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ABSTRACT

SHAMAN (Spreadsheet-based Hierarchical Architecture
for MANagement) is a novel management framework
developed at the University of Delaware as a part of
the research in network management sponsored by the
ATIRP Consortium. SHAMAN extends the traditional
flat SNMP management model to a hierarchical architec-
ture wherein managers can dynamically delegate man-
agement tasks to intermediate managers. Tactical battle-
field networks require such a hierarchical management
architecture to achieve effective real-time management of
the large number of mobile nodes that such networks are
expected to have. The SHAMAN framework includes a
spreadsheet-based intermediate manager with a script-
ing language and MIB, a polling subsystem, and an event
model; a prototype implementation of the system is avail-
able. Our research has explored several applications
of the SHAMAN system to tactical battlefield networks
for the US Army, including a Location Management ap-
plication and an application to reconfigure dynamically
changing topology of Tactical Internets. This paper sum-
marizes the main research results with a description of
the SHAMAN system and briefly introduces its applica-
tions to the management of tactical battlefield networks.

Keywords: Network Management, Hierarchical Man-
agement, SNMP, Tactical Internet, Battlefield Networks,
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I. Introduction

One of the significant achievements of the ATIRP Con-
sortium in Technical Factor 2 (Tactical/Strategic Interop-
erability) has been the design and development of an in-
tegrated framework for hierarchical management called
SHAMAN (Spreadsheet-basedHierarchicalArchitecture
for MAN agement). This management system developed
at the Network Management Laboratory of the Univer-
sity of Delaware incorporates management by delegation
concepts into the Internet management framework to fa-
cilitate the management of distributed systems and net-
works [1], [2], [3], [4], [5].

A hierarchical management strategy is an effective means
of managing the large and complex internetworks that
are in use today [6]. The need for hierarchical manage-
ment is particularly acute in tactical battlefield networks
which are expected to have tens of thousands of nodes,
and where scalability is an important concern. Unfortu-
nately, the most popular management framework in use
today, the SNMP framework (which includes the family
of SNMP, SNMPv2, and SNMPv3 protocols) [7], [8], [9],
[10], only supports the flat management model (see Fig-
ure 1). The framework provides no means for managers
to delegate tasks to intermediate managers or for peer-
to-peer communication between intermediate managers
during the execution of these tasks.

While the management community in general has tried
to design management strategies based on the concept
of Management by Delegation (MbD) [11], [12], the
SNMP community has not yet been able to take ad-
vantage of it because the delegation primitives have not
been integrated with the SNMP framework. Our re-
search group in network management at the University of
Delaware has designed an integrated framework for hi-
erarchical management called SHAMAN (Spreadsheet-
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basedHierarchicalArchitecture forMAN agement) that
incorporates management by delegation concepts into the
SNMP framework to facilitate the management of large
internetworks (Figure 2). This architecture allows a man-
ager to delegate routine management tasks to an inter-
mediate manager and facilitates user configurability of
management information and control in a value-added
manner. This is achieved by providing a scripting MIB
and language specially designed for management tasks in
SNMP.

The main objectives of SHAMAN are to introduce a pow-
erful intermediate manager that enhances (but is fully
compatible with) the existing SNMP framework, pro-
vides value-added functions, supports delegation, allows
user configurability of management information, and pro-
vides an environment for the rapid development of dis-
tributed management applications. SHAMAN captures
all the advantages of a hierarchical framework including
scalability, increased reliability, possibility of increased
fault-tolerant operation, and reduced processing over-
head at the top-level manager. By being fully compati-
ble with the Internet standards, it allows existing SNMP
managers and agents to take advantage of the hierarchi-
cal framework without major changes to the manage-
ment paradigm or the protocol stack. It further simpli-
fies the task of application development by providing for
the specification of dynamic relationships between ob-
jects across MIBsand permitting flexible, hierarchical
event building. Relationship specification allows two or
more objects belonging to different MIBs to be related
while hierarchical event building allows simple events to
be used to build more complex events. These features al-
low applications to customize MIBs by defining logical
views of interest that include relationships between ob-
jects across multiple real MIBs and then manipulate and
control only those logical views.

A prototype implementation of SHAMAN has been de-
veloped at the University of Delaware [13] and a num-
ber of applications of the SHAMAN architecture to the
management of tactical battlefield networks have been
explored [14], [5], [15], [16], [17]. This paper presents
an overview of the SHAMAN architecture and its im-
plementation, and describes the battlefield management
applications that have been implemented and demon-
strated at successive ARL/ATIRP Annual Symposiums
over the past five years. Section 2 summarizes exist-
ing approaches and other related work in this area. Sec-
tion 3 describes SHAMAN in detail including some of
its main components, namely the Spreadsheet MIB (SS-
MIB), the Spreadsheet Scripting Language (SSL), and
the event model supported by the spreadsheet paradigm.
The prototype implementation of SHAMAN is briefly de-
scribed in Section 4. Section 5 presents an example ap-
plication of Location Management in a large ad-hoc tac-
tical battlefield network while Section 6 describes its ap-
plication to topology reconfiguration of tactical internets.
Finally, Section 7 contains the conclusions and outlines
future directions.

