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Abstract– Fault localization is a process of isolating faults respon-
sible for the observable malfunctioning of the managed system. Un-
til recently, fault localization efforts concentrated mostly on diag-
nosing faults related to the availability of network resources in the
lowest layers of the protocol stack. This paper focuses on end-to-
end service failure diagnosis as a critical step towards multi-layer
fault localization in an enterprise environment. By refining a previ-
ously proposed modeling technique, we present a universal method
of modeling both availability and performance related problems
associated with end-to-end services in a non-deterministic fashion.
We introduce and evaluate a novel algorithm that allows an event-
driven, incremental diagnosis of end-to-end service failures.

1 INTRODUCTION

Fault diagnosis is a central aspect of network fault manage-
ment. The core of fault diagnosis is fault localization – a process
of analyzing external symptoms of network disorder to isolate
possibly unobservable faults responsible for the symptoms’ oc-
currences. Traditionally, fault localization has been performed
by an expert based on disorder symptoms displayed on a man-
agement console. As systems grew larger and more complex,
automated fault localization techniques became critical. Until
recently, fault localization effort concentrated mostly on diag-
nosing faults related to network connectivity in lower layers of
the protocol stack (typically the physical and data-link layers),
and its major goal was to isolate faults related to the availability
of resources, such as broken cable, inactive interface, etc. Recent
advances in the deployment of enterprise services such as virtual
private networks and application service provision require that
fault localization also focus on diagnosing performance prob-
lems in multiple layers of the protocol stack including the appli-
cation and service layers. Modern enterprise environments im-
pose several challenges on the fault localization problem, which
include modeling and reasoning about (1) the system state in var-
ious protocol layers, (2) interactions between protocol layers, (3)
versatile types of failures, and (4) non-determinism within the
system structure and its observed state.

This paper addresses the above issues by proposing a fault
management technique suitable for diagnosing both availability
and performance problems across multiple layers of the proto-
col stack. We describe a system model created by refining the
layered dependency graph introduced in [5]. The refined model
allows not only vertical but also horizontal failure propagation to
be seamlessly represented by including micro-models of end-to-
end services (such as IP end-to-end communication) provided in
a protocol layer by means of multiple intermediate hosts (such
as routers). Non-deterministic dependencies between the model
components make it possible to represent uncertainty associated
with relationships between the communication system entities.
The algorithm introduced in this paper allows end-to-end service
failures to be diagnosed in an iterative and incremental fashion.

In Section 2, we present related work on multi-layer fault diag-
nosis, and motivate the need for end-to-end service failure diag-
nosis. Section 3 presents the layered dependency graph template
as the system model for multi-layer fault diagnosis. In Section 4,
we present the mapping of the dependency graph template into

a causality graph. Section 5 introduces an iterative and incre-
mental algorithm for diagnosing end-to-end service failures. In
Section 6, the incremental algorithm is evaluated.

2 MOTIVATION AND RELATED WORK

Various fault localization techniques were investigated in the
past. A comparative study of these techniques has been pre-
sented in [18, 20]. In this section, we survey recent publications
that address the problem of multi-layer fault diagnosis.

Gopal et al. [5] presented a model in which the definition of
entity dependencies is based on real-life relationships between
layers on a single host and between network nodes in a sin-
gle protocol layer. The model addresses vertical failure propa-
gation by allowing relationships between abstract functions and
services between neighboring layers to be modeled. It does not,
however, provide means to represent multiple possible failure
types of a particular function or service, nor does it provide any
support for modeling non-deterministic system behavior.

Yemanja [1] defines a hierarchical set of entity models, which
correspond to physical or conceptual network entities, e.g., net-
work layers. Entity models are instantiated with the data ob-
tained from the arriving event attributes or from the configura-
tion database, and communicate using internal composite events.
As events propagate up the entity model hierarchy, their seman-
tics becomes more and more abstract so that higher-level scenar-
ios can correlate higher-level symptoms with lower-level failures
without the detailed knowledge of the low-level network state.

