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Abstract- Fault localization is a process of isolating faults respon- a causality graph. Section 5 introduces an iterative and incre-
sible for the observable malfunctioning of the managed system. Un- mental algorithm for diagnosing end-to-end service failures. In
til recently, fault localization efforts concentrated mostly on diag- ~ Section 6, the incremental algorithm is evaluated.
nosing faults related to the availability of network resources in the
lowest layers of the protocol stack. This paper focuses on end-to- -2 MOTIVATION AND RELATED WORK ,
end service failure diagnosis as a critical step towards multi-layer ~ Various fault localization techniques were investigated in the
fault localization in an enterprise environment. By refining a previ-  Past. A comparative study of these techniques has been pre-
ously proposed modeling technique, we present a universal method Sented in [18, 20]. In this section, we survey recent publications
of modeling both availability and performance related problems that address the problem of multi-layer fault diagnosis.
associated with end-to-end services in a non-deterministic fashion. ~ Gopal et al. [5] presented a model in which the definition of
We introduce and evaluate a novel algorithm that allows an event- €ntity dependencies is based on real-life relationships between

driven, incremental diagnosis of end-to-end service failures. layers on a single host and between network nodes in a sin-
gle protocol layer. The model addresses vertical failure propa-
1 INTRODUCTION gation by allowing relationships between abstract functions and

Fault diagnosis is a central aspect of network fault managgervices between neighboring layers to be modeled. It does not,
ment. The core of fault diagnosis is fault localization — a proced¥wever, provide means to represent multiple possible failure
of analyzing external symptoms of network disorder to isolat®/Pes of a particular function or service, nor does it provide any
possibly unobservable faults responsible for the symptoms’ ogupport for modeling non-deterministic system behavior.
currences. Traditionally, fault localization has been performed Yemanja [1] defines a hierarchical set of entity models, which
by an expert based on disorder symptoms displayed on a m&grespond to physical or conceptual network entities, e.g., net-
agement console. As systems grew |arger and more Comp|éy€)rk Iayers. Entlty mOdE|S are IltlStantlaIEd with the da.ta ob-
automated fault localization techniques became critical. Untifined from the arriving event attributes or from the configura-
recently, fault localization effort concentrated mostly on diagtion database, and communicate using internal composite events.
nosing faults related to network connectivity in lower layers of\s events propagate up the entity model hierarchy, their seman-
the protocol stack (typically the physical and data-link layersjfics becomes more and more abstract so that higher-level scenar-
and its major goal was to isolate faults related to the availabiliti®s can correlate higher-level symptoms with lower-level failures
of resources, such as broken cable, inactive interface, etc. Recéfihout the detailed knowledge of the low-level network state.
advances in the deployment of enterprise services such as virtuaBoth Yemanja [1] and the layered system model [5] address
private networks and application service provision require thafe issue of vertical fault propagation. They do not discuss the
fault localization also focus on diagnosing performance prot§ituation in which an explanation of a higher-level problem (e.g.,
lems in multiple layers of the protocol stack including the appliend-to-end service failure) must be selected from a large set
cation and service layers. Modern enterprise environments ifif possible lower-level failures (i.e., host-to-host link failures).
pose several challenges on the fault localization problem, whidHis situation results from horizontal fault propagation and is a
include modeling and reasoning about (1) the system state in v¥g"Y common problem in large communication systems.
ious protocol layers, (2) interactions between protocol layers, (3) SMARTS InCharge system [21] allows the multi-layer sys-
versatile types of failures, and (4) non-determinism within thé&m model to be built using a high-level language, called
system structure and its observed state. MODEL [14]. (MODEL would be suitable as a language for

