combinations of faults with regard to their ability to explain all observed symptoms. When two or

more combinations of faults are able to explain all observed symptoms, the best combination is chosen. For

a given combination of faults Fi and a set of observed symptoms SO, the measure of goodness gðFi;SOÞ
is defined as follows:

gðFi;SOÞ¼ Pfall faults inFi occurredg �Pfeach symptom inSO is caused by at least one fault inFig

¼
Y
f2Fi

pðf Þ
 ! Y

s2SO

1

 
�
Y
f2Fi

1ð � pðsjf ÞÞ
!
: ð1Þ

Note that in the calculation of gðFi;SOÞ we assume that faults are independent. As a result,

Pffi1 ^ fi2 ^ . . . ^ fikg ¼
Q

fij2Fi
pðfijÞ, where fi1 ; fi2 ; . . . ; fik 2 Fi. If this assumption is invalid, the calcula-

tion of gðFi;SOÞ has to be modified by setting Pfall faults in Fi occurredg ¼
Q

Fij�Fi
Pfall faults in

Fij occurredg, where all Fij � Fi are disjoint sets of mutually dependent faults such that no dependencies
among faults in different sets exist. For each such Fij the value of Pfall faults in Fij occurredg must be

explicitly given, or the FPM must contain probability-weighted dependency edges among faults in Fij . In
the latter case, Pfall faults in Fij occurredg may be obtained using techniques proposed in [2]. This ap-

proach can be also used to deal with dependent faults in the incremental technique proposed in this paper.

For simplicity, however, we will present this algorithm assuming that faults are independent.

It is frequently assumed that the number of faults that occur simultaneously is small. This suggests that,

in the combinatorial algorithm, we should start evaluating fault combinations from those that contain the

fewest faults and terminate the search as soon as an explanation of all symptoms is known. This leads to the
following combinatorial algorithm.

Algorithm 1 (Combinatorial Algorithm)

for i ¼ 1 until i < jFj do
for all i-fault combinations from F, Fi compute gðFi;SOÞ
if at least one Fi is found such that gðFi;SOÞ > 0

return Fi such that gðFi;SOÞ is maximum

It may be easily calculated that Algorithm 1 performs
PjFj

i¼1
jFj
i

� �
� i � jSOj ¼ Oð2jFjÞ operations. How-

ever, when multiple concurrent faults are unlikely, the algorithm’s practical complexity may be polynomial.

In this paper, we use the combinatorial algorithm as a reference algorithm against which the incremental

algorithm is compared.
3. Incremental hypothesis updating

In this section, a novel fault localization technique is introduced, called Incremental Hypothesis

Updating (IHU), which creates a set of the most likely hypotheses explaining the set of observed symptoms.

Rather than wait for a period of time before presenting a solution, the technique makes all these hypotheses
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available on a continuous basis, and incrementally upgrades them with information learned from arriving

symptoms. We first focus on the basic version of the incremental algorithm, which ignores positive, lost,

and spurious symptoms.

The incremental algorithm creates a set of hypotheses, each of which is a subset of F that explains all

symptoms in SO. We say that hypothesis hj � F explains symptom si 2 SO if it contains at least one fault

that explains si. The set of hypotheses does not include all subsets of F that explain symptoms in SO.
Clearly, in the worst case, as many as 2jFj such subsets may exist. The incremental algorithm avoids this

complexity by deliberately excluding most of these subsets based on the properties of the problem it tries to

solve. To determine which subsets of F are included in the set of hypotheses, the incremental algorithm

uses size-limiting heuristics, which are described in this section.

The hypotheses are ranked using a belief metric, b, which expresses the confidence associated with a

given hypotheses relative to other hypotheses. The belief metric should not be interpreted as the conditional

probability that all faults in a given hypotheses exist given symptoms in SO have been observed. Such

interpretation would be incorrect, as the set of hypotheses does not represent the universe of all possible
explanations. The belief metric only encodes the relative importance of a given hypotheses in the space of

all considered explanations. Therefore, a value of the belief metric could be any positive real number.

Nevertheless, it is convenient to normalize belief metrics such that the sum of belief metrics associated with

all considered hypotheses is equal to 1.

The algorithm proceeds in an event-driven and incremental fashion. The execution triggered by an

observation of the ith symptom, si, creates a set of hypotheses,Hi, each explaining symptoms s1 through si.
SetHi is created by updatingHi�1 with an explanation of symptom si. We define Hsi as a set ffk 2 Fg such
that fk may cause si, i.e., the fault propagation model contains a directed edge from fk to si. Using the
notation from [2], Hsi is the domain of symptom si.

In the ith iteration of fault localization, the belief metric biðhjÞ is expressed using the probability that (1)

all faults belonging to hj 2 Hi have occurred, and (2) hj explains each observed symptom

sk 2 SO;i ¼ fs1; . . . ; sig. Note, that biðhjÞ ¼ bgðhj;SO;iÞ (Eq. (1)), where b is a normalization constant, and

formally it is defined as follows:

biðhjÞ ¼ b
Y
fk2hj

pðfkÞ
 ! Y

sl2SO;i

1

 
�
Y
fk2hj

ð1� pðsl jfkÞÞ
!
: ð2Þ

To incorporate the explanation of symptom si into a set of fault hypotheses, in the ith iteration of the

algorithm, we analyze each hj 2 Hi�1. If hj is able to explain symptom si, we put hj into Hi. Otherwise, hj
has to be extended by adding to it a fault from Hsi . In a greedy approach, a new hypothesis may be created

for every fault from Hsi . This approach would result in a very fast growth in the size of Hi, and, conse-
quently, would make the computational complexity of the algorithm unacceptable. Instead, we adopt the

following heuristic. Fault fl 2 Hsi may be added to hj 2 Hi�1 only if the size of hj, jhjj, is smaller than lðflÞ.
Function lðflÞ is defined as the minimal size of a hypothesis in Hi�1 that contains fl and explains symptom

si. The usage of this heuristic is derived from the assumption, which is valid in most fault localization

problems, that a probability of multiple simultaneous faults is smaller than a probability of any single fault.

Therefore, of any two hypotheses containing fl, the hypothesis that contains the fewest faults is the one

most likely to constitute the optimal symptom explanation. Since it is not practical to keep all possible

hypotheses, we remove those that are bigger in size.
We illustrate this heuristic with the following example.

Example 1. The fault model in Fig. 1(a) presents causal relationships between faults f1, f2, f3, and f4 and
symptoms s1, s2, and s3. Suppose the symptoms are observed in order s1, s3, and s2. Initially, the only

available hypothesis is ;, which indicates that, given no symptom observations, we should conclude that no



Fig. 1. Example of incremental hypothesis updating: (a) example of causality graph and (b) sets of hypotheses created after observing a

sequence of symptoms s1, s3 and s2.
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faults occurred. Then, symptom s1 arrives, whose domain is Hs1 ¼ ff1; f2; f3g. As a result of extending ;, we
obtain H1 ¼ fff1g; ff2g; ff3gg. The domain of symptom s3 is Hs3 ¼ ff1; f2; f4g. Since f1 and f2 belong to

hypotheses ff1g and ff2g in H1, respectively, hypotheses ff1g and ff2g explain s3 and therefore they are
placed in H2. Then, both lðf1Þ and lðf2Þ are set to 1. Hypothesis ff3g does not explain s3; therefore, it has
to be extended with faults in Hs3 . Out of faults in Hs3 we cannot use f1 and f2 since their lð�Þs 6 jff3gj ¼ 1.

The only extension possible is ff3; f4g. This way, we have created H2 ¼ fff1g; ff2g; ff3; f4gg. In the next

iteration, after symptom s2 has been observed, we are allowed to extend ff1g 2 H2 by adding fault f3 since
lðf3Þ ¼ jff3; f4gj ¼ 2 while jff1gj ¼ 1, but we are not allowed to extend ff1g by adding fault f2,because
lðf2Þ ¼ jff1gj ¼ 1. Thus the final set of hypotheses is H3 ¼ fff1; f3g; ff2g; ff3; f4gg (Fig. 1(b)).

An important problem to solve is the efficient computation of biðhjÞ. We observe that biðhjÞ may be
approximated iteratively based on bi�1ðhjÞ as follows:

1. If hj 2 Hi�1 and hj explains si,

biðhjÞ ¼ bbi�1ðhjÞ 1

0
@ �

Y
fl2hj\Hsi

ð1� pðsijflÞÞ

1
A: ð3Þ

2. Otherwise, if fl explains si,

biðhj [ fflgÞ ¼ bbi�1ðhjÞpðflÞpðsi jflÞ: ð4Þ

The incremental algorithm is defined by the following pseudo-code.