Both Yemanja [1] and the layered system model [5] address
the issue of vertical fault propagation. They do not discuss the
situation in which an explanation of a higher-level problem (e.g.,
end-to-end service failure) must be selected from a large set
of possible lower-level failures (i.e., host-to-host link failures).
This situation results from horizontal fault propagation and is a
very common problem in large communication systems.

SMARTS InCharge system [21] allows the multi-layer sys-
tem model to be built using a high-level language, called
MODEL [14]. (MODEL would be suitable as a language for
defining dependencies within the layered model used in this pa-
per.) For fault localization, InCharge utilizes the codebook tech-
nique [21], which is very efficient and is resilient to the noise in
the alarm data. However, the codebook technique is difficult to
apply to the correlation of transport and application layer events
since relationship changes between managed objects, which are
frequent in higher layers, require reconfiguration of the code-
book. Although Kliger et al. [10] proposed a model that allows
a probabilistic code-book to be built, the code-book technique
lacks a non-deterministic decoding schema. One of the appli-
cations of the algorithm introduced in this paper is to provide a
decoding schema for the probabilistic code-book approach [21].

In our previous work, we investigated the application of belief
networks to the problem of end-to-end service failure diagno-
sis [19]. The algorithm proposed in this paper is conceptually
simpler and has lower computational complexity. However, it
does not possess certain properties that the belief network ap-
proach does, e.g., it may not predict service failures, nor is it
useful for the planning of testing procedures.



3 LAYERED MODEL FORALARM CORRELATION

In communication systems, a failure of a system component
may affect the operation of other system components. The ability
of a fault in one entity to change the state of other entities is re-
ferred to as fault propagation. Because of fault propagation, the
effects of abnormal operation of functions or services provided
by lower layers may be observed in higher layers (vertical prop-
agation). Similarly, a fault may be observable on network hosts,
which are distant from the location of the fault occurrence (hori-
zontal propagation). In order to find explanations of higher-layer
problems, it is useful to create a fault propagation model. Fault
management systems model fault propagation by representing
either causal relationships between events [6, 21] or dependen-
cies between communication system entities [5, 7, 9].

For the purpose of fault diagnosis, communication systems
are frequently modeled in a layered fashion imitating the layered
architecture of the modeled system [5, 12, 21]. In this paper,
we adopt the layered dependency graph template proposed in [5]
and refine it to enable the representation of end-to-end services,
non-determinism and performance problem modeling.
3.1 Layered model template

In the layered fault model [5], components are generally di-
vided intoservices, protocols, andfunctions[5]. A service of-
fered by protocol layerL between nodesa andb (ServiceL(a,b))
is implemented in terms of layerL functions on hostsa andb
(Network FunctionsL(a) and Network FunctionsL(b)), and the
layer L protocols through which hostsa and b communicate.
The layerL protocols running between hostsa andb use layer
L − 1 functions on hostsa andb, and services that layerL − 1
offers between hostsa andb. LayerL functions on nodea de-
pend on layerL − 1 functions on nodea. The recursive depen-
dencies between services, protocols and functions constitute a
dependency graph as described in [5]. In this paper, we find it
useful to eliminate the protocol nodes. This model simplification
is justified, since it may be assumed that the protocols are imple-
mented correctly; under this assumption, protocols cannot con-
tribute explanations to service failures. Fig. 1 shows the resul-
tant general dependency graph for a layered network, in which
ServiceL(a,c)directly depends onServiceL−1(a,c).

Network L-1(a)

ServiceL-1(a,b) ServiceL-1(b,c)

ServiceL-1(a,c)

ServiceL(a,c)

ServiceL+1(a,c)

Network L-1(b) Network L-1(c)

Network L(a) Network L(c)

Network L+1(a) Network L+1(c)

Figure 1: Refined layered network dependency model

The dependency graph template obtained from services, pro-
tocols, and functions in different layers provides a macro-view
of the relationships that exist in the system. To incorporate the
micro-view of the relationships within particular model compo-
nents, the layered model should be further refined to include pos-
sibly complex relationships within services, protocols and func-
tions in the same layer. This paper introduces a micro-model
of end-to-end services; an end-to-end service offered by layer
L between hostsa and c is implemented in terms of multiple

hop-to-hop services offered by layerL between subsequent hops
on the path of the layerL packet from nodea to nodec (such
asServiceL−1(a,c) in Fig. 1). The ability to reason about fail-
ures observed in an end-to-end service, i.e., symptoms, and trace
them down to particular host-to-host service failures, i.e., faults,
is critical in order to perform fault diagnosis in complex network
topologies, and is the primary focus of the presented research.