This paper addresses the above issues by proposing a félgfining dependencies within the layered model used in this pa-
management technique suitable for diagnosing both availabilier-) For fault localization, InCharge utilizes the codebook tech-
and performance problems across multiple layers of the protBidue [21], which is very efficient and is resilient to the noise in
col stack. We describe a system model created by refining tHee alarm data. However, the codebook technique is difficult to
layered dependency graph introduced in [5]. The refined mod@pply to the correlation of transport and application layer events
allows not only vertical but also horizontal failure propagation t&ince relationship changes between managed objects, which are
be seamlessly represented by including micro-models of end-féequent in higher layers, require reconfiguration of the code-
end services (such as IP end-to-end communication) providedfok. Although Kliger et al. [10] proposed a model that allows
a protocol layer by means of multiple intermediate hosts (such Probabilistic code-book to be built, the code-book technique
as routers). Non-deterministic dependencies between the motks a non-deterministic decoding schema. One of the appli-
components make it possible to represent uncertainty associaéédions of the algorithm introduced in this paper is to provide a
with relationships between the communication system entitiedecoding schema for the probabilistic code-book approach [21].
The algorithm introduced in this paper allows end-to-end service In our previous work, we investigated the application of belief
failures to be diagnosed in an iterative and incremental fashiometworks to the problem of end-to-end service failure diagno-

In Section 2, we present related work on multi-layer fault diagsis [19]. The algorithm proposed in this paper is conceptually
nosis, and motivate the need for end-to-end service failure diagimpler and has lower computational complexity. However, it
nosis. Section 3 presents the layered dependency graph tempfes not possess certain properties that the belief network ap-
as the system model for multi-layer fault diagnosis. In Section #roach does, e.g., it may not predict service failures, nor is it
we present the mapping of the dependency graph template intgeful for the planning of testing procedures.



3 LAYERED MODEL FORALARM CORRELATION hop-to-hop services offered by laybbetween subsequent hops

In communication systems, a failure of a system componenn the path of the layeE packet from node to nodec (such
may affect the operation of other system components. The abiliag Serviceg,_(a,c) in Fig. 1). The ability to reason about fail-
of a fault in one entity to change the state of other entities is reires observed in an end-to-end service, i.e., symptoms, and trace
ferred to as fault propagation. Because of fault propagation, tilgem down to particular host-to-host service failures, i.e., faults,
effects of abnormal operation of functions or services provideig critical in order to perform fault diagnosis in complex network
by lower layers may be observed in higher layers (vertical propepologies, and is the primary focus of the presented research.
agation). Similarly, a fault may be observable on network hosts, In this paper, besides the elimination of the protocol nodes,
which are distant from the location of the fault occurrence (horthe model presented in [5] is refined as follows. With every
zontal propagation). In order to find explanations of higher-layefependency graph node we associate multiple failure modes
problems, it is useful to create a fault propagation model. Faulfi, . .., F, which represent availability and performance prob-
management systems model fault propagation by representiegns pertaining to the service or function represented by the de-
either causal relationships between events [6, 21] or depend@endency graph node. In real-life systems, the following condi-
cies between communication system entities [5, 7, 9]. tions are typically considered a service/function failure:

For the purpose of fault diagnosis, communication systems £ — service/function ceases to exist (e.g., the cable connec-
are frequently modeled in a layered fashion imitating the layeredtion is broken),
architecture of the modeled system [5, 12, 21]. In this papes, F» — service/function introduces unacceptable delay (e.g., one
we adopt the layered dependency graph template proposed in [5pf the hop-to-hop links in network layer is congested),
and refine it to enable the representation of end-to-end servicesfs — service/function produces erroneous output (e.g., bit er-
non-determinism and performance problem modeling. rors are introduced in a serial link between routers),
3.1 Layered model template e [, — servicef/function occasionally does not produce output