II. Related Work

Delegation of monitoring and control functions results
in decentralizing the network management framework.
SHAMAN uses the concept of management by delega-
tion (MbD), a novel approach to distributed manage-
ment, introduced in [18]. WithMbD, program frag-
ments – referred to asagent code– are transported to
special processes calledelastic processeson one or more
servers. These elastic processes provide a framework for
dynamic linking, concurrent execution, and control of
agent code instances. Thus agent code can be added to
or deleted from these elastic processes.MbD provides
a generic conceptual framework for a purely distributed
model of management; it does not address the hierarchi-
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cal model, specific language issues for scripting, or event
models. The hierarchical model used by SHAMAN was
developed concurrently with the evolution ofMbD, but
SHAMAN has taken a different form because it provides
a specific scripting language, event model, and delega-
tion framework all tailored to work in conjunction with
SNMP. Further,MbD uses the Trivial File Transfer Proto-
col (TFTP) (contrasted with SNMP used by SHAMAN)
to transport the scripts to the agents and is thus not fully
integrated within a standard management framework.

Other hierarchical architectures have been proposed to
implement scalable frameworks in [19], [20], [21]. A
hierarchical model that uses the concept of an interme-
diate manager to perform rule-based management is dis-
cussed in [19]. Rules, which are condition-action pairs,
can be loaded into a rule MIB, but the scripting language
does not support procedural constructs which limits the
expressive power of control specifications. A hierarchi-
cal network management system (HNMS) proposed in
[21] defines a function based hierarchy but does not ad-
dress scripting, integration within a standard framework,
or event models.

The importance of scripting in management is now being
more widely appreciated and there are several research
and industry groups [20], [22], [23], including ours, that

propose different methods for introducing scripting into
management frameworks. The IETF working group for
distributed management – DISMAN – [20] has proposed
a standard environment for scripting which is based on a
set of SNMP MIBs. Each of these MIBs serve a special-
ized function like script management, event specification,
script language specification etc. The DISMANevent
MIB [24] uses a table to define threshold type events;
however, it lacks event dependency specification. The
DISMAN approach does not specify the criteria for a
scripting language; it limits itself to defining the inter-
faces needed to support a generalized scripting language
for management. This approach uses the help of environ-
ments that are external to the management framework to
run the scripts.

Minerva [25] is an integrated network management sys-
tem that supports a custom scripting language, an event
driven model for management, and integration with the
standard Internet framework. However, this system is res-
ident on a manager and thus has the limitations of a cen-
tralized management model. It is also purely event-driven
and thus suffers from the limitations of event-driven sys-
tems. A distributed architecture for delegating fault di-
agnosis and testing functions to intelligent agents is dis-
cussed in [22]. The intelligent agents support an inter-
preter that interprets scripts written in a specific scripting



language called Scotty. External mechanisms are used for
transporting scripts to these agents, and for retrieving the
results of script execution.

Our approach differs from DISMAN and the other ap-
proaches described above by supporting dynamic struc-
turing of information and control, network-centric view
of management information, scripting, and event depen-
dency specifications in a single hierarchical framework
using a value-added Intermediate Manager. The power
of our approach is the result of identifying the essen-
tial components of a scripting environment, and integrat-
ing these components into the standard Internet frame-
work, thereby enhancing acceptance. Our approach mod-
els the network management processing environment as
a collection of related scripts and events that cooperate to
achieve a common management function.

In the Internet management framework, any modeling or
structuring of management information has to be done
using MIBs. Several research efforts [26], [19], [12],
including ours, have tried to extend the MIBs to de-
rive power and flexibility in an otherwise flat information
model. The pioneering work to extend the capabilities of
a MIB using the SNMP structure of management infor-
mation was RMON [26], [27]. RMON is primarily a MIB
specification with associated semantics that are imple-
mented in special agents calledRMON probeswhich sup-
port the remote monitoring functionality. RMON focuses
on the lower level functions in management dealing with
link-level traffic statistics, link monitoring, and gather-
ing history information. RMON has achieved some level
of delegation, event definition support, and asynchronous
notifications. Although our approach uses some concepts
derived from RMON, it differs significantly from it due to
the addition of a computing paradigm, scripting support,
and an event model that supports dependencies. Further,
unlike RMON which focuses on lower level functions
(e.g., link traffic), our work targets higher level network
management functions (e.g., location management).

A MIB View Language (MVL) is proposed in [12] that
uses a relational database perspective on data aggrega-
tion. MVL extends the standard Internet Structure of
Management Information (SMI) to define “MIB Views”
which are computations over sets of managed objects.
MVL supports theselectandjoin operations that resem-
ble relational database table operations. MVL integrates
with SNMP and permits data aggregation by statically
defining the associated computations as part of a MIB.