In this paper, besides the elimination of the protocol nodes,
the model presented in [5] is refined as follows. With every
dependency graph node we associate multiple failure modes
F1, . . . , Fk, which represent availability and performance prob-
lems pertaining to the service or function represented by the de-
pendency graph node. In real-life systems, the following condi-
tions are typically considered a service/function failure:
• F1 – service/function ceases to exist (e.g., the cable connec-

tion is broken),
• F2 – service/function introduces unacceptable delay (e.g., one

of the hop-to-hop links in network layer is congested),
• F3 – service/function produces erroneous output (e.g., bit er-

rors are introduced in a serial link between routers),
• F4 – service/function occasionally does not produce output

(e.g., packets are lost due to buffer overflow).
The knowledge of communication protocols makes it possible
to predict which of these conditions will occur in a higher-level
service/function if any of these conditions occur in one or more
lower-layer services/functions.
3.2 Representation of non-determinism in the layered model

Most fault localization techniques proposed to date [6, 8, 13,
21] utilize a deterministic fault model in which the dependency
link from a to b implies that if a fails, thenb also fails. The
deterministic model is typically sufficient to represent faults in
lower layers of the protocol stack related to the availability of
services offered by these layers. However, these fault local-
ization techniques are rather difficult to apply when faults are
Byzantine [16], e.g., related to service performance. In the upper
layers, frequent reconfigurations of service dependencies make it
impossible to keep such a deterministic model up-to-date.

Uncertainty about dependencies between communication sys-
tem entities is represented by assigning probabilities to the links
in the dependency or causality graph [9, 10]. Some commonly
accepted assumptions in this context are that (1) given faulta,
the occurrences of faultsb andc that may be caused bya are
independent, (2) given the occurrences of faultsa and b that
may cause eventc, whethera actually causesc is independent of
whetherb causesc (OR relationship between alternative causes
of the same event), and (3) faults are independent of one another.
We take advantage of these assumptions throughout the paper.

Unlike other publications on this subject [9], this paper uses
the dependency graph whose nodes have multiple failure modes.
Therefore, instead of a single probability value, we assign prob-
ability matrices to the dependency links. LetFX denote a set
of failure modes related to service or functionX, andFY de-
note a set of failure modes related to the dependent service or
functionY . The label assigned to dependency linkY → X is a
two-dimensional matrix|FY | × |FX |, P, such thatP(Fj , Fi) =
P{service/functionY is in failure modeFj | service/functionX
is in failure modeFi}, whereFj ∈ FY andFi ∈ FX .
3.3 Obtaining the dependency graph

The dependency graph described in Section 3.1 records two
types of dependencies between services and functions in neigh-
boring protocol layers:static anddynamicdependencies. Dy-
namic dependencies result from, e.g., run-time addition and dele-
tion of services (such as establishment and termination of TCP
sessions). Another source of dynamic dependencies is the usage



of routing protocols (such as the Spanning Tree Protocol [16] in
the data-link layer or any dynamic routing protocol in the net-
work layer). Because of the dynamic routing protocols, an end-
to-end service may depend on different sets of host-to-host ser-
vices at different times. In order to reason about the causes of the
end-to-end service failures, we need to determine the currently
used set of host-to-host services. Network management proto-
cols such as SNMP [3] provide the means to determine depen-
dencies established using configuration or real-time algorithms.
For example, the list of the data link layer links belonging to the
current spanning tree may be obtained from SNMP agents on
the bridges/switches using the data contained indot1dBase
Group ofBridge MIB [4]. Updates of the spanning tree may be
triggered bynewRoot andtopologyChange traps [4].