In the layered fault model [5], components are generally di- (€-9., packets are lost due to buffer overflow). _ _
vided intoservices protocols andfunctions[5]. A service of- The knowledge of communication protocols makes it possible
fered by protocol layef. between nodea andb (Service (a,b) 10 predict which of these conditions will occur in a higher-level
is implemented in terms of laydr functions on hosta andb ~ service/function if any of these conditions occur in one or more
(Network Functions(a) and Network Functions(b)), and the lower-layer services/functions.
layer L protocols through which hosts andb communicate. 3.2 Representation of non-determinism in the layered model
The layerL protocols running between hosisandb use layer Most fault localization techniques proposed to date [6, 8, 13,
L — 1 functions on hosta andb, and services that laydr — 1 21] utilize a deterministic fault model in which the dependency
offers between hosts andb. Layer L functions on node de- link from a to b implies that ifa fails, thenb also fails. The
pend on layed. — 1 functions on node&. The recursive depen- deterministic model is typically sufficient to represent faults in
dencies between services, protocols and functions constitutdowver layers of the protocol stack related to the availability of
dependency graph as described in [5]. In this paper, we finddervices offered by these layers. However, these fault local-
useful to eliminate the protocol nodes. This model simplificatiofzation techniques are rather difficult to apply when faults are
is justified, since it may be assumed that the protocols are implByzantine [16], e.g., related to service performance. In the upper
mented correctly; under this assumption, protocols cannot col@yers, frequent reconfigurations of service dependencies make it
tribute explanations to service failures. Fig. 1 shows the restimpossible to keep such a deterministic model up-to-date.
tant general dependency graph for a layered network, in which Uncertainty about dependencies between communication sys-

Servicg (a,c)directly depends oBervicg,_(a,c). tem entities is represented by assigning probabilities to the links
. in the dependency or causality graph [9, 10]. Some commonly
/,Ser vice 4 (a.c), _ accepted assumptions in this context are that (1) given &ult
A : ~A the occurrences of faults andc that may be caused ky are
Nawor‘;“gz;;;lns 5 v : \letworllfgf;;:olns @  independent, (2) given the occurrences of faaltandb that
i L _Service, (a,c) — may cause evemn} whethera actually causesis independent of
v R : “a v whetherb causes (OR relationship between alternative causes
Layer L . Layer L of the same event), and (3) faults are independent of one another.
Network Functions, (3) v Network Functions, (0) We take advantage of these assumptions throughout the paper.
: _ ~Service y(a,0)~ _ ! A Ugllke o(;her publlcre]xtlohns on tho||s sEbJect [9%,_ t?isf plaper us(cjes
. A the dependency graph whose nodes have multiple failure modes.
; A/S,egwcg_\l(\e:b) A/S/GLVICQL_\:L(\EC) i Therefore, instead of a single probability value, we assign prob-
ability matrices to the dependency links. LEk denote a set

Layer L-1 Layer L-1 Layer L-1

Network Functions, _,(a)[ [Network Functions,__,(b)["|Network Functions, _,(C) of failure modes related to service or functiéf, and 7y de-

note a set of failure modes related to the dependent service or
Figure 1: Refined layered network dependency model  functionY'. The label assigned to dependency Ihk— X is a
two-dimensional matrix*y | x |Fx|, P, such thaP(F};, F;) =
. , P{service/functiort” is in failure modeF;| service/functionX
The dependency graph template obtained from services, peQ~ <. , _ L~
tocols, and functions in different layers provides a macro—vieIg In failure moder’}, wherel; € 7y andF; € Fx.

of the relationships that exist in the system. To incorporate tf\‘br!ég Obtaining the dependency _graph .
micro-view of the relationships within particular model compo- "€ dependency graph described in Section 3.1 records two

nents, the layered model should be further refined to include pd¥P€s Of dependencies between services and functions in neigh-
sibly complex relationships within services, protocols and func20ring protocol layersstatic and dynamicdependencies. Dy-

tions in the same layer. This paper introduces a micro-modBfmic dependencies result from, e.g., run-time addition and dele-

of end-to-end services; an end-to-end service offered by laydPn Of services (such as establishment and termination of TCP
L between hosts andc is implemented in terms of multiple sessions). Another source of dynamic dependencies is the usage




of routing protocols (such as the Spanning Tree Protocol [16] igraph nodes, which represent root problems, are labeled with the
the data-link layer or any dynamic routing protocol in the netprobabilities of their independent occurrence.

work layer). Because of the dynamic routing protocols, an end- While dependency graphs seem more natural and easier to
to-end service may depend on different sets of host-to-host sewild and modify than causality graphs, by dealing with events
vices at different times. In order to reason about the causes of ttagher than the managed system components, causality graphs
end-to-end service failures, we need to determine the currentye frequently more suitable as a fault propagation model for
used set of host-to-host services. Network management profault diagnosis than dependency graphs [6, 21]. A causal model
cols such as SNMP [3] provide the means to determine depeof-the system may be created based on the layered system model
dencies established using configuration or real-time algorithmgresented in Section 3 with the following steps.