Our approach of using a language to perform the aggre-
gation instead of statically defining such aggregation im-
proves flexibility. A novel approach to adding time as
a dimension to extend standard MIBs to store history is
explored in [28].

Event specification languages allow specification of
events and establishing powerful relationships between
events. Several event based languages have been de-
signed for different purposes [29], [30], [31]. All
these languages support event specification and com-
bination; they support the specification of a simple or
compound event. State Event Specification Language
(SESL) [29] is a declarative style language for speci-
fying events with a temporal component that includes
operators and time intervals. Another approach used
by [32] represents network management functions as
<event; condition; action> tuples. Events are speci-
fied using an Event Specification Language (ESL); ac-
tions are specified using a Data Manipulative Language
(DML) like SQL. The focus is on specifying event-based
triggers to perform network management database oper-
ations. A MIB View Language (MVL) is proposed in
[12] that uses a relational database perspective on data
aggregation. MVL extends the standard Internet Struc-
ture of Management Information (SMI) to define “MIB
Views” which are computations over sets of managed ob-
jects. MVL supports theselectand join operations that
resemble relational database table operations. MVL inte-
grates with SNMP and permits data aggregation by stat-
ically defining the associated computations as part of a
MIB. Our approach of using a language to perform the
aggregation instead of statically defining such aggrega-
tion improves flexibility. A novel approach to adding
time as a dimension to extend standard MIBs to store his-
tory is explored in [28].

The primary focus of the aforementioned languages is to
support event specification and event models; they do not
address integration within a framework, delegation, de-
velopment of procedural scripts, or restructuring manage-
ment information.

All event specification languages support an underlying
event model. An event model consists of two parts: event
definition and event propagation. There are several in-
dustry and academic research efforts [33], [34], [35], in-
cluding ours [36], that have come up with different event
models.
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The OSI set of standards on management include the
specification of an event model. The OSI event model
defines functions for notification generation and event re-
port management. Events can be generated when man-
agement objects are created, deleted or the state of an
object changes. When an event occurs it is forwarded
to an Event Forwarding Discriminator (EFD); based on
a filtering criteria, the EFD decides if an event should
be forwarded, and identifies the intended recipient of the
event. While primitive data aggregation is possible, the
OSI event model does not combine events with script-
ing. [37] introduces scripting in an OSI environment us-
ing pointers to scripts that are stored as part of an OSI
object definition.

MODEL [34] is a declarative style language used to spec-
ify events and create event models. Using MODEL, an
event model can be defined external to the SNMP frame-
work, as a separate layer, with mappings to MIB vari-
ables. The focus of this approach is on developing a
generalized event model with emphasis on building event
correlation systems. A knowledge-based event correla-
tion system is proposed in [35]. This approach primarily
targets event correlation, and defines an extensive set of
temporal and procedural operators to suit event correla-
tion environments.

III. SHAMAN – A Spreadsheet based Hierarchical
Architecture for Management

SHAMAN provides a hierarchical architecture for man-
agement by making it possible for managers to dele-
gate management operations to one or more Intermedi-
ate Managers (IMs). Each IM can in turn delegate op-
erations to other IMs in a hierarchy of levels, with man-
agement agents at the lowest level. SHAMAN is called
Spreadsheet-based because it uses the well-known con-
cept of a spreadsheet to structure the operations to be ex-
ecuted in an Intermediate Manager.

A conventional spreadsheet is composed ofcellsarranged
in a two-dimensional matrix. Thus a cell is accessed by
specifying a row and a column index. Further, a cell
contains an optionalformula (control part) anddata. A
spreadsheet may specify cell value dependencies to im-
plement arefreshfeature that allows automatic recompu-
tation of formulae that are dependent upon a value that
has undergone a change.

SHAMAN views a management task as a collection of
cooperating sub-tasks that can be set up in one or more
cells in a spreadsheet within an Intermediate Manager.
Depending upon the management task, these cells can
be related by dependency specifications to form a group
of cells that perform the common management function.



Manager Subsystem

Back-end

Interpreter

SNMP

SNMP

Spreadsheet

Event Model

Intermediate Manager

Function
    IM

 Module

     MIB

   Polling

   Agent

Fig. 4. Structure of an Intermediate Manager (IM)

The power of SHAMAN results from scripting and event
hierarchy specifications.

The spreadsheet used by SHAMAN differs in many ways
from its well known counterpart. While the SHAMAN
spreadsheet retains the two-dimensional matrix structure
and access methods for cells, the contents of the control
and data portions differ. The control part of a cell con-
tains programs calledscripts (Figure 3). These scripts
are more complex than theformula allowed in the well
known spreadsheet. Thus, the control part can serve as a
repository for event specifications, relationships between
management objects, references to other cells, or some
computation. The data portion of the cell is also different
from the traditional spreadsheet in that it can containmul-
tiple values. The cell dependency is enhanced to support
both value and event based dependencies. This extended
dependency mechanism allows the creation of powerful
event hierarchies involving groups of cells to construct a
management task. Also, unlike the well known spread-
sheet, cells can be created or deleted.