link–A→→→→B link–B→→→→Alink–B→→→→C link–C→→→→Blink–B→→→→D link–D→→→→B

path–A→B path–B→Apath–B→C path–C→Bpath–B→D path–D→B

path–A→C path–A→D path–C→A
path–D→A

path–D→C

path–C→D

(a)

(b)

H1

H2

A B

D C

Figure 2: (a) Example bridge topology with the current spanning
tree marked in bold; (b) Dependency graph built based on the
spanning tree in (a)

In Fig. 2, we present a dependency graph for data link layer
services in the simple network topology composed of four learn-
ing bridges [16], A, B, C, and D. In the dependency graph, we
distinguish betweenlinks, which provide bridge-to-bridge deliv-
ery service, andpaths, which provide packet delivery service
from the first to the last bridge on the packet route from the
source node to the destination node. The delivery service pro-
vided by paths is built of delivery services provided by links.
We find it reasonable to consider unidirectional communication
between two hosts a service since it is possible for a service be-
tween two hosts to fail only in one direction, while in the oppo-
site direction it remains intact. By distinguishing between oppo-
site directions, it becomes possible to detect these situations.

In the non-deterministic fault-model, locating a faulty link ser-
vice when the path service fails may be rather complex. In large
networks, testing all link services is time consuming even if it is
technically possible. Therefore, before any tests are scheduled,
the link services that are the most likely to have caused the path
problem should be determined based on the analysis of the ob-
served symptoms, i.e., path service failures. To build such a fault
hypothesis, in Section 5, we introduce a novel algorithm using an
incremental hypothesis update, which utilizes a causality graph
as a fault propagation model.

4 MAPPING LAYERED DEPENDENCYGRAPH INTO
CAUSALITY GRAPH

A causality graph is a directed acyclic graphG(E,C) whose
nodesE correspond to events and whose edgesC describe
cause-effect relationships between events. Causality graph edges
are labeled with the probability of the causal implication between
events at the head and at the tail of an edge. Parentless causality

graph nodes, which represent root problems, are labeled with the
probabilities of their independent occurrence.

While dependency graphs seem more natural and easier to
build and modify than causality graphs, by dealing with events
rather than the managed system components, causality graphs
are frequently more suitable as a fault propagation model for
fault diagnosis than dependency graphs [6, 21]. A causal model
of the system may be created based on the layered system model
presented in Section 3 with the following steps.
• For every node of the layered dependency graph and for every

failure mode associated with this node, we create a causality
graph node, which may be assigned valuestrue, false, or may
be assigned no value. LetVi be a causality graph node created
for failure modeFj of the dependency graph node representing
ServiceL(a,b) or Network FunctionL(a). NodeVi represents
an event associated with the fact thatServiceL(a,b) or Net-
work FunctionL(a) is in conditionFj . AssignmentVi=true
indicates that eventVi occurred. AssignmentVi=false indi-
cates that eventVi did not occur. WhenVi is not assigned, it
is interpreted as the fact that whether eventVi did or did not
occur is not known.
• For every dependency graph edge X→Y and for every failure

mode of node Y,Fi, determineFj , the failure mode of node
X that results from conditionFi in node Y. This determination
may be performed based on the knowledge of communication
protocols. For example, knowing that layerL protocol imple-
ments an error detection mechanism, one can predict that erro-
neous output produced byServiceL−1(a,b) (conditionF3) re-
sults in data loss inServiceL(a,b) (conditionF4). When layer
L does not implement an error detection mechanism, condition
F3 in ServiceL−1(a,b)results in conditionF3 in ServiceL(a,b).
Let Vi be the causality graph node corresponding to depen-
dency graph node Y and failure modeFi. LetVj be the causal-
ity graph node corresponding to dependency graph node X and
failure modeFj . Add an edge pointing fromVi to Vj .
• Let P be the probability matrix associated with dependency

link X→Y. LabelVi → Vj with P(Fi, Fj).
• If X is a parentless node, labelVj with P(Fj).

