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ABSTRACT

Fault localization is a process of isolating faults responsible for
the observable malfunctioning of the managed system. Until
recently, fault localization efforts concentrated mostly on diag-
nosing faults related to the availability of network resources in
the lowest layers of the protocol stack. Modern enterprise envi-
ronments require that fault diagnosis be performed in integrated
fashion in multiple layers of the protocol stack and that it in-
clude diagnosing performance problems. This paper reviews the
existing approaches to fault localization and presents its new
facets revealed by the demands of modern enterprise systems.
We also present end-to-end service failure diagnosis as a critical
step towards multi-layer fault localization in an enterprise envi-
ronment.
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1 INTRODUCTION

Fault diagnosis is a central aspect of network fault management.
Since faults are unavoidable in communication systems, their
quick detection and isolation is essential for systems’ robustness,
reliability and accessibility. The core of fault diagnosis is fault
localization – a process of analyzing external symptoms of net-
work disorder to isolate possibly unobservable faults responsible
for the symptoms’ occurrences. Traditionally, fault localization
has been performed manually by an expert or a group of experts
experienced in managing communication networks based on net-
work disorder symptoms displayed on a management console.
As systems grew larger and more complex, automated fault lo-
calization techniques became critical. The benefits of designing
automated fault localization techniques include: decreasing la-
bor cost, improving fault diagnosis performance, and improving
the accuracy of fault diagnosis process.

Automated fault localization has been recognized, in both re-
search and industrial environments, as a necessity in large com-
munication systems. Until recently, fault localization efforts con-
centrated mostly on diagnosing faults related to network connec-
tivity in lower layers of the protocol stack (typically physical and
data-link layers), and its major goal was to isolate faults related
to the availability of network resources, such as broken cable,
inactive interface, etc. Recent advances in the deployment of
enterprise services such as virtual private networks, and appli-
cation service provision require that fault localization also focus
on diagnosing performance problems in multiple layers of the
protocol stack including application and service layers. This pa-
per discusses the resultant approaches to automated fault local-
ization, their benefits and shortcomings. We also discuss new
challenges of the fault localization problem revealed by the de-
mands of modern enterprise systems along with already existing
attempts to address them.

In Section 2, we define fault localization and the most common
difficulties it involves. In Section 3, available approaches to fault
localization are discussed and compared. The challenges of the
fault localization problem in an enterprise environment are dis-
cussed in Section 4. In Section 5, we describe how these chal-
lenges have been addressed so far and justify the need for further
research in this area, in particular in the area of end-to-end ser-
vice failure diagnosis.

2 FAULT LOCALIZATION PROBLEM

Fault localization is a process of isolating faults responsible for
the observable malfunctioning of the managed system. In this
section, we define the vocabulary related to fault localization and
describe the most common problems it is associated with.

Eventis an exceptional condition occurring in the operation of
the hardware or software of the managed network [22, 41].

Faults (also referred to asroot problems) constitute a class of
network events that can be handled directly [22, 41]. Faults may
be classified according to their duration time as: (1) permanent,
(2) intermittent, and (3) transient [40]. Permanent fault exists in a
network until a repair action is taken. Intermittent faults occur on
a discontinuous and periodic basis, causing degradation of ser-
vice for short periods of time. However, frequently re-occurring
intermittent faults significantly jeopardize service performance.
Transient faults cause a temporary and minor degradation of ser-
vice. They are usually repaired automatically [40].

Error, a consequence of fault, is defined as a discrepancy be-
tween a computed, observed, or measured value or condition and
a true, specified, or theoretically correct value or condition [40].
Faults may cause one or more errors. Some errors result in a
deviation of a delivered service from the specified service that
is visible to the outside world. The termfailure is used to de-
note this type of error. Other errors are not visible externally.
However, an error in a network device or software may cause
the malfunctioning of dependent network devices or software.
Thus, errors may propagate within the network causing failures
of faultless hardware or software. In order to correct an error, the
fault which caused the error has to be resolved; therefore, errors
are typically not handled directly.