The control part of the cell dictates the rules for collection
of information or relationships between objects. The data
part of the cell contains the data resulting from executing
the script contained in the control part. For instance, the
script can specify that the cell should contain the result
of summing two or more counters in different nodes (or
different MIBs). The data part contains the result of such

a summation. A two dimensional structure has been cho-
sen to create a table-like structure which is the only com-
pound data structure supported by the SNMP information
model. This is an important feature of SHAMAN because
it allows the access mechanism for the cells in a spread-
sheet to mimic the retrieval of a conventional SNMP ta-
ble.

Because SHAMAN is totally compatible with SNMP,
standard SNMP protocol operations are used by a man-
ager to create and download scripts to an IM for the pur-
pose of delegating management tasks to it. These scripts
are set up in the control portions of the various cells speci-
fied by the row and column indices during script creation.
A script can contain event specifications that cause the IM
to monitor those events. The manager can either poll for
or be notified of conditions that are of interest to it. An
IM can support multiple spreadsheets. Access control is
defined at the spreadsheet level with each manager capa-
ble of controlling one or more spreadsheets.

An IM consists of the following main logical compo-
nents: a communication module, a spreadsheet MIB (SS-
MIB), a scripting language (SSL) interpreter, a polling
subsystem, and an event model (Figure 4). The commu-
nication module handles all communication between the
IM on one hand and the managers and the agents on the
other. This communication is in the form of SNMP mes-
sages that contain PDUs for SNMP requests, responses,



and traps.

The spreadsheet MIB (SSMIB) implements the spread-
sheet using SNMP tables. User operations on cells map
to operations on tables that are part of this MIB. When
the IM receives an SNMP request from the manager that
translates to an operation on a cell, the IM performs the
necessary operations on the spreadsheet MIB to imple-
ment the cell abstraction. Once the request has been car-
ried out, the IM responds to the manager that requested
the cell operation.

When a script is entered into a cell, it is parsed to deter-
mine the number of data values in the cell, i.e., the num-
ber of managed objects referenced by the script. The data
portion of the cell is then created based on the number of
data values determined.

Since polling is the primary means of retrieving informa-
tion in the Internet management framework [38], it is pos-
sible to set up managed objects in a cell to be periodically
updated via polling from managed objects maintained at
an agent. Polling entries are created in the polling subsys-
tem for the managed objects referenced in a script when a
script is entered in a cell. Once set up, these entries cause
poll requests to be forwarded to the appropriate agents
maintaining these managed objects. When the poll re-
sponses are received from the agents, the values in the
corresponding cells in the spreadsheet are updated. The
IM maintains a cache, and therefore a snapshot, of the
management information defined by the scripts. As a re-
sult, the values seen by the manager in its MIB view are
current (within a certain time granularity).

The polling subsystem plays a vital role in SHAMAN
since the IM may poll and cache a significant amount
of data. An inefficient polling system can unnecessar-
ily load the network [39]. Thus, it is imperative, for a
framework like SHAMAN, to support an efficient and op-
timal polling mechanism. In order to effect polling, the
IM maintains polling tables to facilitate polling and au-
tomatic update of the cell values. The polling subsystem
allows entries to be set up in its polling tables based on
a cell id, so it is easy to retrieve the set of values that are
part of a given cell.

The polling subsystem optimizes the number of polls is-
sued to the back-end agents by grouping variables based
on: 1) time intervals and 2) hosts [40]. The polling sub-
system collects the variables that need to be polled at a

single agent and issues the minimum number of poll re-
quests to satisfy the polling specification for the variables.
Also, if a single variable at a given agent is to be polled
at different frequencies, the polling subsystem computes
the minimum frequency of polling that will satisfy all the
polling requests for the variable.

SHAMAN supports a scripting language called Spread-
sheet Scripting Language (SSL). This interpreted lan-
guage is described in Section III-B. The language con-
tains features that facilitate the development of procedu-
ral scripts as well as event specifications. The language
supports the spreadsheet paradigm by providing syntac-
tic constructs for cell access and assignment. A script in
this language consists of three parts: 1) an optional ini-
tialization part 2) an optional event specification part and
3) an action part. The initialization part allows a one-
time configuration for the cell, the event specification is
for setting up events in the cell, and the action part is the
program that is to be executed when the event condition
for the cell is enabled.

The SSL is interpreted by an interpreter and scripts that
are set up in the various cells can be executed under the
control of this interpreter. The interpreter performs the
functions of syntax checking, run time error checking,
detection and reporting.

The spreadsheet supports two modes of operation: syn-
chronous or request-response mode, and asynchronous or
event mode. In the synchronous mode, the manager re-
quests some operation to be performed using one of the
standard SNMP protocol operations and the IM responds
after processing the request. In the asynchronous mode,
the script defines events and actions associated with such
events. These events are constantly monitored by the IM.
On occurrence of any of the events being watched, the
IM carries out the associated actions which may include
notifying the manager. This mode of operation allows the
manager to successfully delegate some of its routine tasks
to the IM. In order to support asynchronous event pro-
cessing, the IM uses an underlying event model that per-
mits event and temporal criteria specification. The SSL
defines the syntax for event specification and the event
model handles event semantics.