For example, the list of the data link layer links belonging to the For every node of the layered dependency graph and for every
current spanning tree may be obtained from SNMP agents onfailure mode associated with this node, we create a causality

the bridges/switches using the data containeddtidBase graph node, which may be assigned valtras, false or may
Group ofBridge MIB[4]. Updates of the spanning tree may be be assigned no value. L&} be a causality graph node created
triggered bynewRoot andtopologyChange traps [4]. for failure modeF; of the dependency graph node representing
Service,(a,b) or Network Function(a). NodeV; represents
H A B an event associated with the fact ti&ervice (a,b) or Net-
@ 1 work Function,(a) is in condition F;. AssignmentV;=true

| indicates that event; occurred. Assignment;=falseindi-
cates that evenit; did not occur. WherV; is not assigned, it
is interpreted as the fact that whether evéntid or did not
occur is not known.

e For every dependency graph edge»X and for every failure
mode of node YF;, determinel;, the failure mode of node
X that results from conditioi; in node Y. This determination
may be performed based on the knowledge of communication
protocols. For example, knowing that layeprotocol imple-
ments an error detection mechanism, one can predict that erro-
neous output produced t8ervice,_(a,b) (condition F3) re-
sults in data loss iservicg, (a,b) (condition £;). When layer
L does notimplement an error detection mechanism, condition
F3in Servicg,_(a,b)results in conditior in Servicg, (a,b).

Figure 2: (a) Example bridge topology with the current spanning Let V; be the causality graph node corresponding to depen-

tree marked in bold; (b) Dependency graph built based on thedency graph node Y and failure moéle LetV; be the causal-
spanning tree in (a) ity graph node corresponding to dependency graph node X and

. . failure modeF’;. Add an edge pointing fror; to V.

In Fig. 2, we present a dependency graph for data link layer J " - : LI
services in the simple network topology composed of four learr’- II'_eIEZE bitEebprI(%E)ablll"?/ mf‘gfg %ssgmated with dependency
ing bridges [16], A, B, C, and D. In the dependency graph, we Ilan' —r.la t(la i dj VIVIb ( tlﬁ 75)F
distinguish betweefinks, which provide bridge-to-bridge deliv- * ' IS a paren ((ajs?_node, abg} Vl‘a" (£5). hat a depend
ery service, angaths which provide packet delivery service ﬁymgtom 'Sh. ehlne. aﬁ an o servaélon t ?]t. 6;1 elpenl ency
from the first to the last bridge on the packet route from thd2Pn node X'dW. ich typically corresponds to a higher-level ser-
source node to the destination node. The delivery service pri<e: ';'n congltionr; (negatw\;e\?ymp”todm), or 'E N%T In conf-
vided by paths is built of delivery services provided by linksaton £ (positivesymptom). We will denote by the set o

e ; PP .. all possible symptoms. I¥; is the causality graph node corre-
We find it reasonable to consider unidirectional communicatiof} ' v . .
between two hosts a service since it is possible for a service pnding to the dependency graph node X and its failure mode

tween two hosts to fail only in one direction, while in the oppo- i, then the negative symptom is interpreted as an instantiation

site direction it remains intact. By distinguishing between oppon Vi with valuetrue, and the positive symptom is interpreted as

site directions, it becomes possible to detect these situations. an instantiation of; with valuefalse The dependency graph