Symptomsare external manifestations of failures [22]. They
are observed asalarms – notifications of a potential failure
[22, 25, 41]. These notifications may originate from management
agents via management protocol messages (e.g., SNMP trap [6]),
management systems, which monitor the network status, e.g., us-
ing commandping, system log-files, or character streams sent by
external equipment.

Some faults may be directly observable, i.e., they are problems
and symptoms at the same time. However, many types of faults
are unobservable due to (1) their intrinsically unobservable na-
ture, (2) local corrective mechanisms built into the management
system that destroy evidence of fault occurrence, or (3) the lack
of management functionality necessary to provide indications of
fault existence [8]. Examples of intrinsically unobservable faults
include livelocks and deadlocks. Some faults may be partially-
observable – the management system provides indications of
fault occurrence, but the indications are not sufficient to precisely
locate the fault.

In a communications network, a single fault may cause a num-
ber of alarms to be delivered to the network management center.
Multiple alarms may be a result of (1) fault re-occurrence, (2)
multiple invocations of a service provided by a faulty component,
(3) generation of multiple alarms by a device for a single fault,
(4) detection of and issuing a notification about the same network
fault by many objects (hardware or software network compo-
nents) simultaneously, and (5) error propagation to other network
objects causing them to fail and generate additional alarms [15].
It may be argued that typical networked systems provide plenty



of information necessary to infer the existence of faults [41].

The following paragraphs present some common problems that
have to be addressed by a fault localization technique.

Fault evidence may be ambiguous, inconsistent and in-
complete[8, 14, 28].

Ambiguity in the observed alarm set stems from the fact that the
same alarm may be generated as an indication of many differ-
ent faults. Inconsistency is a result of a disagreement between
different devices with regard to the facts related to network op-
eration; one object may have the perception that a component is
operating correctly, while another may consider the component
faulty. Incompleteness is a consequence of alarm loss or delay.
It is essential that the fault management system be able to create
a consistent view of network operation even in the presence of
ambiguous, inconsistent and incomplete information.

The available system knowledge and fault evidence
may contain uncertain information[7, 8, 14, 30].

A suit of alarms generated by a fault may depend on many factors
such as dependencies between network devices, current configu-
rations, services in use since fault occurrence, presence of other
faults, values of other network parameters, etc. Due to this non-
determinism, system knowledge available to the management ap-
plication may be subject to inaccuracy and inconsistency. Fault
evidence may also be inaccurate because of spurious alarms gen-
erated by transient problems; once the problem disappears, the
generated alarms do not correspond to any fault.

Multiple unrelated faults may occur simultaneously
generating overlapping sets of alarms[8, 37].

This additional complication in the fault localization problem
results from the fact that different related and unrelated faults
may happen within a short time of one another. The event man-
agement system should be able to detect unrelated simultaneous
problems even if they generate overlapping sets of alarms.

Multiple different fault hypotheses may exist that ex-
plain the set of observed symptoms[28].

Given that a single alarm may indicate different types of faults
that occurred in different communication devices, fault localiza-
tion may be unable to give a definite answer. Some approaches
discussed in Section 3 combine fault localization with testing in
order to resolve these ambiguities. These approaches are usually
tailored to locating specific network faults. In the general case,
the lack of automated testing techniques makes it impossible to
verify a possible answer in real-time. Therefore, most existing
techniques try to isolate a set of probable fault hypotheses that
may be later verified on- or off-line depending on the available
testing techniques. Preferably, a confidence measure should be
associated with every formulated hypothesis based on some be-
lief metric, e.g., the information cost of a hypothesis, the prob-
ability that it is valid, etc. The optimality criteria may include
minimizing the size of the hypotheses set, the solution cost, the
error probability, etc.

In large systems, performing the fault localization pro-
cess and maintaining the available knowledge base
within a single management application may be com-
putationally infeasible[27, 40, 41].

In large communication systems, it is also impractical to assume
that the fault localization process has access to and the compu-
tational capability of processing the information about the entire
system. Many researchers have concluded that the fault local-
ization process in large networks should be performed in a dis-
tributed fashion by a group of event management nodes with data
and processing complexity divided among them. Each of several
managers governs a subset of network hardware and/or software
components within boundaries marked by protocol layers or net-
work domains. While they propagate across the network, errors

cross boundaries of management domains. As a result, the fault
management system may be provided with indications of faults
that did not happen in its management domain and/or be unable
to detect all symptoms of faults existing in its management do-
main. Distributed fault localization schemas should allow the
management nodes to reach the solution collectively.