A. Spreadsheet MIB (SSMIB)

The Spreadsheet MIB (SSMIB) supports the fundamen-
tal spreadsheet and cell operations that are needed within
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an IM for its operation. A cell in a spreadsheet has a
control part and a data part; the control part can contain
one script whereas the data part can contain one or more
values calledcell-elements. When multiple values are
present, the values may represent a single column or may
be two-dimensional (containing both rows and columns).

The SSMIB captures the control and data parts of a cell
using two tables: a control table and a data table. Each
cell is represented by a row in thecontrolTable(the con-
trol part) and one or more rows in thedataTable(the data
part). The structure of the MIB is shown in Figure 5. The
control table (controlTable) is made up of a sequence of
controlEntryelements each of which contains the column
variables that constitute a row in the control table. Since
the control and data tables are mapped to SNMP tables,
the semantics of the SNMP table access apply to these ta-
bles. A table row in an SNMP table is uniquely identified
by an index value. The index is specified by one or more

column variables that form part of the row specification.
In the case of the control table, the index is defined by
controlNodeId, controlssnum, controlColumn, andcon-
trolRow. The values of these variables together uniquely
identify the control portion of a cell. The variablecon-
trolNodeIdrepresents the primary internet address of the
manager who is the owner of the row,controlssnumde-
notes the spreadsheet number,controlColumnthe column
id of the cell, andcontrolRowthe row id of the cell. The
controlEntryalso contains acontrolstringfield that holds
the control information of the cell. ThecontrolRowStatus
field controls the creation of conceptual rows in thecon-
trolTable and has standard SNMPv2RowStatusseman-
tics [41, pages 288-289]. The status of this field deter-
mines the availability of the associated conceptual row in
thecontrolTablefor access by management applications.

Similarly, the data table (dataTable) is made up of a se-
quence ofdataEntryelements. ThedataEntrycontains



the column variables that form a row in thedataTable.
The data table index is defined bydataNodeId, datass-
num, dataColumn, anddataRow. The data table index
variables are the same as that of the control table with
one difference – there are two additional index variables
dataValueIndexColand dataValueIndexRow. Since the
data portion of a cell can contain multiple cell-elements,
these additional index variables help to uniquely identify
a particular data value.

The control and data parts of a cell are linked using a
set of variables called thecell descriptor(Figure 5). The
cell descriptor is formed by the column variables that are
common to both the control and data tables, i.e., the man-
ager id, the spreadsheet number, the column and row ids.
The values of the cell descriptor variables uniquely iden-
tify a cell in a spreadsheet.

The relationship of the control and data tables with a
cell is shown in Figure 6. The left hand side of the fig-
ure shows the abstraction of a cell with a cell descrip-
tor <m; s; j; i>, wherem is the manager id,s is the
spreadsheet number,j is the column id, andi is the row
id. The control portion of the cell has been set up with
a set of counters (tcpActiveOpens) from three different
hosts named sol, tweety, and stimpy. The data portion
of this cell thus has three cell-elements which reflect the
last polled value of these counters. The right hand side of
Figure 6 shows the mapping of the cell’s control and data
portions to the control and data tables in the SSMIB. The
control portion maps to a single row in the control table
and the data portion to three separate rows, one each for
each cell-element. The three rows represent the values of
thetcpActiveOpenscounters from sol, tweety, and stimpy
respectively.

In order to create a cell, the manager creates a row in
the control table. To set the control portion of the cell,
the manager sets thecontrolStringvariable in thecontro-
lEntry. Depending upon the number of values defined
by the control portion of the cell, an appropriate number
of rows are created in the data table with the common
cell descriptor values. The manager can delete a row in
the control table, and based on the control to data table
association, the corresponding rows in the data table are
removed. To modify the control part of a cell or to re-
trieve its value, the manager performs an SNMP Set or
Get operation respectively on the appropriate row in the
control table. In order to retrieve the data portion of a cell,
the manager can use any of the SNMP Get, GetNext, or

GetBulk operations, even when the cell contains multiple
data values.

A key aspect of the SSMIB is demonstrated in the ex-
ample of Figure 6. Although each of the three variables
contained in the cell belongs to MIBs in agents at differ-
ent hosts, they can be retrieved in an order defined by the
control portion of the cell. Management information can
be restructured selectively and viewed in an order that is
different from that of the underlying agent MIBs. Such
reordering of management information allows setting up
summaries and different views of the management infor-
mation. This dynamic configuration of the MIB does not
exist in the current SNMP management framework.

B. Spreadsheet Scripting Language (SSL)

A language that targets a network management environ-
ment must be able to support features that facilitate the
specification of network management tasks; such a lan-
guage should also be simple yet powerful [29], [37].
This section presents the Spreadsheet Scripting Language
(SSL) that forms an integral part of SHAMAN and sup-
ports the development of network management scripts.