Algorithm 2 (Incremental Hypothesis Updating)
let H0 ¼ f;g and b0ð;Þ ¼ 1

for every observed symptom si:
let Hi ¼ ; and for all fl 2 F let lðflÞ ¼ jFj
for all hj 2 Hi�1 do

for all fl 2 hj such that fl 2 Hsi

set lðflÞ ¼ minðlðflÞ; jhjjÞ
add hj to Hi and calculate biðhjÞ

for all hj 2 Hi�1 nHi do
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Fig. 2. Belief-network for Example 2.
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for all fl 2 F \ Hsi such that lðflÞ > jhjj do
add hj [ fflg to Hi and compute biðhj [ fflgÞ

choose hj 2 HjSoj such that bjSojðhjÞ is maximum

To calculate the upper bound on the worst case computational complexity, we observe that the calcu-

lation of biðhjÞ is Oðjhj \ Hsi jÞ ¼ OðjHsi jÞ ¼ OðjFjÞ. The calculation of biðhj [ fflgÞ is Oð1Þ. The algorithm

performs jSOj iterations. In every iteration, we execute two for loops. The first loop requires

Oððmaxi ðjHijÞÞjHsi jÞ steps. The second loop requires Oðmaxi ðjHijÞjHsi j � 1Þ operations. Therefore, the
complexity of the entire algorithm is OðjSOjmaxi ðjHijÞjFjÞ. To get a precise bound we need to determine

a bound for maxi ðjHijÞ. It turns out that in rare cases the size of the hypothesis set may grow exponen-

tially. To avoid this problem we set a limit on the number of hypotheses that may be created in each

iteration; the least likely hypotheses are rejected when the limit is exceeded. The price we pay for this

modification is that a hypothesis chosen by the algorithm may not be the one that maximizes the measure of

goodness. If the limit on the size of the hypothesis set is OðjFjÞ, operations involved in controlling the size

of Hi do not increase the theoretical bound on the complexity of the entire algorithm. To obtain experi-

mental results presented in Section 6 the limit 2jFj is used. Thus, the complexity of the entire algorithm is
OðjSOjjFj2Þ.

Example 2. Consider the fault propagation model in Fig. 2. We will illustrate fault localization triggered by

the observation of symptoms s2 and s4.
The initial set of hypotheses H0 is equal to f;g, and b0ð;Þ ¼ 1. When symptom s2 arrives, we create

H1 ¼ fff1g; ff2gg and calculate b1ðff1gÞ ¼ b1 � 0:01 � 0:75 ¼ b1 � 0:0075 and b1ðff2gÞ ¼ b1 � 0:02 � 0:5 ¼
b1 � 0:01. After normalization, b1ðff1gÞ ¼ 0:43 and b1ðff2gÞ ¼ 0:57.

The domain of the next observed symptom, s4, is Hs4 ¼ ff2; f3g. Since ff2g explains s4 we set lðf2Þ ¼ 1
and place ff2g in H2. Then, we extend ff1g with f3. We calculate b2ðff2gÞ ¼ b2b1 � 0:01 � 0:5 ¼
b2b1 � 0:005 ¼ 0:99 and b2ðff1; f3gÞ ¼ b2b1 � 0:0075 � 0:01 � 0:75 ¼ b2b1 � 0:00005625 ¼ 0:01. Since hypothe-

sis ff2g is the best according to belief metric b2, it is chosen as the final answer.
4. Analysis of positive symptoms

Algorithm IHU presented in Section 3 calculates a set of the most probable fault hypotheses based on
the observed indications of system disorder. It does not take advantage of the fact that some possible

indications of the disorder have not been observed. As many researchers point out [3,24], the fact that many

of its possible symptoms have not been observed should decrease our confidence in the fault’s occurrence.

In the realm of fault localization, an observation of network disorder is called a negative symptom. Both an
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opposite observation and the lack of any observation are considered positive symptoms. The inclusion of

positive symptoms into the fault localization process may allow a more accurate fault hypothesis to be

isolated [21,25].

To include positive symptoms in the analysis, the belief metric b�i associated with hypothesis hj 2 Hi

needs to contain two components: a negative component bni and a positive component bpi , where

b�i ðhjÞ ¼ bbni ðhjÞb
p
i ðhjÞ and bni ðhjÞ ¼ biðhjÞ of Eq. (2). The positive component is defined as the probability

that faults in hj have not generated any of the symptoms in S nSO;i. This probability is expressed through

the following equation:

bpi ðhjÞ ¼
Y

sl2SnSO;i

Y
fk2hj

ð1� pðsl jfkÞÞ: ð5Þ

Multiplier bpi ðhjÞ decreases the value of the belief metric associated with hypothesis hj if many of the

symptoms caused by faults in hj have not been observed.

When investigating a fault localization technique that takes advantage of positive symptoms, two

properties of the managed system have to be taken into account: symptom observability ratio and symptom

loss rate, which lead to refinements in the calculation of bpi presented in the following sections.
4.1. Symptom observability ratio

Frequently, an indication of existing disorder may not be observed by the management system because

its configuration excludes some system conditions from being monitored, or filters out some of the

symptoms before they reach the management application. If this fact is not taken into account the

reduction of b�i ðhjÞ caused by the positive multiplier bpi ðhjÞ may be excessive. Symptoms which may not be

observed as a result of the management system configuration may be dealt with by not including them in

the FPM. An alternative solution, which preserves the model despite the management-system configuration
changes, associates a flag 1 or 0 with every symptom in the model to indicate that, in a current configu-

ration, the symptom is observable or not observable, respectively. We will denote by SO � S the set of all

symptoms which are observable in a current management system configuration. When symptom observ-

ability status is taken into account, the second product in Eq. (5) is calculated over sl 2 SO nSO;i rather

than sl 2 S nSO;i.

The ratio of the number of all observable symptoms to the number of all possible symptoms is called an

observability ratio, and is denoted by OR ¼ jSOj=jSj [21]. The observability ratio is an important

parameter of the fault management system, which informs us of the extensiveness of the system instru-
mentation. It may be expected that a higher instrumentation level allows fault localization to be more

accurate, but causes it to be less efficient as it requires the processing of more symptoms.
4.2. Symptom loss

In a real-life system, a symptom that has been triggered by faults in hj may be lost before it reaches the

management application as a result of using an unreliable communication mechanism to transfer alarms

from their origin to the management node, as is the case with the SNMP protocol [26], or too liberal
threshold values which prevent an existing problem from being reported. When a fault localization algo-

rithm relies on positive information, a high rate of lost symptoms, if ignored by the algorithm, can reduce

its accuracy. Thus, in the management system in which symptom delivery is not guaranteed, taking positive

symptoms into account necessitates the analysis of lost symptoms as well.

Let us denote by plossðsiÞ the probability that symptom si 2 S is lost. The value of plossðsiÞ may be derived

from a packet loss rate in the communication system, or from the confidence measure associated with the
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system baselining tool used to calculate the monitored threshold values. Symptom loss is included in the

fault localization algorithm by modifying the definition of bpi ðhjÞ (Eq. (5)) as follows:

bpi ðhjÞ ¼
Y

sl2SOnSO;i

plossðslÞ
 

þ ð1� plossðslÞÞ
Y
fk2hj

ð1� pðsl jfkÞÞ
!
: ð6Þ
4.3. Incremental calculation of bp

IHU based on both positive and negative symptoms proceeds as follows. Initially, all observable alarms
are considered positive symptoms. The only valid hypothesis is ;, and bni ð;Þ ¼ bpi ð;Þ ¼ 1. In the process of

analyzing new symptoms, the value of belief metric b�i ðhjÞ is calculated by multiplying bni ðhjÞ and bpi ðhjÞ,
where bni ðhjÞ is computed incrementally using Eqs. (3), (4). We obtain bpi ðhjÞ as follows:

1. If hj 2 Hi�1 explains symptom si, then bpi ðhjÞ may be approximated using the following formula:

bpi ðhjÞ ¼
bpi�1ðhjÞQ

fk2hj ðplossðslÞ þ ð1� plossðslÞÞð1� pðsl jfkÞÞÞ
: ð7Þ

2. Otherwise, let fl 2 Hsi be a fault used to extend hj. The value of bpi ðhj [ fflgÞ is calculated as follows:

bpi ðhj [ fflgÞ ¼ bpi�1ðhjÞb
p
i ðfflgÞ: ð8Þ

Eq. (7) is derived from Eq. (6) by moving the second product in front of the parentheses. By doing this

we make an assumption that a symptom may be caused by only one fault at a time. When the symptom is

triggered by two or more faults in hj simultaneously, we miscalculate bpi ðhjÞ by counting ploss twice. In

practice, this second case is less likely, and therefore the approximation is reasonable.