The strength of causal correlation between events may
change with the length of the period of time between
the events’ occurrences[23, 32].

The important aspect related to fault localization is representa-
tion of time. Events are related not only causally but also tempo-
rally. Therefore, the correlation process has to provide means to
represent and interpret time associated with event occurrence as
well as a technique of correlating events related with respect to
the time of their occurrence and duration.

3 FAULT LOCALIZATION TECHNIQUES

In the past, numerous fault localization paradigms were pro-
posed. They derive from different areas of computer science,
including artificial intelligence, graph theory, neural networks,
information theory, and automata theory. In Figure 1, a classifi-
cation of the existing solutions is proposed. The most common
approaches are as follows [26]:

• model-based reasoning tools
• fault propagation models
• model traversing techniques
• case-based reasoning tools

Fault localization techniques

AI techniques Model traversing
techniques

Fault propagation
models

Rule-based
systems

Model-based
systems

Case-based
systems

Neural
networks

Decision trees

Dependency
graphs

Causality
graphs

Phrase structured
grammars

Bayesian
networks

Code-based
techniques

Expert systems

Figure 1: Classification of fault localization techniques

In this section, some of the approaches presented in Figure 1 will
be described and compared.

Artificial Intelligence techniques for fault localization
The most widely used Artificial Intelligence (AI) techniques in
the field of fault localization and diagnosis are expert systems.
Expert systems try to reflect actions of a human expert when
solving problems in a particular domain. Their knowledge base
imitates knowledge of a human, which may be either surface –
resulting from experience, or deep – resulting from understand-
ing the system behavior from its principles. Expert systems ap-
plied to the fault localization problem differ with respect to the
structure of the knowledge they use. Approaches that rely solely
on surface knowledge are referred to as rule-based reasoning sys-
tems [32, 33], which in the domain of fault localization exploit a
forward-chaining inferencing mechanism.

Rule-based systems do not require profound understanding of the
architectural and operational principles of the underlying system
and, for small systems, may provide a powerful tool for elimi-
nating the least likely hypotheses. The downsides of rule-based
systems include the inability to learn from experience, inability



to deal with unseen problems, and difficulty in updating the sys-
tem knowledge [31]. Rule-based systems are difficult to maintain
because the rules frequently contain hard-coded network config-
uration information. Although approaches have been proposed
to automatically derive correlation rules based on the statistical
analysis of alarm databases [29], it is still necessary to regenerate
a large portion of correlation rules when the system configuration
changes. Rule-based systems are also unable to deal with inac-
curate information and get convoluted if timing constraints are
included in the reasoning process. Also, rule interactions may
result in unwanted side-effects, difficult to verify and change.

Model-based approaches [5, 9, 22, 35] incorporate deep knowl-
edge in the form of a model of the underlying system. They
constitute a class of expert systems that are the most widely used
for fault diagnosis. The system model provides information on
network topology [41] and on how a failure condition or alarm in
one component is related to failure conditions or alarms in other
components [15]. The model-based approaches differ with re-
gard to the technology used to define the system model. Thanks
to representing deep knowledge of the network connectivity and
operation, model-based approaches have the potential to solve
novel problems and their knowledge may be organized in an ex-
pandable, upgradeable and modular fashion. However, the mod-
els may be difficult to obtain and keep up-to-date, and their ma-
nipulation is computationally complex.

Case-based systems [31] make their decisions based on experi-
ence and past situations. They try to acquire relevant knowl-
edge of past cases and previously used solutions to propose solu-
tions for new problems. If a direct match for an open problem is
found in the database, the solution from the matching case is re-
turned. Otherwise, the case is chosen that most closely matches
the open problem. Then, the solution applied to the chosen past
case is adapted for the open problem. Case-based systems are
well suited for learning correlation patterns. They are resilient to
changes in network configuration. However, case-based systems
require an application-specific model for the resolution process
and are computationally complex.