A symptom is defined as an observation that a dependency
graph node X, which typically corresponds to a higher-level ser-
vice, is in conditionFj (negativesymptom), or is NOT in con-
dition Fj (positivesymptom). We will denote byS the set of
all possible symptoms. IfVi is the causality graph node corre-
sponding to the dependency graph node X and its failure mode
Fi, then the negative symptom is interpreted as an instantiation
of Vi with valuetrue, and the positive symptom is interpreted as
an instantiation ofVi with value false. The dependency graph
node X, which corresponds to a lower-level service or function,
is at fault if it is in any of the conditionsF1, . . . , F4, say condi-
tion Fi. The set of all possible faults is denoted byF . The fact
that the service or function corresponding to X is in failure mode
Fi is represented by valuetrue assigned to the nodeVi. Fault
localization task is to find the set of root problems, i.e., parent-
less causality graph nodes, that best explains the set of observed
symptoms, i.e., leafless causality graph nodes.

5 FAULT LOCALIZATION ALGORITHMS FOREND-TO-END
SERVICE FAILURE DIAGNOSIS

In this section, we address the problem of finding the set of
root problems that best explains the set of observed positive and
negative symptoms using a causality graph as the fault propaga-
tion model. In general causality graphs, the problem is known
to be NP-hard [15]; the exact calculation of the best explanatory
hypothesis requires the number of steps that is exponential with
respect to the number of causality graph nodes. Moreover, to



the best of our knowledge no heuristic technique has been pro-
posed so far that would allow an approximate calculation of the
symptom explanation hypothesis in polynomial time based on
a causality graph of any shape. Some researchers address this
problem by reducing a causality graph to a much simpler bi-
partite graph using serial-parallel edge reduction operators [21].
Without the complex graph structure, it becomes easier to de-
sign an effective fault localization algorithm. (The technique
presented in this section is suitable for this purpose.) Unfortu-
nately, the causality graph reduction to a bipartite graph makes
it difficult to modify the fault propagation model when network
configuration or the probability distribution changes. We believe
that the fault localization problem should be simplified by divid-
ing it into smaller subproblems; each subproblem focuses on a
subgraph of the original causality graph, typically representing
some level of abstraction.

In this section, we present two algorithms for failure diagnosis
with fault models represented by bipartite causality graphs: a
combinatorial algorithm, sometimes considered optimal [2] and
a novel technique capable of calculating symptom explanation in
an effective, iterative, and incremental fashion.
5.1 Combinatorial algorithm

The combinatorial algorithm [2] presented in this section as-
sumes a naive approach by evaluating all possible combinations
of faults for their ability to explain the observed symptoms. For
a given combination of faultsFi and a set of observed symptoms
So, the measure of goodnessg(Fi,So) is computed as follows.
g(Fi,So) = P{all faults inFi occurred} ·

P{each symptom inSo is caused by at least
one fault inFi}

=
∏
f∈Fi

P (f) ·
∏
s∈So

(
1−

∏
f∈Fi

(
1− P (s | f)

))
(1)

While correlating real-life symptoms, it is frequently assumed
that the number of faults that occurred is small. This suggests
that in the combinatorial algorithm we should start evaluating
fault combinations from those that contain the fewest faults and
terminate the search as soon as an explanation of all symptoms
is known. This leads to the following combinatorial algorithm.

Algorithm 1 (Combinatorial Algorithm)

for i = 1 until i < |F| do
for all i-fault combinations fromF , Fi

computeg(Fi,So)
if at least oneFi is found such thatg(Fi,So) > 0

returnFi such thatg(Fi,So) is maximum

It may be easily calculated that Algorithm 1 performs∑|F|
i=1

(|F|
i

)
· i · |So| = O(2n) operations. However, when multi-

ple concurrent faults are unlikely, the algorithm’s practical com-
plexity may be polynomial. In the simulation study presented in
the following section, we determine if the exponential bound is a
significant factor in practical applications and if implementation
of other, more complicated algorithms is justified.
5.2 Incremental Hypothesis Update