In Eq. (8), bpi ðfflgÞ denotes the positive component of a belief metric associated with a singleton

hypothesis fflg calculated given all symptoms observed thus far. The values of bpi ðfflgÞ are pre-computed
when the model is initialized. After every symptom observation, bpi ðfflgÞ is incrementally updated using Eq.

(7).
5. Dealing with spurious observations

In real-life communication systems, an observation of a network state is frequently disturbed by the

presence of spurious symptoms, which are caused by intermittent network faults or by overly restrictive
threshold values. Spurious symptoms, if not taken into account by the fault localization process, may

significantly deteriorate its accuracy. When a fault localization algorithm does not recognize that some

symptoms may be spurious (as such they do not require an explanation), it strives to find the explanation of

all the observed symptoms, thereby creating hypotheses which contain many non-existent faults [21]. As a

result, frequently manual effort has to be unnecessarily undertaken to test and reject these false-positive

propositions.

To deal with spurious symptoms Algorithm 2 has to be modified as follows. Let si be the ith observed

symptom and let pspuriousðsiÞ denote the probability that symptom si is spuriously generated. While deciding
whether hypothesis hj 2 Hi�1 should be placed in Hi without modification or extended, the algorithm has

to consider two possibilities: (1) that the symptom is valid and (2) that the symptom is spurious. When

hypothesis hj explains si, then regardless of these two possible interpretations of symptom si, hypothesis hj
can be added toHi and the two choices are incorporated in the calculation of the belief metric for hj. When
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hypothesis hj does not explain si, then treating si as valid necessitates extending hj, and treating si as
spurious allows us to put hj in Hi without extension. Since the first and second cases occur with probability

1� psðsiÞ and psðsiÞ, respectively, these values are used as multipliers embedded in the calculation of the

corresponding values of the belief metric. Recall from Section 3 that the original algorithm does not allow

adding hj 2 Hi�1 to Hi unless it explains or is extended to explain symptom si.
The inclusion of spurious symptoms into the analysis only affects the calculation of the negative com-

ponent bþn
i ðhjÞ of the belief metric bþi ðhjÞ, while the positive component remains the same, i.e.,

bþp
i ðhjÞ ¼ bpi ðhjÞ. The modified negative component, bþn

i ðhjÞ is calculated iteratively as follows:

1. If hj 2 Hi�1 explains symptom si, then

bþn
i ðhjÞ ¼ bþn

i�1ðhjÞ
�
ð1� psðsiÞÞ

�
1�

Y
fl2hj\Hsi

ð1� pðsi jflÞÞ
�
þ psðsiÞ

�
: ð9Þ

2. Otherwise

bþn
i ðhjÞ ¼ bþn

i�1ðhjÞpsðsiÞ: ð10Þ

In addition, for every fault fl 2 Hsi used to extend hj

bþn
i ðhj [ fflgÞ ¼ bþn

i�1ðhjÞpðflÞpðsi jflÞð1� psðsiÞÞ: ð11Þ

We are now ready to define an extended version of the incremental algorithm, IHU+, which incorporates

positive, lost, and spurious symptoms in the analysis and is parametrized by observability ratio OR,
symptom loss probability function ploss, and spurious symptom probability function ps.

Algorithm 2A (IHU+(OR,ploss,ps))
let H0 ¼ f;g, bþn

0 ð;Þ ¼ bþp
0 ð;Þ ¼ 1, að;Þ ¼ 0

for every observed symptom si:
let Hi ¼ ;, and for all fl 2 F let lðflÞ ¼ jFj þ jSOj
for all hj 2 Hi�1 do

for all fl 2 hj such that fl 2 Hsi

set lðflÞ ¼ minðlðflÞ; aðhjÞÞ
add hj to Hi and calculate bþi ðhjÞ

for all hj 2 Hi�1 nHi do
if ðpsðsiÞ > 0Þ

add hj to Hi, calculate bþi ðhjÞ, and set aðhjÞ ¼ aðhjÞ þ 1

for all fl 2 F \ Hsi such that lðflÞ > aðhjÞ do
add hj [ fflg to Hi, compute bþi ðhj [ fflgÞ, and set aðhjÞ ¼ aðhjÞ þ 1

choose hj 2 HjSN j with maximum bþjSN jðhjÞ

While Algorithm 2A (IHU+) looks similar to Algorithm 2 (IHU) presented in Section 3, there are two

significant differences between them. Recall that Algorithm 2 takes advantage of two heuristics that allow
us to limit the size of the set of hypotheses. The first heuristic forbids adding fault fl to hypothesis hj 2 Hi if

the size of the resultant hypothesis hj [ fflg would be greater than lðflÞ. The second heuristic applied by

Algorithm 2 limits the maximum size of the set of hypotheses to k 2 OðjFjÞ and removes the least probable

hypotheses if this limit is exceeded. These two heuristics are modified in Algorithm 2A as described in the

following sections.
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5.1. Calculating hypothesis size

In Algorithm 2, function lðflÞ is defined as the minimum size of hk 2 Hi�1 that contains fl and explains

symptom si, where the size of hk is jhkj. In Algorithm 2A, the size of hypothesis hk, aðhkÞ is defined as the

number of faults in hk plus the number of symptoms observed so far that hk considers spurious. This
modification serves two purposes. It

1. Helps avoid duplicate hypotheses.

Duplicate hypotheses introduce redundancy into the set of hypotheses, which may affect the accuracy of

the technique. Since the maximum size of the set of hypotheses is limited, avoiding redundancy may

allow us to keep a least likely hypothesis that may later turn out to be the optimal one, which would

otherwise have to be removed. Although it is possible to remove duplicate hypotheses within the

computational complexity bound of Algorithm 2A (duplicate hypotheses may be unified and their belief
metrics may be added to one another), the necessity to do so renders the implementation of the algo-

rithm more difficult. It is thus better to avoid creating duplicate hypotheses at all.

2. Prevents hypotheses that contain fewer faults while not explaining many symptoms from being given

unwarranted preference.

When small hypotheses are unfairly favored over bigger hypotheses, it is difficult for the algorithm to

extend a small hypothesis so that it provides an explanation to a bigger number of symptoms. As a

result, the algorithm is likely not to provide an explanation to many observed symptoms.

To explain the reasons behind this modification it is useful to consider the following example.

Example 3. Consider the FPM in Fig. 3. Assume that psðsiÞ ¼ 0:001 for i ¼ 1; 2; 3. For the sake of sim-

plicity, we also ignore positive symptoms. Consider a scenario, in which all three symptoms are observed in

order s2, s3, and s1. Let us first present how this fault scenario could be solved with our reference com-

binatorial Algorithm 1, extended to include spurious symptom probability in the calculation of function g
as follows:

gðFi;SOÞ ¼
Y
fk2Fi

pðfkÞ
Y

sl2SO

Prfsl is spurious or caused by at least one f 2 Fig

¼
Y
fk2Fi

pðfkÞ
Y

sl2SO

psðslÞ
 

þ ð1� psðslÞÞ 1

 
�
Y
fk2Fi

ð1� pðsl jfkÞÞ
!!

:

The combinatorial algorithm enumerates all four possible combinations of faults from ff1; f2g, i.e., ;,
ff1g, ff2g, and ff1; f2g, as possible solutions to the scenario. Clearly, with a proper choice of how many and

which symptoms to consider spurious, all four combinations may constitute a valid solution to the scenario.

Thus, the best solution has to be chosen based on the value of the measure of goodness g. Using the

modified definition of g one can show that combination ff1; f2g is the optimal solution to the scenario.