Model traversing techniques
Model traversing techniques [11, 15, 24, 26] use a formal rep-
resentation of a communication system with clearly marked re-
lationships between network entities. Failures in the commu-
nication system propagate along relationships between network
entities. By exploring these relationships, starting from the net-
work entity that reported an alarm, the fault identification pro-
cess is able to determine which alarms are correlated and locate
faulty network elements. Model traversing techniques are robust
against frequent network configuration changes [26]. They are
particularly attractive when automatic testing of a managed ob-
ject may be done as a part of the fault localization process. Model
traversing techniques seem natural when relationships between
objects are graph-like and easy to obtain. They naturally enable
the design of distributed fault localization algorithms. However,
they are unable to model situations in which the failure of a de-
vice may depend on a logical combination of other device fail-
ures.

Fault propagation models
Fault propagation models require a-priori specification of how a
failure condition or alarm in one component is related to failure
conditions or alarms in other components [15]. Based on this in-
formation, the fault localization algorithm tries to isolate the root
cause of the observed set of symptoms. Given a set of observed
symptoms, the algorithm solving the correlation problem should
return a number of fault hypotheses along with some measure of
their correctness. It has been shown that the correlation problem
is NP-hard [3, 28].

Most algorithms use the minimum number of faults as a measure
of hypothesis goodness, based on the assumption that simultane-
ous occurrence of multiple faults is an unlikely event. In some

cases, however, independent multiple faults happen simultane-
ously with a probability that may not be ignored. In these cases
the appropriate heuristics is to find the explanation that offers the
greatest level of confidence [15]. As a measure of confidence,
the probability of fault occurrence or information cost associated
with fault occurrence are used.

A number of different techniques based on fault propagation
models have been proposed [3, 15, 28]. They include causal-
ity and dependency graph models, context-free grammars, and
code-based techniques.

Fault localization techniques based on dependency
and causality graph fault models: A causality graphis a di-
rected acyclic graphGc(E,C) whose nodesE correspond to
events and whose edgesC describe cause-effect relationships be-
tween events. An edge(ei, ej) ∈ C represents the fact that event
ei causes eventej , which is denoted asei → ej [12]. A depen-
dency graphis a directed graphG = (O,D), whereO is a finite,
nonempty set of objects in use andD is a set of edges between
these objects. The directed edge(oi, oj) ∈ D denotes the fact
that an error or fault inoi may cause an error inoj . Probabil-
ities may be assigned to nodes and edges in both causality and
dependency graph. Dependency and causality graphs are equiv-
alent when used as a representation of a communication system
in which every object may experience only one type of failure.
Otherwise, causality graph has the potential to provide a more
detailed view of the system by allowing multiple causality graph
nodes per single network object.

Causality graph is used in [12] as a framework for developing
fault localization algorithms based on a deduction system. The
technique assumes ‘AND’ relationships between errors caused
by the same event, i.e., if an eventei happens, then all eventsej ,
such thatei → ej , happen. Because of this determinism, when
a significant number of symptoms is lost, the algorithm may be
unable to output a solution.

The divide and conquerO(N3) algorithm [28] uses a depen-
dency graph as a fault model. Before the correlation algorithm is
started, a set of all problems that may cause one or more alarms in
the observed alarm cluster, alarm cluster domain, is determined.
The actual correlation procedure proceeds recursively dividing
the alarm cluster domain into two subsets characterized by max-
imum mutual dependency. Maximum mutual dependency of two
sets means that the label assigned to any edge between two nodes
in the same set is higher than the label assigned to any edge con-
necting two nodes belonging to different sets. If the subset with a
higher probability that one of its members was a primary source
of failure is able to explain all alarms, the next step of the re-
cursion is invoked for the entire alarm cluster and the higher-
probability alarm cluster sub-domain. Otherwise, the alarm clus-
ter domain is divided into two sub-clusters corresponding to the
maximum mutual dependency sets. The next step is executed for
both alarm cluster sub-domains and their corresponding alarm
sub-clusters. The algorithm always explains all the observed
alarms, but may fail to give their best explanation [28]. It does
not handle lost or spurious symptoms.