The technique we describe in this section creates a number of
alternative fault hypotheses ranked using a belief metric. The
algorithm proceeds iteratively and after every symptom observa-
tion, it is able to output the set of the most probable hypotheses.
The iteration triggered by theith symptom,Si, creates the set
of hypotheses,Hi, based on the set of hypotheses resulting from
the previous iteration,Hi−1, and the information about causal
relationships between faults and symptoms stored in the causal-
ity graph. Every hypothesishj ∈ Hi is a subset ofF , and is able
to explain all symptoms in{S1, . . . , Si}. We defineHSi as the

set{Fk ∈ F} such thatFk may causeSi, i.e., the causality graph
contains a directed path fromFk toSi. The set of hypothesesHi
is created fromHi−1 by incorporating the explanation,HSi , of
the last observed symptom,Si. Every hypothesishj ∈ Hi is
minimal, i.e., if any faultFl ∈ hj is removed fromhj , hypothe-
sishj is no longer able to explain all the observed symptoms.

The belief metricbi, similarly to the measure of goodness
g() in Algorithm 1, represents the probability that all faults be-
longing tohj have occurred, and that every observed symptom
Sk ∈ {S1, . . . , Si} is explained by at least one of the faults in
hj . Formally,bi(hj) = g(hj , {S1, . . . , Si}).

To incorporate the explanation of symptomSi into the set of
fault hypotheses, in thei-th iteration of the algorithm, we analyze
every hypothesishj ∈ Hi−1. If hj is able to explain symptom
Si, we put it intoHi. The hypotheses inHi−1 that do not explain
Si have to be extended by adding to each of them a fault from
HSi ; in the greedy approach, a new hypothesis may be created
for every fault fromHSi . Unfortunately, this would result in very
fast growth to the size ofHi and, in consequence, would make
the computational complexity of the algorithm unacceptable. In-
stead, we adopt the following heuristics. FaultFl ∈ HSi may be
added tohj ∈ Hi−1 only if the size ofhj , |hj |, is smaller than
the size of any hypothesis inHi−1 that containsFl and explains
symptomSi. The usage of this heuristics is derived from the
fact that the probability of multiple simultaneous faults is small.
Therefore, of any two hypotheses containingFl, the hypothe-
sis that contains the fewest faults is more likely to constitute the
optimal symptom explanation. Thus, since it is not efficient to
keep all possible hypotheses, we remove the hypotheses that are
bigger in size. In the following Algorithm 2,µ(Fl) denotes the
minimum size of a hypothesis that contains faultFl calculated
over all hypotheses in the current hypotheses set.

Algorithm 2 (Incremental Hypothesis Update)
letH0 = {∅} andb0(∅) = 1
for every observed symptomSi:

letHi = ∅
for all Fl ∈ F let µ(Fl) = |F|
for all hj ∈ Hi−1 do

for all Fl ∈ hj such thatFl ∈ HSi do
µ(Fl) = min(µ(Fl), |hj |)

addhj toHi and calculatebi(hj)
for all hj ∈ Hi−1 −Hi do

for all Fl ∈ F ∩HSi such thatµ(Fl) > |hj | do
addhj∪{Fl} toHi and computebi(hj∪{Fl})

choosehj ∈ H|So| such thatb|So|(hj) is maximum
We illustrate the algorithm with the following example. The fault
model in Fig. 3 presents causal relationships between faultsF1,
F2, F3, andF4 and symptomsS1, S2, andS3. Suppose the
symptoms are observed in orderS1, S3 andS2. Initially, the only
available hypothesis is∅, which indicates that, given no symp-
tom observations, we conclude that no faults occurred. Then,
symptomS1 arrives, whose explanation isHS1 . As a result of
extending∅, we obtainH1. The explanation for symptomS3

is HS3 . SinceF1 andF2 belong to hypotheses{F1} and{F2},
respectively,{F1} and{F2} are placed inH2 and bothµ(F1)
andµ(F2) are set to 1. Hypothesis{F3} does not explainS3;
therefore, it has to be extended with faults inHS3 . However, we
cannot useF1 andF2 since theirµ(.)s≤ |{F3}|. The only ex-
tension possible is{F3, F4}. In the next iteration, after symptom
S2 has been observed, we are allowed to extend{F1} by adding
fault F3 sinceµ(F3) = |{F3, F4}| = 2 while |{F1}| = 1, but
we are not allowed to extend{F1} by adding faultF2, because
µ(F2) = |{F1}| = 1.