Let us solve this scenario incrementally with Algorithm 2A using set cardinality rather than a as a
hypothesis size (see left-hand side of Table 1). Initially,H0 ¼ f;g, b0ð;Þ ¼ 1, and lð;Þ ¼ 0. The observation

of symptom s2 results in two extensions of hypothesis ;, ff1g and ff2g. Treating s2 as spurious allows us to
put hypothesis ; in H1. Only one hypothesis in H1, ff2g, explains the next observed symptom, s3. Other

hypotheses in H1, ff1g and ;, have to be extended with f2 or their belief metric has to be modified to

account for the possibility that s3 is spurious. In the case of hypothesis ff1g, only the second option is

available, since lðflÞ6 jff1gj. However, for hypothesis ;, both options are available. When ; is extended

with f2, a duplicate hypothesis ff2g is created.



f1 f2

s1 s2 s3
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Fig. 3. FPM for Example 3.

Table 1

Solving scenario fs2; s3; s1g in Fig. 3 with Algorithm 2A using set cardinality and aðhjÞ to calculate a hypothesis size

Solution using jhjj Solution using aðhjÞ
hj biðhjÞ jhjj hj biðhjÞ aðhjÞ

H0 ; 1 0 ; 1 0

s2 H1 ff1g 0.15· 10�1 1 ff1g 0.15· 10�1 1

ff2g 0.1 · 10�1 1 ff2g 0.1 · 10�1 1

; 0.1 · 10�2 0 ; 0.1 · 10�2 1

s3 H2 ff2g 0.75· 10�2 1 ff2g 0.75· 10�2 1

ff2g 0.15· 10�4 1 ff1g 0.15· 10�4 2

ff1g 0.15· 10�4 1 ; 0.1 · 10�5 2

; 0.1 · 10�5 0

Duplicates

removed

ff2g 0.77· 10�2 1

ff1g 0.15· 10�4 1

; 0.1 · 10�5 0

s1 H3 ff1g 0.38· 10�5 1 ff1g 0.38· 10�5 2

ff1g 0.5 · 10�8 1 ff1; f2g 0.38· 10�4 2

ff2g 0.75· 10�5 1 ff2g 0.75· 10�5 2

; 0.1 · 10�8 0 ; 0.1 · 10�8 3

Duplicates

removed

ff1g 0.38· 10�5 1

ff2g 0.75· 10�5 1

; 0.1 · 10�8 0
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When symptom s1 is analyzed, ff2g may not be extended with f1 since jff2gj ¼ lðf1Þ ¼ jff1gj ¼ 1. As a
result, the algorithm chooses ff1g as the best explanation of the observed symptoms. Recall that the

optimal algorithm chose hypothesis ff1; f2g. Algorithm 2A was not even able to consider this hypothesis,

because it was prevented from creating ff1; f2g by the heuristic using the number of faults in a hypothesis as

its size.

Let us now consider the process of analyzing symptoms s2, s3, and s1 using Algorithm 2A with the

modified definition of hypothesis size. This analysis is shown on the right-hand side of Table 1. The first

difference in the created set of hypotheses is observed after analyzing symptom s3; no duplicate hypotheses

are created. When symptom s1 is analyzed, hypothesis ff2g, whose size aðff2gÞ ¼ 1, can be extended with f1
since lðf1Þ ¼ aðff1gÞ ¼ 2 > 1. As a result, hypothesis ff1; f2g is created, which turns out to be the best

according to belief metric b3. Thus, the modified algorithm gives the optimal answer.
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5.2. Controlling hypotheses number

The second heuristic applied by Algorithm 2 limits the maximum size of the set of hypotheses to

k 2 OðjFjÞ. To add a new hypothesis to Hi, when jHij ¼ k, a hypothesis hl for which biðhlÞ is minimal

must be first removed from Hi. It is possible that symptoms to be received in the next iterations would
increase the belief associated with hl so that hl would become the most probable hypothesis. If such hl is
removed at an earlier stage of the fault localization process, the algorithm will not propose an optimal

solution. The phenomenon of removing a hypothesis that would become optimal at a later stage of fault

localization, if it was kept in the set of hypotheses, will be referred to as the problem of premature hypothesis

removal.

Although the problem of premature hypothesis removal exists regardless of including positive, lost, and

spurious symptoms into the analysis, it may usually be ignored. A hypothesis removal due to the big size of

Hi is a rare event, and it usually happens after many symptoms have been observed and analyzed. At this
stage, the algorithm is already converging to the final solution, thus the removed hypothesis is not likely to

become optimal in the future. However, when spurious symptoms are included in the analysis, the size of

Hi grows much faster, and therefore the probability of prematurely removing an optimal hypothesis is

high. The early removal of an optimal hypothesis is caused by the positive component of the belief metric,

whose value may be very small if at this stage of fault localization, only a few symptoms related to the

optimal hypothesis have been observed. The crux of the problem is that bþpðhjÞ is calculated as if the

current set of observed symptoms was the final one.

Illustrating the problem of premature hypothesis removal is difficult as the problem becomes pro-
nounced only in FPMs of considerable size. Nevertheless, we will consider the following rather trivial

scenario.

Example 4. Consider the FPM in Fig. 4. Assume that psðsiÞ ¼ 0:001 for i ¼ 1; 2; 3. We assume that that all

symptoms are observable and that the maximum size of the set of hypotheses is jFj ¼ 2. By performing a

calculation similar to the one in Example 3, one can show that the optimal solution to scenario involving

symptoms s2 and s3 is hypothesis ff2g.
Let us solve this scenario incrementally with Algorithm 2A without modification to the second heuristic,

i.e., the belief metric is used to choose a removed hypothesis. The process of solving the scenario is shown in

Table 2. Hypotheses that are not removed are marked in bold typeface. Observe, that in the first iteration,

hypothesis ff2g is removed, as its belief metric is the lowest, which is a consequence of the low value of the

positive belief metric component. Although hypothesis ff2g is re-created in the second iteration, at this

stage, its belief metric is lower that that of ;, and therefore ; is chosen as the final answer. One can easily

calculate that, had not hypothesis ff2g been removed in the first iteration, it would have become the best

choice in the second iteration. Thus, hypothesis ff2g was removed prematurely.
f1 f2

s1 s2 s3

0.9
0.90.2

0.2

0.001 0.001

Fig. 4. FPM for Example 4.



Table 2

Solving scenario fs2; s3g in Fig. 4 with Algorithm 2A with the original size-limiting heuristic

hj bþn
i ðhjÞ bþp

i ðhjÞ bþi ðhjÞ
H0 ; 1 1 1

s2 H1 ff1g 0.2 · 10�3 0.8 0.16· 10�3

ff2g 0.9 · 10�3 0.1 0.09· 10�3

; 0.1 · 10�2 1 0.1 · 10�2

s3 H2 ff1g 0.2 · 10�6 0.8 0.16· 10�6

ff1; f2g 0.18· 10�6 0.8 0.14· 10�6

ff2g 0.09· 10�6 1 0.09· 10�6

; 0.1 · 10�5 1 0.1 · 10�5
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Algorithm 2A avoids the problem of the premature hypothesis removal by using function ranki rather
than bþi to choose a removed hypothesis. Function rankiðhjÞ is calculated by combining bþp

i ðhjÞ and bþn
i ðhjÞ

while weighting the contribution of bþp
i ðhjÞ according to the number of symptoms observed so far. Let

Bþn
i ðhjÞ and Bþp

i ðhjÞ represent logarithmic-scale values of bþn
i ðhjÞ and bþp

i ðhjÞ, respectively. The value of

rankiðhjÞ is calculated using the following equation:

rankiðhjÞ ¼ Bþn
i ðhjÞ þ bðiÞBþp

i ðhjÞ: ð12Þ
Function bðiÞ represents the contribution of the positive belief-metric component. In general, function bðiÞ
should assume a very small value when the number of symptoms observed so far, i, is small, and increase

asymptotically to 1 as the value of i increases. In this study, we define bðiÞ as follows:

bðiÞ ¼ 1� 2�SWðði�1Þ=EEFÞ2 : ð13Þ
In Eq. (13), the expected evidence factor, EEF, and the average symptom weight, SW, are model-depen-

dent. The expected evidence factor determines how quickly the value of bðiÞ should converge to 1 in the

absence of spurious symptoms. It is proportional to the average number of symptoms which may be ob-

served per fault, i.e., EEF ¼ cjSjOR=jFj. In this study, we use c ¼ 4. The average symptom weight ac-
counts for the fact that some symptoms may be spurious, and, as such, should not increase the value of bðiÞ.
This value should be equal to 1 when no spurious symptoms occur, and decrease as the spurious symptom

probability increases. We define SW using the following formula:

SW ¼ 1�
P

si2S psðsiÞP
si2S

P
fl2F pðsi jflÞ þ

P
si2S psðsiÞ

: ð14Þ

The values of EEF and SW are pre-computed at the model initialization phase, and remain constant during

the process of fault localization, as long as the fault propagation model is not changed. Clearly, other

definitions of function bðiÞ would be possible. For instance, we could incorporate a temporal aspect into
function bðiÞ by increasing its value with time. Such a definition could represent a property that, after a

certain time since the fault localization is started, all relevant symptoms should have been observed.