Context-free grammar: The natural feature of context-
free grammars, which allows expressions to be built from subex-
pressions, may be effectively used to represent a hierarchically
organized communication system [3]. In this model, terminals
correspond to the indivisible network components. Productions
are used to build compound network objects from the already
defined objects. A context-free grammar allows the model-
ing of systems with complex dependencies between managed
objects [3]. The fault localization technique proposed in [3]
chooses the minimum set of faults that explains all observed
alarms. It looks for a fault that belongs to the greatest number
of alarm domains. If there are more than one such faults, the one
with the highest probability of occurrence (or lowest information
cost) is chosen.



Code-based techniques:Code-based techniques use
information-theory to facilitate the process of fault localization.
They were first used in SMARTS InCharge system [41].

Fault propagation patterns in code-based techniques are repre-
sented by a codebook [30, 41]. For every problem, a code is
generated that makes it possible to distinguish this problem from
other problems. In the deterministic code-based technique, a
code is a sequence of values from{0, 1}. Problem codes are
generated based on the available system model and a fault infor-
mation model. InCharge uses a causality graph as an intermedi-
ate fault propagation model from which the codebook is gener-
ated. The causality graph is pruned to remove cycles, unobserv-
able events, and indirect symptoms (symptoms that cause other
symptoms, thus they do not provide any additional information).

As a result of pruning, the causality graph contains direct cause-
effect relationships between problems and symptoms. It is then
represented as a matrix whose columns are indexed by problems
and rows are indexed by symptoms. The matrix cell indexed by
(si, pj) contains a probability that problempj causes symptom
si. In the deterministic model the probability is either 0 or 1.
The correlation matrix is then optimized to minimize the num-
ber of symptoms that have to be analyzed but still ensure that
the symptom patterns corresponding to different problems allow
the problems to be distinguished. The optimized correlation ma-
trix constitutes a codebook whose columns are problem codes.
The observed code is a sequence of symbols from{0, 1}, with 1
denoting the appearance of a particular symptom, and0 mean-
ing that the symptom has not been observed. Fault localization
is performed by finding a fault in the correlation matrix whose
code is the closest match to the observed coded. Since the cod-
ing phase is performed only once, the InCharge correlation algo-
rithm is very efficient. Its computational complexity is bounded
by (k + 1) log(p), wherek is the number of errors that the de-
coding phase may correct, andp is the number of problems [30].

4 CURRENT CHALLENGES IN FAULT
LOCALIZATION

In the past, fault diagnosis efforts concentrated mostly on detect-
ing, isolating, and correcting faults related to network connectiv-
ity. The diagnosis focused on lower layers of the protocol stack
(typically physical and data-link layers), and its major goal was
to isolate faults related to the availability of network resources,
such as broken cable, inactive interface, etc. Since these types
of problems are relatively rare, most event correlation techniques
presented in Section 3 assume that only one fault may exist in the
system at any time, and do not attempt to detect multiple simulta-
neous faults. In addition, these techniques frequently use a deter-
ministic model, which implies that all dependencies and causal
relationships are known with a 100% certainty. The prominent
example of a diagnostic system suited for low-level determinis-
tic fault diagnosis is InCharge [41], which utilizes the codebook
technique described in Section 3. InCharge belongs to the most
popular fault management systems on the market today. To the
best of our knowledge none of the techniques available today
solve all the fault localization problems described in Section 2.
It may be argued that in the past such solutions were acceptable
in practical applications.

Popularization of modern enterprise services such as e-
commerce, telecommuting, virtual private networks, and appli-
cation service provision made it necessary to manage them effec-
tively. To manage enterprise services it is necessary to address
some of the problems presented in Section 2.

Multi-layer fault localization
In multi-layer communication systems, errors propagate up the
protocol stack causing malfunctioning of network objects (both
hardware and software ones) in various layers. Frequently, in-
ability to connect to a Web server may be traced down to a faulty
physical connection between neighboring network devices, the

lack of resources on the Web server, network layer buffer over-
flow, etc. To be able to isolate these types of faults based on the
“Web server inaccessible” observation, fault diagnosis may no
longer be constrained to the lowest layers of the protocol stack.
On the contrary, it has to reach through transport and application
layers into the service layer, and integrate fault diagnosis across
multiple protocol layers.