An important problem to solve is the efficient computation



S1 S3S2

F1 F2 F3 F4

S1 : HS1 = {F1, F2, F3} → H1 = {{F1}, {F2}, {F3}}
S3 : HS3 = {F1, F2, F4} → H2 = {{F1}, {F2}, {F3, F4}}
S2 : HS2 = {F2, F3} → H3 = {{F1, F3}, {F2}, {F3, F4}}

Figure 3: Example of incremental hypothesis updating: (a) Ex-
ample causality graph; (b) Sets of hypotheses created after ob-
serving symptomsS1, S3, andS2.

of bi(hj). We observe thatbi(hj) may be calculated iteratively
based onbi−1(hj) as follows:
1. If hj ∈ Hi andhj explainsSi+1

bi+1(hj) = bi(hj)(1−
∏

Fl∈hj∩HSi+1

(1− P (Si+1|Fl)) (2)

2. Otherwise, ifFl explainsSi+1

bi+1(hj∪{Fl}) = bi(hj)P (Fl)P (Si+1|Fl) (3)

To calculate the upper bound for the worst case computa-
tional complexity, we observe that the calculation ofbi(hj) is
O(|hj ∩HSi |) ⊆ O(|HSi |) ⊆ O(n), since in an n-node network
a path may be composed of at mostn links. The calculation of
bi(hj ∪{Fl}) is O(1). The algorithm performs|So| iterations.
In every iteration we execute twofor loops. The first loop re-
quiresO((maxi(|Hi|)|HSi |) steps. The second loop requires
O(maxi(|Hi|)|HSi | · 1) operations. Therefore, the complexity
of the entire algorithm isO(|So|maxi(|Hi|)n). To get the pre-
cise bound we need to determine the bound formaxi(|Hi|). It
turns out that in rare cases the size of the hypothesis set may
grow exponentially. To avoid this problem we set a limit on the
number of hypotheses that may be created in each iteration; the
least likely hypotheses are rejected when the limit is exceeded.
The price we pay for this modification is that the best hypothesis
is no longer guaranteed to be minimal. If the limit set on the size
of the hypothesis set isO(n), operations involved in controlling
the size ofHi do not increase the theoretical bound on the com-
plexity of the entire algorithm. In the simulation study described
in Section 6, we used the limit of2n. Thus, the complexity is
O(|So|n2), i.e.,O(|So|n2), and in the worst case it isO(n4).

6 SIMULATION STUDY AND COMPARISON OF
ALGORITHMS

The algorithms presented in Section 5 were implemented in
Java and evaluated through simulation on a set of randomly gen-
erated network topologies. For evaluation purposes, as a real-
life application domain, we chose the end-to-end service failure
diagnosis in the data link layer in a bridged network in which
the path ambiguity is resolved using the Spanning Tree Pro-
tocol [16]. As a result, the shape of the considered network
topologies is reduced to trees, thus making random generation
of dependencies resembling real-life scenarios easier. We var-
ied network size from 5 to 100 network nodes (25 nodes in the
case of the Combinatorial algorithm). For every graph size, we
randomly generated 100 spanning trees along with link failure
probabilities and conditional probabilities on causal links be-
tweenlink andpath nodes. The link failure probabilities were
uniformly distributed random values of the order of10−6, and
the conditional probabilities on causal links were uniformly dis-
tributed random values in the range[0.5, 1).