In the non-deterministic fault-model, locating a faulty link ser{1°d€ X, which corresponds to a lower-level service or function,
8 at fault if it is in any of the condition$, ..., Fy, say condi-

vice when the path service fails may be rather complex. In lar ; :

networks, testing all link services is time consuming even if it igo" £i- The set of all possible faults is denoted By The fact

technically possible. Therefore, before any tests are schedul®2gtthe serwcetz odr EJnCtI(IDLr‘:Eﬁorrespondén? t?hX is Igéalltllzre rlrtwde
: : - .'is represented by valueue assigned to the nodg. Fau

the link services that are the most likely to have caused the p I%'calization task is to find the set of root problems, i.e., parent-

problem should be determined based on the analysis of the B . .
served symptoms, i.e., path service failures. To build such a falfics causality graph nodes, that best explains the set of observed

hypothesis, in Section 5, we introduce a novel algorithm using aymptoms, i.e., leafless causality graph nodes.
incremental hypothesis updatehich utilizes a causality graph 5 FauLT LOCALIZATION ALGORITHMS FOREND-TO-END

as a fault propagation model. SERVICE FAILURE DIAGNOSIS
4 MAPPING LAYERED DEPENDENCYGRAPH INTO In this section, we address the problem of finding the set of
CAUSALITY GRAPH root problems that best explains the set of observed positive and

A causality graph is a directed acyclic grafiF, C) whose negative symptoms using a causality graph as the fault propaga-
nodes E correspond to events and whose edgéglescribe tion model. In general causality graphs, the problem is known
cause-effect relationships between events. Causality graph edgebe NP-hard [15]; the exact calculation of the best explanatory
are labeled with the probability of the causal implication betweehypothesis requires the number of steps that is exponential with
events at the head and at the tail of an edge. Parentless causaégpect to the number of causality graph nodes. Moreover, to



the best of our knowledge no heuristic technique has been p&et{ F;, € F} such that, may cause;, i.e., the causality graph
posed so far that would allow an approximate calculation of theontains a directed path frof, to S;. The set of hypothesés;
symptom explanation hypothesis in polynomial time based as created fronf{;_; by incorporating the explanatio#s,, of
a causality graph of any shape. Some researchers address tiislast observed symptons;. Every hypothesis; € H; is
problem by reducing a causality graph to a much simpler bminimal, i.e., if any faultF; € h; is removed fromt;, hypothe-
partite graph using serial-parallel edge reduction operators [2¥jsh; is no longer able to explain all the observed symptoms.
Without the complex graph structure, it becomes easier to de-The belief metrich;, similarly to the measure of goodness
sign an effective fault localization algorithm. (The techniquey() in Algorithm 1, represents the probability that all faults be-
presented in this section is suitable for this purpose.) Unfortlenging to’; have occurred, and that every observed symptom
nately, the causality graph reduction to a bipartite graph makeg € {5;,...,S;} is explained by at least one of the faults in
it difficult to modify the fault propagation model when networkh;. Formally,b; (h;) = g(h;, {S1,...,S:}).
configuration or the probability distribution changes. We believe To incorporate the explanation of symptdinto the set of
that the fault localization problem should be simplified by dividfault hypotheses, in theth iteration of the algorithm, we analyze
ing it into smaller subproblems; each subproblem focuses onegery hypothesié; € H;_;. If h; is able to explain symptom
subgraph of the original causality graph, typically representing;, we put it into?;. The hypotheses ii;_; that do not explain
some level of abstraction. S; have to be extended by adding to each of them a fault from
In this section, we present two algorithms for failure diagnosigi, ; in the greedy approach, a new hypothesis may be created
with fault models represented by bipartite causality graphs: far every fault fromHg,. Unfortunately, this would result in very
combinatorial algorithm, sometimes considered optimal [2] anfast growth to the size df{; and, in consequence, would make
a novel technigue capable of calculating symptom explanation the computational complexity of the algorithm unacceptable. In-
an effective, iterative, and incremental fashion. stead, we adopt the following heuristics. Faljltc Hg, may be
5.1 Combinatorial algorithm added toh,; € H,_; only if the size ofh;, |h;|, is smaller than
The combinatorial algorithm [2] presented in this section aghe size of any hypothesis i;_, that contains; and explains
sumes a naive approach by evaluating all possible combinatiosmptomS;. The usage of this heuristics is derived from the
of faults for their ability to explain the observed symptoms. Fofact that the probability of multiple simultant_eous faults is small.
a given combination of fault&; and a set of observed symptomsTherefore, of any two hypotheses containifig the hypothe-
S,, the measure of goodnegéF;, S, ) is computed as follows.  sis that contains the fewest faults is more likely to constitute the