To perform fault localization in a multi-layer environment it is
useful to create a system model, which shows dependencies be-
tween objects in neighboring protocol layers. Unfortunately,
building and maintaining such a model is not easy because of
a huge number of dependencies in real-life systems and their fre-
quent changes. This makes the manual creation of the model
infeasible. In large multi-layer systems the model should be
built automatically and dynamically adapted to the system con-
figuration changes. In lower layers, current dependencies may
be obtained with the use of management agents on network de-
vices and/or management applications, e.g.,ping or traceroute.
In higher layers, due to the lack of the appropriate management
information bases, other methods have to be proposed. Several
reports on the automatic obtaining of the system dependencies
have been published, e.g., [4].

Performance problems’ diagnosis
E-business customers increasingly demand support for quality
of service (QoS) guarantees. QoS parameters are negotiated be-
tween the customer and the e-business as a part of Service Level
Agreements [13] (SLAs), which also specify pricing rules for the
offered services and a penalty schema to be used if the quality of
the offered service violates the agreed upon SLA contract. Vari-
ous techniques have been investigated to supervise execution of
the SLA contract [1], and to notify the management application
about any QoS violations. In addition to dealing with resource
availability problems, fault diagnosis has to isolate the causes of
these performance/QoS related notifications. Support for perfor-
mance problems’ diagnosis is needed in both the system model
and fault localization algorithm. The system model should rep-
resent different types of network object failures (availability and
performance related ones), which can frequently be enumerated,
e.g., total failure, data loss, data delay, erroneous output, etc.
Performance related problems are more frequent than availabil-
ity related ones; in large systems, it is likely for two unrelated
performance problems to occur simultaneously. Therefore, fault
diagnosis has to be able to isolate multiple unrelated root causes.

Uncertainty
Most of the approaches to fault localization presented in Sec-
tion 3 use a deterministic fault model, i.e., they assume that the
dependency link froma to b implies that ifa fails b also fails.
The deterministic model is typically sufficient to represent faults
in lower layers of the protocol stack related to the availability of
services offered by these layers. However, deterministic fault lo-
calization techniques are rather difficult to apply when faults are
related to service performance. In the transport and application
layers, frequent reconfigurations of service dependencies make
it impossible to keep such a deterministic model up-to-date. Be-
cause of complex dependencies between network objects, it is
possible for an object failure to induce a failure of a dependent
object at one time and have no effect on the dependent object at
another time.

Uncertainty about dependencies between communication system
entities is represented by assigning probability to the links in the
dependency or causality graph [28, 30]. Some commonly ac-
cepted assumptions in this context are that (1) given faulta, the
occurrences of faultsb andc that may be caused bya are inde-
pendent, (2) given occurrence of faultsa andb that may cause
eventc, whethera actually causesc is independent of whetherb
causesc (OR relationship between alternative causes of the same
event), and (3) faults are independent of one another. When per-
formance problems are taken into account by introducing multi-
ple failure modes in every dependency graph object, instead of



a single probability values, probability matrices should rather be
assigned to the dependency links, which for every object and its
every possible failure describe the probability that it results in a
particular dependent object’s failure.

In nondeterministic fault model, alarm correlation aims at find-
ing the most probable explanation of the observed alarms. In
the past, some research has been performed on finding appropri-
ate heuristics to solve the problem in polynomial time, including
the divide and conqueralgorithm described in Section 3. An-
other approach to dealing with uncertainty is based on belief
networks [36], which were used to diagnose failures in linear
light-wave networks [7] and break faults in dynamically routed
networks [39]. Both techniques are tailored towards specific ap-
plications and focus on particular types of faults. Their uncer-
tainty model is restricted by not allowing the modeling of non-
determinism within relationships between objects. Therefore,
more research is needed in this area.