Observe that the worst-case computational complexity of the algorithm that takes positive, lost, and

spurious symptoms into account is still OðjSOjjFj2Þ.

Example 4 (continued). Consider again the scenario solved in Table 2. Observe that after the first symptom

is observed, i.e., when i ¼ 1, bðiÞ ¼ 0. Consequently, rankiðhjÞ ¼ Bþn
i ðhjÞ, which means that the impact of

positive symptoms is ignored by the ranking scheme. When instead of the belief metric, function ranki is
used to single out a removed hypothesis, ff1g is eliminated rather than ff2g. In the second iteration,

bþp
2 ðff2gÞ becomes equal to 1, and bþn

2 ðff2gÞ ¼ 0:8 � 10�4. Thus, ff2g becomes the best hypothesis.
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6. Simulation study

In this section we evaluate the techniques presented in this paper using the problem of end-to-end service

failure diagnosis as a case study. We first estimate the complexity of Algorithms 2 and 2A in the application

to this problem. Then, we proceed to comparing the accuracy and efficiency of Algorithms 1 and 2. Next,
we evaluate the impact of including and disregarding positive, lost, and spurious symptoms by comparing

accuracies achievable with Algorithms 2 and 2A. Finally, we investigate the sensitivity of Algorithm 2 to

inaccuracies of the FPM.
6.1. Application of algorithm IHU to end-to-end service failure diagnosis

The problem of end-to-end service-failure diagnosis deals with isolating faults responsible for a mal-

functioning of end-to-end connectivity between systems. The first step toward diagnosing these problems is
to isolate the responsible hop-to-hop services between intermediate nodes used to provide the end-to-end

connectivity. In the problem of end-to-end service-failure diagnosis, a FPM is a bipartite causality graph

with hop-to-hop and end-to-end service failures at the tails and at the heads of the edges, respectively. Since

in an n-node network, there are at most n2 end-to-end services and each of them is composed of at most n
hop-to-hop services, the complexity of Algorithms 2 and 2A is Oðn3 maxi ðjHijÞÞ (see Section 3). Limiting

maxi ðjHijÞ to OðnÞ makes the computational complexity of the algorithms in the application to end-to-end

service failure diagnosis in an n-node network be Oðn4Þ.
6.2. Simulation model

The simulation study presented in this paper uses tree-shaped network topologies, which result, for

example, from the usage of the Spanning Tree Protocol [27] as the data-link layer routing protocol. The

usage of tree-shaped topologies greatly simplifies their random generation, while it does not affect the

validity of the results presented in this section. We focus on diagnosing Byzantine types of problems, for

which the usage of a non-deterministic FPM is necessary.

We design the simulation described in this section according to the model we previously used to evaluate
another fault localization algorithm based on belief propagation in belief networks [21]. We use OR, LR,
and SSR to denote the observability ratio (jSOj=jSj), ratio of the number of generated alarms that were lost

to the number of all generated alarms (i.e., alarm loss rate), and probability that an alarm is generated in a

spurious manner (i.e., spurious symptom rate), respectively. We aim at creating a homogeneous set of test

scenarios to establish the upper limit on the accuracy of the proposed techniques and its relationship to the

parameters of the simulation model. Consequently, we assume that the FPM used in the study accurately

approximates the relationships that exist in the real system.

Given the simulation model with parameters OR, LR , and SSR for a given network topology of size n,
where n represents the number of intermediate network nodes, we design 100 simulation cases. We build a

random tree-shaped topology, and generate the probability distribution in the FPM. The independent

failure probabilities and conditional probabilities are uniformly distributed in ranges ½0:001; 0:01� and

ð0; 1Þ, respectively, unless specified otherwise. We randomly choose ORjSj observable symptoms, and place

them in the set of observable symptoms, SO. In a simulation case, we create a number of simulation

scenarios (typically 100–200) as follows. We randomly generate a set of faults that exist in the system,

Fc � F. Using Fc and the conditional probability distribution we randomly generate the set of observed

negative symptoms SN � SO. When SSR > 0, we also randomly choose SSR jSOj symptoms from SO, and
add them to SN. When LR > 0, we remove LR jSNj random symptoms from SN. We use Algorithms 1, 2,

or 2A to produce the most probable explanation of SN, Fd . We take into account only the most likely
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hypothesis from the final set of hypotheses proposed by the fault localization algorithm. We compareFd to

Fc, and calculate the detection rate, DR, and false positive rate, FPR, which are defined as follows:

DR ¼ jFc \Fd j
jFcj

; FPR ¼ jFd �Fcj
jFd j

:

6.3. Performance evaluation

The first simulation study was conducted to compare the performance and accuracy of fault localization

performed with Algorithms 1 and 2. We intentionally ignore positive, lost, and spurious symptoms.

Consequently, LR ¼ 0 and SSR ¼ 0. In this study, the link failure probabilities are uniformly distributed

random values of the order of 10�6, and the conditional probabilities on causal links are uniformly dis-

tributed random values in the range ½0:5; 1Þ. Because of excessive simulation time we had to limit the tested

network size range for Algorithm 1 to 20.

Fig. 5(a) and (b) present relationships between the detection rate (DR) and false positive rate (FPR),
respectively, and network size. We observe that there is no statistically significant difference in the detection

and false positive rates between the incremental and combinatorial algorithms. Both algorithms are very

accurate, but Algorithm 2 may be used in networks of much bigger size than Algorithm 1. The accuracy of

Algorithm 2 depends on the network size. This dependency is due to two competing factors that have

opposite effects on the accuracy: (1) a system instrumentation level, which is lower for smaller networks,

and (2) a frequency of multi-fault scenarios, which is higher for bigger networks. Nevertheless, the gradual

drop (increase) of DR (FPR) observed in the case of Algorithm 2 suggests that this drop (increase) may be

asymptotic.
Fig. 6(a)–(d) present a comparison of execution times for the combinatorial and incremental algorithms

in the presence of 1–4 network faults. The incremental algorithm performs better than the combinatorial

algorithm regardless of the number of faults and network size, and the difference between the algorithms

increases sharply with the increasing number of faults in the system. The average execution time of

Algorithm 2, which is of the order of several seconds, even for large networks and multi-fault scenarios, is

very encouraging.

Table 3 summarizes the comparison of Algorithms 1, 2 and 2A.
Fig. 5. Accuracy achievable with Algorithms 1 and 2: (a) detection rate and (b) false positive rate.



Table 3

Comparison of Algorithms 1, 2, and 2A

Algorithm Combinatorial (Algorithm 1) Incremental (Algorithms 2 and 2A)

Theoretical bound expðnÞ n4

Detection ratea (%) 95–99 95–99

False positive ratea (%) 1–5 1–5

Max. network size with localization time <10 sb 15 100+

Multi-fault scenarios Yes Yes

Lost and spurious symptoms Yes Yes

Is algorithm event-driven? No Yes

Is algorithm incremental? No Yes

aAccuracy achievable disregarding positive symptoms in the absence of lost and spurious symptoms with system parameters de-

scribed in this section.
bAverage time spent to solve a scenario in the presence of up to four network faults.

Fig. 6. Comparison of fault localization time for Algorithms 1 and 2 for different network sizes: (a) single-fault scenarios; (b) two-fault

scenarios; (c) three-fault scenarios and (d) four-fault scenarios.
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6.4. Impact of positive symptoms

To evaluate the impact of including positive symptoms into the fault localization process, we set LR ¼ 0,

and SSR ¼ 0 in the simulation model. Correspondingly, we use plossðsiÞ ¼ 0 and psðsiÞ ¼ 0 in the FPM.



Fig. 7. Accuracy achievable with Algorithms 2 (IHU––disregarding positive symptoms) and 2A (IHU+––taking positive symptoms

into account) for various observability ratios, OR: (a) detection rate and (b) false positive rate.
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While setting OR to 0.5, 0.2, or 0.05, we compare DR and FPR achievable with Algorithm 2, which does

not take positive symptoms into account, and Algorithm 2A, which includes positive symptoms in the

analysis.