9(F;, S,) = P{all faults in F; occurred - optimal symptom explanation. Thus, since it is not efficient to
P{each symptom i, is caused by at least keep all possible hypotheses, we remove the hypotheses that are
one faultinF;} bigger in size. In the following Algorithm 2,(F;) denotes the

_ minimum size of a hypothesis that contains fakjitcalculated
- H P(f)- 11 (1 N fH (1 —P(s] f)>) @) over all hypotheses in the current hypotheses set.
fEF, s€ES, €F;

While correlating real-life symptoms, it is frequently assumedhlgorithm 2 (Incremental Hypothesis Update)
that the number of faults that occurred is small. This suggests €t%o = {0} andbo(0) =1 _
that in the combinatorial algorithm we should start evaluating fOr very observed symptoff:

fault combinations from those that contain the fewest faults and letH; =0
terminate the search as soon as an explanation of all symptoms ~ forall F; € F let u(F;) = | F|
is known. This leads to the following combinatorial algorithm. forall h; € H;_, do
. . . ! for all F; € h; such thatF; € Hg, do
Algorithm 1 (Combinatorial Algorithm) w(Fy) = min(u(F), |hy))
fori = 1 untili < |F| do addh; to 'H; and calculateb;(h;)
for all 4-fault combinations fronf, F; forall h; € H;—1 —'H; do
computey(F;, S,) for all F; € F N Hg, such thatu(F;) > |h;| do
if at least oneF; is found such thag(F;, S,) > 0 addh;U{F}} to'H; and compute; (h; U{F}})
return 7; such thay(F;, S, ) is maximum chooseh; € Hs,| such thats |(h;) is maximum

It mav be easily calculated that Algorithm 1 perform We illustrate the algorithm with the following example. The fault
7 y\fl ) y ) 9 P i Smodel in Fig. 3 presents causal relationships between fauylts
ooy (1) i+ |S,| = O(2™) operations. However, when multi- £, F;, and Fy and symptomsS;, S», and S;. Suppose the
ple concurrent faults are unlikely, the algorithm’s practical comsymptoms are observed in ordgr, S5 andS,. Initially, the only
plexity may be polynomial. In the simulation study presented igvailable hypothesis i, which indicates that, given no symp-
the following section, we determine if the exponential bound is ggm observations, we conclude that no faults occurred. Then,
significant factor in practical applications and if inplementatioymptoms, arrives, whose explanation &s,. As a result of
of other, more complicated algorithms is justified. extending®, we obtain{;. The explanation for symptorfs
5.2 Incremental Hypothesis Update is Hg,. SinceF; and F; belong to hypotheselsF; } and{F,},
The technique we describe in this section creates a numberregpectively,{ 1} and{F:} are placed ir{ and bothu(F})
alternative fault hypotheses ranked using a belief metric. Thend . (F:) are set to 1. HypothesigFs} does not explairbs;
algorithm proceeds iteratively and after every symptom observtierefore, it has to be extended with faultsH,. However, we
tion, it is able to output the set of the most probable hypothesesannot use, and F; since theiru(.)s < |{F3}|. The only ex-
The iteration triggered by th&h symptom,S;, creates the set tension possible i§F5, Fy}. In the next iteration, after symptom
of hypothesesk;, based on the set of hypotheses resulting fron§; has been observed, we are allowed to extehid by adding
the previous iteration};_;, and the information about causalfault F5 sinceu(F3) = |{F3, F4}| = 2 while |{F1}| = 1, but
relationships between faults and symptoms stored in the causak are not allowed to extendF; } by adding faultF,, because
ity graph. Every hypothesis; € H; is a subset of, andis able p(F) = [{F1}| = 1.
to explain all symptoms i§51, ..., S;}. We defineHg, as the An important problem to solve is the efficient computation