Temporal correlation
Many researchers have pointed out that temporal relationships
between events should be explored in the alarm correlation pro-
cess [12, 23, 32]. So far, the temporal correlation has been per-
formed by specifying atime window, i.e., a period of time over
which events are observed; at the end of each time window, the
correlation algorithm exploring causal correlation is run [28, 30].
Usage of time windows has several drawbacks: (1) it does not
allow testing to be interleaved with alarm collection, (2) it is
difficult to apply to alarm correlation across multiple protocol
layers, because different time windows may apply to different
layers, and (3) it is inefficient because the entire computational
effort is performed at the end of a time-window instead of being
distributed over time. It is believed that event-driven fault local-
ization [2, 12] is a better approach to the problem. Preferably,
the final solution should be created incrementally based on the
solutions available after previous symptom observations.

Real-time fault diagnosis
Substantial loss of revenue may result if faults within the enter-
prise communication system are not detected, isolated, and cor-
rected soon enough. The amount of time available to perform
fault localization depends on the latency of fault detection mech-
anisms used in the system. Performance monitoring mechanisms
are usually invasive, consuming network and/or device resources
in order to collect data. In order not to interfere with the ser-
vices provided over the monitored network, the problem detec-
tion mechanisms sample the network state in certain time inter-
vals, typically ranging from tens of seconds to several minutes.
Frequently, a consistent pattern has to be observed over multiple
sampling intervals in order to notify about the detected abnor-
mality. Although fault localization should be performed as fast
as possible, fault localization time comparable to the time nec-
essary to detect problems is usually acceptable. When iterative
techniques are used, fault localization may be performed simul-
taneously with problem detection for as long as it is necessary
to observe symptoms. Thus, in many practical applications, fault
localization should take no more than a few minutes. In large net-
works, achieving this goal requires fault localization techniques
with low computational complexity.

5 A NEED FOR END-TO-END SERVICE FAULT
LOCALIZATION

Recent publications on fault localization recognize the need for
multi-layer fault localization and try to address some of the issues
described in Section 4.

Yemanja [2], a model-based reasoning system, tries to overcome
the difficulties involved in managing system models by defining
a set of entity models, which correspond to physical or concep-
tual network entities, e.g., network layers. It avoids maintaining
an explicit network model by providing scenario templates orga-
nized in a hierarchical structure, which are instantiated with the

data obtained from the arriving event attributes or from the con-
figuration database. The scenario templates embedded into entity
models are reusable and communicate using internalcomposite
events[32]. In addition, the internal event publishers need not
be aware which components consume the events that they for-
ward; therefore, a change to a higher-level entity does not require
changes to any of the lower-level entities. As events propagate
up the entity model hierarchy, their semantics becomes more and
more abstract so that higher-level scenarios do not need to know
the low-level details of the network state to correlate low-level
faults with the symptoms observed in the higher layers.

Gopal et al. [10] proposed a model for multi-layer fault diagno-
sis. Although it was originally used to enhance the presentation
of the system state on the management console for the purpose of
manual fault localization, the model is also suitable for automatic
fault localization with the use of model traversal techniques or al-
gorithms based on fault propagation models. In the layered fault
model, the definition of entity dependencies is based on real-life
relationships between layers on a single host and between net-
work nodes communicating within a single protocol layer. The
fault model components may be generally divided intoservices,
protocols, andfunctions. A service offered by protocol layerL
between nodesa andb (ServiceL(a,b)) is implemented in terms
of layerL functions on hostsa andb (Network FunctionsL(a)
andNetwork FunctionsL(b)), and the layerL protocols through
which hostsa andb communicate. The layerL protocols run-
ning between hostsa andb use layerL− 1 functions on hostsa
andb, and services that layerL−1 offers between hostsa andb.
LayerL functions on nodea depend on layerL− 1 functions on
nodea. The recursive dependencies between services, protocols
and functions constitute a dependency graph.