As presented in Fig. 7(a) and (b), including positive symptoms in the process of fault localization allows

the DR to be significantly increased and the FPR to be significantly decreased. Overall, thanks to the

positive information, the fault localization accuracy improves. We can also conclude that in poorly in-

strumented systems (either due to the small number of available symptoms or due to the small OR), positive
symptoms may be effectively used to improve the accuracy of the fault localization process.

6.5. Impact of lost symptoms

To isolate the impact of symptom loss on the accuracy of fault localization, we set SSR ¼ 0, and vary LR
from 0.0 to 0.2. In the FPM, we use ploss ¼ 0, and ps ¼ 0. (The fault localization algorithm effectively ig-

nores the symptom loss.) We apply Algorithm 2A to this model.

Symptom loss, when ignored by the fault localization process, does indeed decrease its accuracy: we
observe the decrease of DR (Fig. 8(a)) and increase of FPR (Fig. 8(b)). The strength of the symptom-loss

impact on the fault-localization accuracy is related to the value of LR and the system instrumentation level.

Nonetheless, the decrease of accuracy caused by symptom loss is small (within 5% for both DR and FPR),

which allows us to conclude that Algorithm 2A is resilient to symptom loss even when it relies on positive

information to perform fault diagnosis.

To determine whether including an explicit representation of symptom loss into the FPM may improve

the fault localization accuracy, we observe that the decreasing accuracy when symptoms are lost is due to

two factors: (1) fewer symptoms are observed and therefore the system instrumentation level perceived by
the fault management application is lower, and (2) some symptoms are incorrectly interpreted as positive.

The relative contribution of these two factors determines the upper bound on the possible increase in the

accuracy resulting from including a representation of a symptom loss in the FPM. Observe that the impact

of only the second factor may be alleviated by including the representation of symptom loss in the model.

To estimate the relative impact of factors (1) and (2), we perform another experiment. We execute the

simulation study using the following parameters of the simulation model: (1) OR ¼ 0:05, LR ¼ 0:0, (2)
OR ¼ 0:05, LR ¼ 0:2, and (3) OR ¼ 0:04, LR ¼ 0:0. The amount of information provided to the fault



Fig. 8. The impact of symptom loss on the accuracy for various observability ratios, OR and symptom loss rates, LR: (a) detection rate

and (b) false positive rate.
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localization algorithm in the second and third cases is the same, because 0.05(1) 0.2)¼ 0.04. Thus the

difference between the accuracies observed in the first and second cases represents the impact of factor (1).

The difference between the accuracies observed in the second and third cases represents the impact of factor

(2). As shown in Fig. 9(a) and (b) the overall decrease of accuracy due to symptom loss is split evenly

between the two factors. This lets us conclude that, should symptom loss be represented in the FPM, the

resulting improvement in accuracy could not be greater than 2–2.5%. Indeed, our experiments with a FPM

using plossðsiÞ ¼ 0:2 did not reveal any statistically provable improvement in accuracy. With higher values of
LR, some small improvement in accuracy has been achieved.

This simulation study assumes that all symptoms are equally likely to be lost, while in reality plossðsiÞ is
different for different symptoms. For example, when symptom loss is caused by a high packet loss rate in a

network link, loss probabilities of symptoms which are transported to the management station using the

malfunctioning link are higher. We expect that when symptom-loss probabilities are not equal, the benefit

of including symptom loss into the FPM would be more noticeable.
Fig. 9. The impact of factors (1) and (2) on accuracy achievable in system with OR ¼ 0:05 and OR ¼ 0:2: (a) detection rate and (b) false

positive rate.



Fig. 10. The change of accuracy as a result of spurious symptoms analysis with Algorithm 2A: (a) detection rate and (b) false positive

rate.
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6.6. Impact of spurious symptoms

The impact of including spurious symptoms in the fault localization process is evaluated by applying

Algorithm 2A to FPMs using psðsiÞ ¼ 0 and psðsiÞ ¼ SSR, respectively. We vary OR between 0.5 and 0.2,

and use SSR of 0.01 and 0.1. As shown in Fig. 10(a), the inclusion of spurious symptoms in the fault

localization process in small networks decreases DR. This is explained by the fact that in poorly instru-

mented networks only a few symptoms are available to the fault localization process. When the possibility

of spurious symptoms is taken into account, and the amount of available evidence is small, the algorithm

concludes that there is no sufficient evidential support for the existence of faults, and considers all the

observed symptoms spurious. Otherwise, DR would be higher (Fig. 10(a)) but FPR would be very high as
well (Fig. 10(b)). When system instrumentation improves, so does the DR of Algorithm 2A with an

accurate representation of spurious symptoms in the FPM. We conclude that including spurious symptoms

in the FPM has a big impact on the accuracy of the fault localization algorithm. However, to take the full

advantage of this capability, the system instrumentation level should be increased correspondingly to the

rate with which spurious symptoms are generated.

Finally, we run a set of experiments to evaluate the impact of the problem of premature hypothesis

removal. Fig. 11(a) and (b) compare the accuracy achievable with the incremental algorithm while disre-

garding spurious symptoms and while including spurious symptoms in the analysis using the unmodified
and modified size-limiting heuristics. Note that when Algorithm 2A with the unmodified heuristic is used,

the fault-localization accuracy with the incremental algorithm improves (i.e., FPR significantly decreases)

compared to that of Algorithm 2. However, this big improvement is not consistently sustained as the

network topology gets bigger: we observe a continuous decrease of DR and increase of FPR. The modified

heuristic eliminates this behavior thereby improving the overall accuracy of the fault localization process.

6.7. Impact of probability estimation errors

So far in this paper, we assumed that the FPM contains probability distribution that accurately rep-

resents the modeled system. We did not discuss how these probabilities are obtained. Researchers fre-

quently state that conditional probabilities may be assigned by an expert [2]. Since this process is error

prone, it is likely that the probabilities assigned by the expert will differ from those describing the real



Fig. 11. The comparison of fault-localization accuracy with Algorithm 2 (spurious symptoms ignored), 2A using function bþ (spurious

symptoms handled using the original heuristic), and 2A using function rank (spurious symptoms handled using the modified heuristic),

for OR ¼ 0:5, LR ¼ 0, and SSR ¼ 0:1: (a) detection rate and (b) false positive rate.
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system. In actuality, the expert assigns one of c discrete confidence levels rather than an exact probability.

To represent the real-life probability p, the expert uses the ith confidence level, where i ¼ bpcc. Thus,
effectively real-system probability p is mapped into propagation-model weight bpcc=cþ 1=ð2cÞ. The crea-

tion of the probability model by a human is feasible, if high fault-localization accuracy may be achieved

even when only a small number of confidence levels is used.

Fig. 12(a) and (b) compares the DR and FPR of Algorithm 2 having exact knowledge of the probability

distribution with the DR and FPR achieved using one, two, and three confidence levels for various
observability ratios. The figures prove an important property of the algorithm presented in this paper: it

allows the expert to use a small set of meaningful qualitative probability assignments such as unlikely,

possible, and likely, rather than exact probabilities, while preserving very high accuracy.
Fig. 12. Accuracy of Algorithm 2 for various granularities of confidence levels: (a) detection rate and (b) false positive rate.
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7. Other canonical models

So far in this paper we assumed that the fault propagation model represents a noisy-OR model of

probability distribution. However, for some fault localization problems this model may be inadequate. In

this section, we present a general approach to incremental fault localization with other than noisy-OR
canonical models.

7.1. AND model

Let us consider a popular high-availability scenario in which two alternative physical network con-

nections are provided between two neighboring communication-system nodes. To model this situation

using a belief network, we create vertex X to represent connectivity failure between the two nodes, and

vertexes Y1 and Y2 to represent failures of the two physical connections, respectively, where X is caused by Y1
and Y2. When one of the physical connections fails, i.e., Y1 or Y2 occurs, the entire traffic between the two

nodes is transferred to the second, still operating connection. Thus, the connectivity failure between the

nodes may be observed only if both physical connections fail. Clearly, Y1 and Y2 do not independently

contribute to X , and therefore this high-availability scenario may not be represented using the noisy-OR

model. The relationship between X , and Y1 and Y2 should be modeled by combining X ’s predecessors’

values using logical AND.

This section presents a general outline for the design of incremental hypothesis updating with noisy-

AND models. Intuitively, in a bipartite FPM in which symptom si depends on faults in Hsi , which are
combined using operator AND, all faults in Hsi have to simultaneously exist and influence si, for si to occur.