The main features of SSL can be broadly classified as:

� procedural language related features including opera-
tors, variable support, and control flow constructs
� network management specific features including
polling specification and management variable access
� paradigm specific features including cell access, re-
trieval, modification, and multiple value access
� event model related features including event and event
dependency specification

A detailed description of the SSL grammar is available in
[42], [13].

B.1 Procedural Language Features

Table I lists the operators supported by SSL. These in-
clude the standard arithmetic, relational, logical, and as-
signment operators found in most procedural languages
with standard semantics [43]. The<> operator expresses
the “not equals” relation.

Based on the number of values they contain, variables
in SSL are of two types: single or multi-valued. Multi-
valued variables are needed for processing table rows
which typically consist of a sequence of column values.
Thus an SNMP scalar would be stored in a single-valued
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TABLE I
SSL OPERATOR TABLE

Operators Type
+;�; �; = arithmetic operators
>, <, <>, == relational operators
&&, jj, ! logical operators
= assignment operator
! temporal dependency operator

variable while an SNMP table row is stored as a multi-
valued variable.

Based on scope, variables in SSL can be classified as lo-
cal variables orcell-valuedvariables. Local variables are
available in SSL to provide temporary storage. Each cell

has a set of such local variables that can be referenced
with syntax$n, wheren=1,2,...,m, wherem is imple-
mentation dependent. A local variable – as the name in-
dicates – is visible only within the cell that defines the
variable. Thus each cell has its own set of local variables.

A cell-valued variable represents the data portion of a
cell. Thus a cell-valued variable can be either single or
multi-valued since the data portion of a cell can contain
one or more values. Each value in a cell-valued variable
is referred to as acell-element. A cell-valued variable is
specified using the notation [s:r:c]; thenth value (ornth
cell-element) in the cell-valued variable is specified using
the notation [s:r:c].n. When a cell has two-dimensional
data, the value in rowdr and columndc is specified as
[s:r:c].dr.dc. For a cell with just one data value, the nota-



tion [s:r:c] can be used instead of [s:r:c].1 or [s:r:c].1.1.

While a cell-valued variable can be referred to by other
cells using its full name, a convenient shorthand name,
$$, can be used by a cell to refer to its own data portion.
This notation does not represent a different variable and
therefore has the same semantics as [s:r:c], except that its
scope is limited to its own cell. For instance, a cell [1:2:3]
could modify its first cell-element using$$:1. This modi-
fication is then visible to the other cells through [1:2:3].1.
For cells with only a single value, the notation$$ may be
used.

There is no explicit declaration or definition of variables
in SSL. The type information is part of the variable and
type-checking is deferred until run-time. This is due to
the fact that variables in SSL can be dynamically bound
to different types at run-time. Thus static type-checking
is not possible.

SSL includes assignment, iteration, conditional, and
management specific statements. The left hand side of
an assignment statement can only be a single-valued vari-
able. The right hand side can be any expression that re-
sults in a single value.

Control flow constructs likeif...else...endifandwhile are
used to set up conditional and iterative scripts in cells.
The semantics of these constructs are similar to those
found in standard procedural languages. However, iter-
ation has an implicit, user-configurable, maximum loop
count that ensures that a single script will not run forever.
SSL supports a special iterative construct for processing
lists of variables, called theforeach statement.

The foreach statement views a multiple-valued variable
(local or cell-valued variable) as a sequence of values that
can be stepped through one at a time to perform an it-
erative computation. For instance, if there are multiple
values in a cell, theforeach statement can be used to iter-
ate through all the values and perform some computation.
The example script shown in Figure 7 sums all the values
contained in the cell [1:1:2].

foreach $1 in [1:1:2]
// for all variables in cell 1:1:2

do
$$ = $$ + $1; // sum and store value locally

done;

Fig. 7. Example usage offoreachstatement

B.2 Network Management Specific Features

With SSL, a fully qualified managed object in a MIB can
be specified in both symbolic and dotted decimal format.
A fully qualified managed object is a combination of both
the OID of the managed object and the name or address of
the host on which it resides. For instance, the MIB-IItcp
group variabletcpActiveOpenson hoststimpy@udel.edu
is specified astcpActiveOpens@stimpy@udel.edu. This
feature allows access to any managed object in the man-
agement domain.

Use of such a name for a MIB object is permitted inside
any expression. When the name is processed during the
execution of the expression, an SNMP GetRequest is sent
to the appropriate agent for getting the value of the MIB
variable. When the name is used on the left-hand side
of an assignment statement, an SNMP SetRequest is sent
to the agent for setting and modifying the value of the
variable. Thus, MIB objects can be used interchangeably
with other variables within expressions and statements,
and appropriate SNMP requests are transparently gener-
ated by the IM.