Both Yemanja [2] and the layered system model [10] address the
issue of vertical fault propagation. However, the fault propaga-
tion techniques proposed in [2, 10] are based on the assumption
that, when higher-level entity fails or experiences performance
problems, it is easy to choose a small set of lower-level enti-
ties which may be responsible for the higher-level entity fail-
ure, which is not the case in complex communication systems.
End-to-end connectivity in a given network layer is frequently
achieved through a sequence of intermediate nodes invisible to
the layers above. For example, in the data-link layer, end-to-end
connectivity is provided by a network of bridges; in the network
layer, end-to-end connectivity is realized by a network of routers.
Similar scenarios exist in the application layer. We say that the
end-to-end service is realized by a network of hop-to-hop ser-
vices. End-to-end performance problems in the network layer
may be caused by, e.g., bit errors introduced by a serial link be-
tween two routers over which the end-to-end communication is
provided. In this case, in order to explain the performance prob-
lems experienced by the end-to-end service, one has to find the
hop-to-hop service responsible for the end-to-end service failure.
Clearly, the number of such hop-to-hop services may be huge in
a large communication system. We believe that solving the prob-
lem of end-to-end service failure diagnosis is critical to perform
fault management in a multi-layer enterprise environment.

Research currently performed in Network Management Lab at
University of Delaware attempts to solve the problem of end-to-
end service failure diagnosis addressing the issues presented in
Section 4. It makes contributions in the following areas [38].

Building the system model suitable for end-to-end service
failure diagnosis: The system model is based upon the layered
model template proposed in [10], which was refined to expose the
model for the end-to-end service failure diagnosis. An end-to-
end service offered by layerL is represented as a subgraph show-
ing all the end-to-end service hop-to-hop components. Thus, an
end-to-end service offered in layerL between hostsa andb is
built of (depends on) hop-to-hop services offered in layerL be-
tween subsequent hosts on the path of the layerL packet from
nodea to nodeb. A set of possible failure modes are associated



with every node of the refined layered dependency graph. Uncer-
tainty is modeled by assigning a probability matrix rather than
a single probability value to every dependency graph edge. So
far, the refined system model has been designed for the situation
when the set of hop-to-hop links in a given layer used to provide
an end-to-end service in this layer may be determined based on
the information available through management protocols.

Modeling failure propagation patterns in a multi-layer sys-
tem: Failure propagation is modeled as a belief network [36].
The mapping of the layered dependency graph into a belief net-
work is proposed. The fault localization problem is mapped into
the problem of computing queries in belief network.

Designing probabilistic fault localization algorithms for end-
to-end service failure diagnosis:An application of two iterative
algorithms for computing queries in belief networks [36] to bi-
partite belief networks representing fault propagation within the
end-to-end service model has been investigated. In addition, a
novel technique that allows to build a fault hypothesis in iterative
and incremental fashion is proposed.

Evaluating the proposed algorithms through analytical study
and through simulation: The proposed algorithms have been
shown to have a polynomial computational complexity bound.
They were implemented in Java and evaluated through an exten-
sive simulation study on a large set of randomly generated tree-
shaped network topologies. The algorithms’ accuracy and per-
formance is compared with that of an optimal, but exponential,
algorithm for computing queries in belief networks. The initial
results of the study are very encouraging.

Currently, our research focuses on extending the model to repre-
sent symptom loss and/or spurious generation, dealing with im-
precise specification of conditional probability distribution, and
evaluating the algorithms on arbitrary real-life network topolo-
gies. We plan to investigate the problem of end-to-end service
diagnosis when the set of hop-to-hop links in a given layer used
to provide an end-to-end service may not be easily obtained.

6 CONCLUSIONS

For the past ten years, fault localization has been a very vivid
research area. Fault localization solutions available today, which
were described in Section 3, focus on low-level faults related
to resource availability. Modern enterprise environments require
that fault diagnosis be performed in integrated fashion in multi-
ple layers of the protocol stack. This demands solutions related
to modeling multi-layer, dynamically changing communication
systems, and representing uncertainty involved in dependencies
between network objects. Another goal is to find iterative real-
time fault localization techniques capable of isolating multiple
root causes of the observed problems in the presence of uncertain
information in the system model and the set of observed symp-
toms. The entirely new challenge is in the area of performance
problem diagnosis.

End-to-end service fault localization is a critical step towards
multi-layer fault diagnosis. Research performed in Network
Management Lab at University of Delaware focuses on finding
efficient event correlation techniques by building a suitable sys-
tem model, modeling failure propagation using belief networks,
and designing probabilistic fault localization algorithms.
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