In the incremental algorithm for a noisy-AND model, hypothesis hj 2 Hi explains si if it contains all

faults in Hsi . Hypothesis hj which does not explain si has to be extended with faults in Hsi n hj. The belief

metric bi is calculated incrementally as follows:

1. If hj 2 Hi�1 and hj explains si,

biðhjÞ ¼ bi�1ðhjÞ
Y
fl2Hsi

pðsi jflÞ: ð15Þ

2. Otherwise, if hj is extended with H 0
si
¼ Hsi n hj,

biðhj [ HsiÞ ¼ bi�1ðhjÞ
Y
fl2Hsi

pðflÞ
Y
fl2H 0

si

pðsi jflÞ: ð16Þ
7.2. NOT model

In the NOT model, a variable value is calculated as a logical negation of its single predecessor’s value. In

a bipartite fault propagation model, symptom si may not occur if its antecedent fault fl occurs and

influences si. Noisy-NOT relationship between a fault and a symptom is introduced into the calculation of

bi using the following equations, in which pð:si jflÞ denotes the probability that symptom si does not occur
given fault fl occurred:

1. If fl 2 hj,

biðhjÞ ¼ bi�1ðhjÞð1� pð:si jflÞÞ ð17Þ
2. Otherwise

biðhjÞ ¼ bi�1ðhjÞ: ð18Þ
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7.3. A hybrid model

In real-life scenarios, a hybrid model is useful, in which a belief-network vertex may apply different

logical operators to different subsets of its predecessors. In a hybrid model, symptom si is explained by an

arbitrary logical combination of its predecessors, which may be represented as a logical clause (a dis-
junction of conjunctions of literals), Dsi . Formally, Dsi ¼ fCsi1; . . . ;Csinig, where Csijs are combined using

operator _. Moreover, Csij ¼ fLsij1; . . . ; Lsijmig, where Lsijks are combined using operator ^. Finally,

Lsijk ¼ fs or Lsijk ¼ :fs, where fs 2 F. We will also use symbol Cþ
sij

to represent a set of all non-negative

literals in Csij, i.e., C
þ
sij

¼ ffs 2 F jfs 2 Csijg.
Given symptom si and hypothesis hj, we define the following predicates:

hj explains si � 9Csij2Dsi
Csij is consistent with hj

Csij is consistent with hj � 8Lsijk2Csij
Lsijk is consistent with hj

Lsijk is consistent with hj � fs 2 hj ^ pðsi jfsÞ > 0 if Lsijk ¼ fs;
fs 62 hj _ pð:si jfsÞ < 1 if Lsijk ¼ :fs;

�

Based on the definition of function lðfsÞ for fs 2 F introduced in Section 3, we also define function lðFiÞ,
where Fi � F such that

lðFiÞ ¼ min
fs2Fi

lðfsÞ:

In the incremental algorithm with a hybrid model, in the ith iteration, hypothesis hj 2 Hi�1 is processed as
follows:

1. If hj explains si,

biðhjÞ ¼ bi�1ðhjÞPDsi
ðsi; hjÞ: ð19Þ

2. Otherwise, if aðhj [ H �
sik
Þ6 lðH �

sik
Þ, where H �

sik
¼ Cþ

sik n hj, Csik 2 Dsi , and Csik is consistent with hj [ H �
sik
,

create hypothesis hj [ H �
sik

and calculate bi as follows:

biðhj [ H �
sik
Þ ¼ bi�1ðhjÞ

Y
fl2H�

sik

pðflÞ

0
@

1
APCsik

ðsi; hj [ H �
sik
Þ: ð20Þ

Recall from Section 5 that aðhjÞ denotes the size of hypothesis hj. In the above algorithm, functions

PDsi
ðsi; hjÞ and PCsij

ðsi; hjÞ are defined as follows:

PDsi
ðsi; hjÞ ¼ 1�

Y
Csij2Dsi

1
�

� PCsij
ðsi; hjÞ

�
;

PCsij
ðsi; hjÞ ¼

Y
Lsijk2Csij

PLsijk ðsi; hjÞ;

Pfsðsi; hjÞ ¼
pðsi jfsÞ if fs 2 hj;
0 if fs 62 hj;

�

P:fsðsi; hjÞ ¼
1� pð:si jfsÞ if fs 2 hj;
1 if fs 62 hj:

�
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8. Comparison with other fault localization techniques

Many fault localization techniques have been investigated in the literature, whose survey is presented in

[28]. In the area of probabilistic fault diagnosis, several approaches have been proposed [2,9,14,17,29–31].

In this section, we briefly compare the incremental technique with other techniques that use a symptom-
fault map as a fault propagation model [2,9,17,29].

So far, the most widely known fault localization technique using a symptom-fault map is the codebook

technique [3,17], which is very efficient and robust against noise in alarm data. However, only deterministic-

codebook algorithm has been presented and evaluated so far. The incremental algorithm is suitable as a

probabilistic codebook-decoding algorithm. Katzela et al. [2] propose a fault localization algorithm using a

symptom-fault map representing a simplified model of probability distribution, which assumes that all

causal influences are certain. (Effectively, the FPM includes only prior failure probabilities.) Statistical

methods have been applied to perform fault isolation using a non-deterministic symptom fault map [29].
Chao et al. [9] applies a symptom-fault map in a fault localization technique that isolates a LAN segment

responsible for alarms observed in a multi-segment network.

The algorithm proposed in this paper focuses on event-driven and incremental diagnosis. To the best of

our knowledge these are original features that have not been investigated before. The diagnosis performed

with other techniques [2,9,17,29] is window-based. The incremental algorithm also focuses on the ability to

deal with observation noise. This aspect has not been investigated by the techniques described in [2,9,29].

Unlike other approaches [9,2] the incremental technique does not assume any particular problem domain or

probabilistic model and therefore it is more general. It is also resilient to lost and spurious symptoms, which
is not the case with some other techniques [2,29].

IHU may be also compared to our previously investigated fault localization approach, which is based on

belief updating in belief networks [21]. The belief-network approach is more flexible as it does not constrain

the shape of a fault propagation model to a bipartite one, but it is not incremental and its computational

complexity, even in bipartite models, is higher. Thus, while the belief-network approach offers similar

accuracy and resilience to model imperfections and observation noise as IHU, its scalability is significantly

lower.

Since fault localization is not a new problem and many fault localization techniques have already been
proposed, it is important to consider comparing these techniques with respect to their accuracy and per-

formance. Unfortunately, as discussed at the beginning of this section, the techniques proposed in the

literature [2,3,9,21,29] that are suitable for bipartite models differ with respect to assumptions they are

based on, capabilities, and problems they aim at addressing. The different assumptions and capabilities

render the techniques difficult to compare in quantitative terms as they make any such comparison

inherently unfair. A set of objective criteria that allow the comparison to be performed have yet to be

identified.
9. Conclusion

The technique proposed in this paper isolates the most probable set of faults through incremental

updating of the symptom explanation hypothesis. It uses a probabilistic model, which makes the technique

applicable to systems with a high degree of non-determinism. While assuming the pre-existence of such a

model, the technique is robust against the model’s imperfection. As shown in the simulation study, the

technique offers high accuracy, even in the presence of observation noise. It also has low polynomial
complexity. When applied to the problem of end-to-end service failure diagnosis, our implementation of the

technique solves multi-fault scenarios in networks composed of more than 100 routers or bridges within less

than 10 s.
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Some of the observations made in the simulation study presented in this paper, e.g., the dependence of

the benefit resulting from positive symptoms analysis on the system instrumentation level or necessity to

increase system instrumentation level in systems with high spurious symptoms rates, are rather natural and

could have been anticipated. Our study allows these observations to be quantified. Since similar results have

also been obtained in the analogous study on the belief-network approach [21], we believe these results

apply to the fault localization problem in general.
Future work will include designing a distributed version of the algorithm, which explores the domain

semantics of management systems. In the application to end-to-end service failure diagnosis, the distributed

technique will follow the initial ideas presented in [32]. 1
References

[1] G. Jakobson, M.D. Weissman, Alarm correlation, IEEE Network 7 (6) (1993) 52–59.

[2] I. Katzela, M. Schwartz, Schemes for fault identification in communication networks, IEEE/ACM Transactions on Networking 3

(6) (1995) 733–764.

[3] S.A. Yemini, S. Kliger, E. Mozes, Y. Yemini, D. Ohsie, High speed and robust event correlation, IEEE Communications

Magazine 34 (5) (1996) 82–90.