To evaluate the algorithms, we randomly generated the set
of malfunctioning links,Fc, based on their failure probabilities.
Then, based on the conditional probabilities on causal links be-
tweenlink andpathnodes, and onFc symptom probability dis-
tribution has been calculated. Then, the set of observed symp-
toms,So, resulting from the faults inFc was randomly gener-
ated. The observed symptoms were then randomly ordered. The
ordered setSo was supplied as an input to the algorithms pre-
sented in Section 5. Their output, the set of detected faults,Fd,
was compared withFc. We used the following two metrics to
evaluate the algorithms.

detection rate=
|Fd ∩ Fc|
|Fc|

, false positive rate=
|Fd −Fc|
|Fd|

In the above equations,detection raterepresents the percentage
of faults occurring in the network that were detected by an al-
gorithm. False positive raterepresents the percentage of faults
proposed by the algorithm that were not occurring in the network
in a considered experiment, i.e., they were false fault hypotheses.
For every generated network topology, we executed 200 such ex-
periments calculating the mean detection and false positive rates.

Figures 4 and 5 present the relationship between detection
rate and false positive rate, respectively, and network size. The
mean for a particular network size is an average over the mean
detection (or false positive) rates for particular network topolo-
gies of that size, within statistically computed confidence inter-
vals. We observe that there is no statistically significant differ-
ence in the detection and false positive rates between the Incre-
mental and Combinatorial algorithms.

The experiments revealed that the detection and false positive
rates depend on the network size. For small (5-node) networks,
the number of symptoms observed is typically small (less than
10), which in some cases is not sufficient to precisely pinpoint
the actual fault. When the network gets bigger, the number of
observed symptoms increases, thereby increasing the ability to
precisely detect the faults. Therefore, with the growing num-
ber of network nodes, the detection rate increases and the false
positive rate decreases. On the other hand, as the network size
grows, the multi-fault scenarios are getting more and more fre-
quent. In multi-fault scenarios, it is rather difficult to detect all
actual faults, which leads to partially correct solutions. When the
number of alternative explanations is large, the algorithms are
likely to choose a very probable, but not correct solution. Thus,
for even bigger networks, detection rate decreases and false pos-
itive rate increases (Figures 4 and 5). The gradual drop of the
detection rate observed in the case of Algorithm 2 suggests that
this drop may be asymptotic. One can also conclude that both
analyzed algorithms have the very satisfactory detection rate of
at least 95% (for networks larger than 5 nodes), and that false
positive rate for Algorithm 2 does not exceed 4%.

Fig. 6 presents a comparison of execution times for the Com-
binatorial and Incremental algorithms in the presence of one and
two network faults. In the figure, the confidence intervals were
omitted because of their negligible size. The Incremental algo-
rithm performs better than the Combinatorial algorithm regard-
less of the number of faults and network size, and the differ-
ence between the algorithms increases sharply with the increas-
ing number of faults in the system. The correlation time of the
Incremental algorithm measured over the entire tested network
size range is presented in Fig. 7. We find the execution time of
the order of several seconds even for large networks and multi-
fault scenarios very encouraging.

7 CONCLUSIONS ANDFUTURE WORK

In this paper, we presented a refinement of a layered model
template proposed in [5] that allows non-deterministic modeling
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of both availability and performance related problems associated
with physical and abstract system components. The refinement
also includes micro-models of end-to-end services provided in
given protocol layers between end hosts via multiple intermedi-
ate hosts. We introduced and evaluated an event-driven fault lo-
calization algorithm capable of creating a failure explanation hy-
pothesis in an incremental fashion. We showed that the proposed
algorithm has close to the optimal accuracy and very promising
performance.

Our future research will include the analysis of positive symp-
toms (i.e., the lack of failure observations), which may be used
to decrease confidence in the failure of those hop-to-hop services
for which many resultant end-to-end service failures did not oc-
cur. We will also equip the algorithm with the ability to deal with
lost and spurious symptoms, i.e., symptoms which do not indi-
cate any existing faults. We also plan to evaluate the algorithm
on network topologies resembling the topology of the Internet.

In this paper, we considered the situation in which the routing
information necessary to build a dependency model for end-to-
end services is available. However, to obtain this information
may be time consuming and require substantial amount of re-
sources needed to install and run management agents on network
devices, which collect the management information, and to regu-
larly transmit the routing information over the network. In future
research, we would like to investigate diagnosing end-to-end ser-
vice failures without access to the accurate routing information.
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