In some situations, it is preferable to poll a MIB object at
a specific frequency and cache the value in the IM instead
of explicitly fetching it every time it is needed. Thepoll
statement is used to specify the polling of a management
variable. The polling frequency and the number of sam-
ples to be retained can be optionally specified as part of
thepoll statement.

To support bulk processing, the SSL provides atable
statement to facilitate loading tables from agent MIBs.
A table, when loaded, occupies a single cell as a two-
dimensional data value. Optionally, one can specify a
subset of the columns of a table to be fetched instead of
the entire table. Theforeachrow and foreachcol state-
ments allow iteration over a table’s rows and columns
stored in a cell.

The foreachrow statement is similar in semantics to the
foreach statement, except that it operates upon a se-
quence of table rows instead of a sequence of single val-
ues. It loops the index variable through successive val-
ues starting with 1 and going through the integer index of
the last table row. This index variable can then be used
along with the cell name to access each row in turn within
the loop body. Theforeachcolstatement similarly loops
through table columns. Theforeachrow and foreach-



col statements can be nested, thereby permitting access
to each individual data value in a two-dimensional table.
It should be noted that these statements do not require any
prior knowledge of the size of the table; the size informa-
tion is maintained internally by the IM when the table is
loaded and is used transparently in looping through the
rows and columns.

B.3 Spreadsheet Specific Features

SSL provides facilities to access and manipulate cells in a
spreadsheet, some of which have been described earlier,
such as the naming of cells and the data values contained
in them. Cells can be given symbolic names which can
be used in scripts instead of their numeric names. Other
features include the special$$ variable for accessing the
data portion of a cell, and the support for multiple cell-
element reference and access.

It is possible to execute a script in another cell using the
execstatement. Theexecstatement permits a manage-
ment task to be divided into smaller scripts and entered
into several cells. The scripts in these cells can be suc-
cessively executed using theexecstatement. Thus larger
scripts can be supported without being affected by the
transport packet size restrictions. Theexec statement
blocks the caller until the callee has completed execution.

The data portion of the cell and local variables needed
by a script can be initialized using theinit clause. For
instance, if a set of variables need to be polled or if a ta-
ble is to be loaded into a cell, the polling or table loading
statement can be set up as part of the initialization. Once
set up, the variables will be polled at the frequency speci-
fied. Thepoll andtable statements are permitted only as
part of cell initialization.

Dynamic configuration of scripts in a spreadsheet can
be effected using theactivate or deactivatestatements.
An activate statement causes the script in a cell to be
enabled; adeactivate statement disables the script in a
cell. For instance, consider the application where a set
of agents are being polled; the polling should stop on en-
countering a fault on the path to the agent; polling should
resume when the fault is rectified. The manager loads all
the scripts onto an IM. When a fault is encountered, ei-
ther the manager or the IM can disable the scripts that
poll the agents affected by the faulty link. When the
fault is rectified, the manager can activate the scripts that
were previously deactivated and polling resumes. This

dynamic configuration is more efficient than deleting the
loaded scripts and reloading them. Deactivation causes
the polling or table loading in the cell to be suspended
while activation resumes such activities. In addition, ac-
tivation causes theinit portion of the cell to be executed.

B.4 Event Model Related Features

Event expressions are specified using theon clause. From
a language syntax specification perspective, the follow-
ing differences contrast event expressions from boolean
expressions:

1. the ! (logical NOT) operator is not allowed in event
expression specifications.
2. Temporal criteria are relevant only in the context of
event expressions; the! operator (Table I) is specific to
event expressions only and cannot be used in boolean ex-
pressions. This operator expresses chronological prece-
dence of events; thus,A! B implies event A occurs be-
fore event B.
3. the arithmetic operators are not defined for event ex-
pressions.
4. the assignment operator is not defined for event ex-
pressions.

Event expression semantics are described in Section III-
C. However, a few syntactic aspects are discussed here.
The syntax [s:r:c].�, when used in an event expression,
implies a value change dependency upon any of the cell-
elements contained in the data portion of cell [s:r:c].
When a relational construct such as [s:r:c].n > k is used
in an event expression, the semantics imply the cross-
ing of a threshold; the boolean expression [s:r:c].n > k
checks the value of the variable [s:r:c].n and evaluates to
true or false depending upon whether the value is greater
thank or not.

To summarize, SSL combines standard procedural lan-
guage constructs with event specification constructs to
provide a simple, yet powerful platform for developing
scripts to perform network management tasks.

C. Event Model

The event model consists of a set of events and algorithms
for event propagation and dependency processing. The
SNMP framework is predominantly synchronous in the
sense that most communication has the request-response
structure. The transfer of management information from
the agent to the manager is achieved using polling [44,



pages 40–41]. Polled systems have an inherent disadvan-
tage that information changes and events that fall within
the polled interval are lost. The primary source of asyn-
chronous processing in the SNMP environment is the
transmission oftraps from an agent to the manager. The
SNMP framework favors the use of a technique called
trap-directed polling [38, pages 75–76] to offset, at least
partially, the limitation of a purely synchronous system.
However, SNMP traps are used primarily to indicate ab-
normal conditions and have to be statically defined [7],
[8]. The eventgroup in the RMON MIB [26] provides
a method for event specification. However, the event
types are predefined and thus preclude the creation of a
powerful hierarchy of user defined events. Further, event
relationships are not supported. Thus SNMP traps and
RMON events are insufficient to convert the predom-
inantly poll-based Internet model into a more flexible
asynchronous model.