To evaluate the algorithms, we randomly generated the set
of malfunctioning links,F., based on their failure probabilities.
Then, based on the conditional probabilities on causal links be-
tweenlink andpath nodes, and otF, symptom probability dis-
tribution has been calculated. Then, the set of observed symp-
toms, S,, resulting from the faults irF. was randomly gener-
ated. The observed symptoms were then randomly ordered. The

Sy : Hg, ={F,F5, F3} — Hy = {{Fi},{F:2},{F3}} ordered setS, was supplied as an input to the algorithms pre-
Sy Hg, = {Fy, Fy, Fy} — Hy = {{F\}, {Fa}, {Fs, Fy}} sented in Section 5. Their output, the set of detected fafifs,
S, - H; _ {F27F3’} My = (R F3}7 {F2}’ {F37F4}} was compared witlF.. We used the following two metrics to

evaluate the algorithms.
Figure 3: Example of incremental hypothesis updating: (a) Eg%tection rate |Fa N Fel | Fa — Fel
ample causality graph; (b) Sets of hypotheses created after ob- | F | Fal
serving symptoms;, Ss, andSs. In the above equationdetection rateepresents the percentage
of faults occurring in the network that were detected by an al-
of b;(h;). We observe thal;(h;) may be calculated iteratively gorithm. False positive rateepresents the percentage of faults

, false positive rate=

based orb;_1 (h;) as follows: proposed by the algorithm that were not occurring in the network
1. If h; € H; andh; explainsS;1 in a considered experiment, i.e., they were false fault hypotheses.
bist(hy) = bi(hy)(1 — H (1 - P(Sis1|F)) @) For every generated network topology, we executed 200 such ex-

periments calculating the mean detection and false positive rates.

. FichiNHs,; Figures 4 and 5 present the relationship between detection
2. Otherwise, ifF; explainsS; rate and false positive rate, respectively, and network size. The
biy1(h;U{F1}) = b;(h;)P(F;)P(S;41|F1) (3) mean for a particular network size is an average over the mean

detection (or false positive) rates for particular network topolo-

To calculate the upper bound for the worst case computgies of that size, within statis_tically cor_nputed cpnfidence inter-
tional complexity, we observe that the calculationbgfh;) is vals. We observe _that there is no s_tatlsucally significant differ-
O(lh;NHg,|) € O(|Hg,|) € O(n), since in an n-node network ence in the detect_|on and false positive rates between the Incre-
a path may be composed of at masiinks. The calculation of mental and Combinatorial algorithms. _ N
bi(hj U{F;}) is O(1). The algorithm performsS,| iterations. The experiments revealed th_at the detection and false positive
In every iteration we execute twior loops. The first loop re- rates depend on the network size. For small (5-node) networks,
quires O((max;(|H;|)|Hs,|) steps. The second loop requiresthe number of symptoms observed is typically small (less than
O(max;(|H;|)|Hs,| - 1) operations. Therefore, the complexity 10), which in some cases is not sufficient to precisely pinpoint
of the entire algorithm i€)(|S,| max;(|H;|)n). To get the pre- the actual fault. When the network gets_b|gger,_ the numb_er of
cise bound we need to determine the boundrifa; (|7;). It observed symptoms increases, thereby increasing the ability to
turns out that in rare cases the size of the hypothesis set migcisely detect the faults. Therefore, with the growing num-
grow exponentially. To avoid this problem we set a limit on théer .o_f network nodes, the detection rate increases and the fallse
number of hypotheses that may be created in each iteration; gpesitive rate decreases. On the other hand, as the network size
least likely hypotheses are rejected when the limit is exceedegfows, the multi-fault scenarios are getting more and more fre-
The price we pay for this modification is that the best hypothesiuent. In multl-f_ault scenarios, !t is rather dlffICU.|t to detect all
is no longer guaranteed to be minimal. If the limit set on the siz&ctual faults, which leads to partially correct solutions. When the
of the hypothesis set ©(n), operations involved in controlling number of alternative explanations is large, the algorithms are
the size ofH; do not increase the theoretical bound on the corrlikely to choose a very probable, but not correct solution. Thus,
plexity of the entire algorithm. In the simulation study describedior even bigger networks, detection rate decreases and false pos-
in Section 6, we used the limit &f». Thus, the complexity is itive rate increases (Figures 4 and 5). The gradual drop of the