[4] C. Scott, P. Wolfe, M. Erwin, Virtual Private Networks, second ed., O’Reilly, Sebastopol, CA, 1999.

[5] R. Comerford, The new software paladins, IEEE Spectrum 37 (6) (2000) 56–61.

[6] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, Los Altos, 1998.

[7] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Nakamura, R. Neyama, Building Web Services with ‘‘Java’’, SAMS

Publishing, Indianapolis, IN, 2002.

[8] W.W.S.A.W. Group, Available from <http://www.w3.org/2002/ws/arch/>.

[9] C.S. Chao, D.L. Yang, A.C. Liu, An automated fault diagnosis system using hierarchical reasoning and alarm correlation, Journal

of Network and Systems Management 9 (2) (2001) 183–202.

[10] M. Hasan, B. Sugla, R. Viswanathan, A conceptual framework for network management event correlation and filtering systems,

in: M. Sloman, S. Mazumdar, E. Lupu (Eds.), Integrated Network Management VI, Chapman and Hall, London, 1999, pp. 233–

246.

[11] R. Gopal, Layered model for supporting fault isolation and recovery, in: [33], pp. 729–742.

[12] S. K€atker, A modeling framework for integrated distributed systems fault management, in: C. Popien (Ed.), Proceedings of the

IFIP/IEEE International Conference on Distributed Platforms, Dresden, Germany, 1996, pp. 187–198.

[13] S.H. Schwartz, D. Zager, Value-oriented network management, in: [33].

[14] R.H. Deng, A.A. Lazar, W. Wang, A probabilistic approach to fault diagnosis in linear lightwave networks, in: H.G. Hegering,

Y. Yemini (Eds.), Integrated Network Management III, North-Holland, Amsterdam, 1993, pp. 697–708.

[15] A. Dupuy, J. Schwartz, Y. Yemini, G. Barzilai, A. Cahana, Network fault management: a user’s view, in: B. Meandzija,

J. Westcott (Eds.), Integrated Network Management I, North-Holland, Amsterdam, 1989, pp. 101–107.

[16] P. Hong, P. Sen, Incorporating non-deterministic reasoning in managing heterogeneous network faults, in: I. Krishnan,

W. Zimmer (Eds.), Integrated Network Management II, North-Holland, Amsterdam, 1991, pp. 481–492.

[17] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, S. Stolfo, A coding approach to event correlation, in: A.S. Sethi, F. Faure-Vincent,

Y. Raynaud (Eds.), Integrated Network Management IV, Chapman and Hall, London, 1995, pp. 266–277.

[18] K. Appleby, G. Goldszmidt, M. Steinder, Yemanja––a layered event correlation system for multi-domain computing utilities,

Journal of Network and Systems Management 10 (2) (2002) 171–194.

[19] M. Brodie, I. Rish, S. Ma, Optimizing probe selection for fault localization, in: O. Festor, A. Pras (Eds.), Proceedings of the

Twelfth International Workshop on Distributed Systems: Operations and Management, Nancy, France, 2001.

[20] M. Brodie, I. Rish, S. Ma, Intelligent probing: a cost-efficient approach to fault diagnosis in computer networks, IBM Systems

Journal 41 (3) (2002) 372–385.

[21] M. Steinder, A.S. Sethi, Probabilistic fault localization in communication systems using belief networks, IEEE/ACM Transactions

on Networking, in press.

[22] M. Steinder, A.S. Sethi, Non-deterministic diagnosis of end-to-end service failures in a multi-layer communication system, in:

Proceedings of ICCCN, Scottsdale, AZ, 2001, pp. 374–379.
1 The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the

official policies, either expressed or implied of the Army Research Lab or the US Government.

http://www.w3.org/2002/ws/arch/


562 M. Steinder, A.S. Sethi / Computer Networks 45 (2004) 537–562
[23] M. Steinder, A.S. Sethi, Non-deterministic fault localization in communication systems using belief networks, Technical Report

2003-03, CIS Department, University of Delaware, Available from <www.cis.udel.edu/~steinder/PAPERS/TR-2003-03.pdf>

(September 2002).

[24] A.T. Bouloutas, S. Calo, A. Finkel, Alarm correlation and fault identification in communication networks, IEEE Transactions on

Communications 42 (2/3/4) (1994) 523–533.

[25] M. Steinder, A.S. Sethi, Non-deterministic event-driven fault diagnosis through incremental hypothesis updating, in: G.

Goldszmidt, J. Schoenwaelder (Eds.), Integrated Network Management VIII, Colorado Springs, CO, 2003, pp. 635–648.

[26] J.D. Case, K. McCloghrie, M.T. Rose, S. Waldbusser, Protocol Operations for Version 2 of the Simple Network Management

Protocol (SNMPv2), IETF Network Working Group, 1996, RFC 1905.

[27] R. Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols, Addison Wesley,

Reading, MA, 1999.

[28] M. Steinder, Fault localization in communication networks––a survey, Technical Report 2001-01, CIS Department, University of

Delaware, February 2001.

[29] M. Fecko, M. Steinder, Combinatorial designs in multiple faults localization for battlefield networks, in: IEEE Military

Communications Conference (MILCOM), McLean, VA, 2001.

[30] D. Heckerman, M.P. Wellman, Bayesian networks, Communications of the ACM 38 (3) (1995) 27–30.

[31] C. Wang, M. Schwartz, Identification of faulty links in dynamic-routed networks, IEEE Journal on Selected Areas in

Communications 11 (3) (1993) 1449–1460.

[32] M. Steinder, A.S. Sethi, Distributed fault localization in hierarchically routed networks, in: M. Feridun, P. Kropf, G. Babin

(Eds.), 13th International Workshop on Distributed Systems: Operations and Management, Lecture Notes in Computer Science,

vol. 2506, Springer, Montr�eal, Canada, 2002, pp. 195–207.
[33] J.W. Hong, R. Weihmayer (Eds.), Proceedings of the Network Operation and Management Symposium, Honolulu, Hawaii, 2000.

M. Steinder received her M.S. degree in Computer Science from AGH University of Science and Technology,
Poland in 1994. She was a junior faculty member at AGH from 1994 to 1998. In 2003 she received a Ph.D. in
Computer and Information Sciences from the University of Delaware. For her work on probabilistic fault
localization techniques she was awarded Allan P. Colburn Prize for the Outstanding Doctoral Dissertation in
Mathematical Sciences and Engineering from University of Delaware. In 2003, she joined Service Manage-
ment Middleware Department in IBM T. J. Watson Research Center, as a Research Staff Member. She is
currently working on dynamic resource management for WebSphere On-Demand Operating Environment,
leading the effort in autonomic server and application provisioning. She also serves as a TPC member for
IEEE INFOCOM 2004.
A.S. Sethi is a Professor in the Department of Computer and Information Sciences at the University of
Delaware, Newark, Delaware, USA. He has an MS in Electrical Engineering and a PhD in Computer Science,
both from the Indian Institute of Technology, Kanpur, India. He has served as the faculty at IIT Kanpur, was
a visiting faculty at Washington State University, Pullman, WA, and Visiting Scientist at IBM Research
Laboratories, Zurich, Switzerland, and at the US Army Research Laboratory, Aberdeen, MD. He is in the
Editorial Advisory Board for the Journal of Network and Systems Management, an Editor for the electronic
IEEE Transactions on Network and Service Management, and an Associate Editor for the Electronic
Commerce Research Journal. He was co-Chair of the Program Committee for ISINM ’95, and was General
and Program Chair for DSOM ’98; he has also been on the program committees of numerous conferences. His
research interests include architectures and protocols for network management, fault management, quality-of-
service and resource management, and management of wireless networks.

http://www.cis.udel.edu/~steinder/PAPERS/TR-2003-03.pdf

	Probabilistic fault diagnosis in communication systems through incremental hypothesis updating
	Introduction
	Basic concepts
	Incremental hypothesis updating
	Analysis of positive symptoms
	Symptom observability ratio
	Symptom loss
	Incremental calculation of bp

	Dealing with spurious observations
	Calculating hypothesis size
	Controlling hypotheses number

	Simulation study
	Application of algorithm IHU to end-to-end service failure diagnosis
	Simulation model
	Performance evaluation
	Impact of positive symptoms
	Impact of lost symptoms
	Impact of spurious symptoms
	Impact of probability estimation errors

	Other canonical models
	AND model
	NOT model
	A hybrid model

	Comparison with other fault localization techniques
	Conclusion
	References