O(|S,|n?), i.e.,0(|S,|n?), and in the worst case it ©(n?). detection rate observed in the case of Algorithm 2 suggests that
6 SIMULATION STUDY AND COMPARISON OF this drop may be asymptotic. One can also conclude that both
ALGORITHMS analyzed algorithms have the very satisfactory detection rate of

A least 9% (for networks larger than 5 nodes), and that false

The algorithms presented in Section 5 were |mpIemented€QP_SitiVe rate for Algorithm 2 does not exceei 4

Java and evaluated through simulation on a set of randomly g Fio. 6 i . f tion ti for the C
erated network topologies. For evaluation purposes, as a real- '9- © Présents a comparison of eéxecution imes for the L.om-
life application domain, we chose the end-to-end service failufdnatorial and Incremental algorithms in the presence of one and
diagnosis in the data link layer in a bridged network in whiciWwo network faults. In the figure, the confidence intervals were

the path ambiguity is resolved using the Spanning Tree F,r8_rnitted because of their negligible size. The Incremental algo-

tocol [16]. As a result, the shape of the considered netwolithm performs better than the Combinatorial algorithm regard-

topologies is reduced to trees, thus making random generatisi?S Og ttr\‘; nurtr;]ber IOf f.";‘rl]“'lts and networl;\ Siz?* a'?f? tthhe_differ-
of dependencies resembling real-life scenarios easier. We v&fiC€ PEWeen the algorithms increéases sharply with the increas-

ied network size from 5 to 100 network nodes (25 nodes in tH89 Number of faults in the system. The correlation time of the
case of the Combinatorial algorithm). For every graph size Gcremental algorithm measured over the entire tested network
: | Sjze range is presented in Fig. 7. We find the execution time of

randomly generated 100 spanning trees along with link failu :
probabilities and conditional probabilities on causal links ber%e order of several seconds even for large networks and multi-

tweenlink and path nodes. The link failure probabilities were fault Scenarios very encouraging.

uniformly distributed random values of the order1gf ¢, and 7 CONCLUSIONS ANDFUTURE WORK

the conditional probabilities on causal links were uniformly dis- In this paper, we presented a refinement of a layered model
tributed random values in the ranfge5, 1). template proposed in [5] that allows non-deterministic modeling
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of both availability and performance related problems associateéz]
with physical and abstract system components. The refinement
also includes micro-models of end-to-end services provided in
given protocol layers between end hosts via multiple intermedi-
ate hosts. We introduced and evaluated an event-driven fault lof4]
calization algorithm capable of creating a failure explanation hy-
pothesis in an incremental fashion. We showed that the propose
algorithm has close to the optimal accuracy and very promising
performance.

Our future research will include the analysis of positive symp- [6]
toms (i.e., the lack of failure observations), which may be used
to decrease confidence in the failure of those hop-to-hop services
for which many resultant end-to-end service failures did not oc- [7]
cur. We will also equip the algorithm with the ability to deal with
lost and spurious symptoms, i.e., symptoms which do not indi-
cate any existing faults. We also plan to evaluate the algorithm
on network topologies resembling the topology of the Internet. (6]

In this paper, we considered the situation in which the routing[g]
information necessary to build a dependency model for end-to-
end services is available. However, to obtain this informatiorf!
may be time consuming and require substantial amount of rgiy;
sources needed to install and run management agents on network
devices, which collect the management information, and to regtﬁ2
larly transmit the routing information over the network. In future ]
research, we would like to investigate diagnosing end-to-end ser-
vice failures without access to the accurate routing information[13]
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