A purely event-driven system [44, pages 40–41], on the
other hand, is completely asynchronous with no need for
polling. This has the limitation that an event, be it im-
portant or not, has to be handled by the manager. A bal-
ance between the two would be ideal. Such a balance
can be achieved by introducing an event model at an IM
in the existing Internet framework. In SHAMAN, the
scope of the event model is to define the basic building
blocks and empower the user with the flexibility of pro-
gramming network management tasks. Event correlation
can be built on top of the event model using the scripting
language facilities.

The addition of an event model achieves the following
goals:

� provides the transition from synchronous to asyn-
chronous architecture.
� permits effective delegation when the events to be mon-
itored are set up remotely.
� empowers the user by permitting the creation of event
hierarchies that characterize custom management tasks.

Events form the basis for the event model. Aneventis an
occurrence that is caused by:

� A change in the control or data part of one or more cells
� a system related change (e.g., a timer tick, SNMP PDU
receive)
� the execution of one or more cells in a spreadsheet.

An event is persistent until all the cells that are dependent

upon the event have been notified of its occurrence. When
an event occurs, the event id and event specific details are
made available to the receiving cell.

Events can be eitherbasicor user-defined. Basic events
are intrinsic to the event model. These events form the
basic building blocks for an event hierarchy. SNMP re-
lated events, event hierarchy related events, error events,
spreadsheet configuration events, and time related events
are basic events.User-defined (or derived)events are
those events that are built using a combination of basic
and other user-defined events.

For each SNMP protocol operation, a basic event is de-
fined in the event model of SHAMAN. Anmgrgetevent
is generated when a manager’s GetRequest is received by
the IM. The cell which contains the cell-element whose
OID is specified in the request is the source of this event.
If variables requested in the GetRequest span multiple
cells, then multiple events are generated, one for each cell
containing a requested variable. A manager’s GetNex-
tRequest and GetBulkRequest result in the generation of
an mgrgetevent when the manager’s request is received
by the IM. Anmgrsetevent is similar to themgrgetevent
except that it is generated when a manager’s SetRequest
is received by the IM. Theagenttrapevent permits the
capture of a specified Trap from an agent. All the SNMP
events are enabled by default for all cells. This is to en-
sure that all cells support the standard SNMP interface.

The event hierarchy related events represent the mini-
mal, expressive set needed to establish event dependen-
cies and build event hierarchies. Event hierarchies are
fundamental to this paradigm and contribute to the power
of SHAMAN. A cell dependency can be expressed using
one of two criteria: 1) the value of a cell or 2) the event
clause in a cell. For instance, consider two cellsA and
B. Cell A may depend upon the value(s) in cellB or may
be dependent upon the event contained in cellB. Further,
in the case of value dependency, the cellA may depend
upon a specific value ofB or in any value change in cell
B. For example, cellA may be dependent upon the value
of cell B exceeding a threshold to notify a manager; or
the cellA may want to wait on any change in value since
the computation in cellA uses the current value in cellB.
The event set must include events that can characterize
the specification of these dependencies. The two events
value changeandevent occurredcapture these dependen-
cies.



cell[1,1]: // Sum of counters
on: timer(5)
action:

$$.1 = [1:2].1 + [3:4].1

Fig. 8. Example of Timed-execution Cell

A value changeevent is generated when a cell’s value
changes. Thevalue changeevent carries the old and new
values. These values aid in determining if a value based
event condition is met or not.

An event occurredevent is generated when the event con-
dition specified in the cell has occurred. This event is use-
ful to trigger dependent cells in an event cell dependency
hierarchy.

An error (exception) event is generated when an error is
encountered during script processing. If the script execu-
tion encounters a syntax, type check, semantic or other
error, then anerror event is raised. This allows the IM
to perform error processing and in some cases notify the
appropriate manager.

A timer event is generated on every clock tick. A time
value may be optionally specified as part of the timer
event specification. A non-zero value indicates that the
timer event specification is not true on every time tick,
but is only true on those ticks that align with the time
interval specified. Optionally, a time unit can be speci-
fied (e.g., seconds, minutes), the default time unit being
seconds. For example, the script in Figure 8 contains a
timer event specificationtimer(5); its event condition is
then triggered every five (5) seconds resulting in the ex-
ecution of its action. This feature is useful to perform
the periodic, repetitive tasks that are typical in network
management applications.

A poll event is generated when a poll response is received
by the IM from an agent for an OID that is contained
in a cell. The poll event contains the new value of the
variable.

C.1 Cell Script Structure

The control part of a cell consists of three parts: an ini-
tialization part, anevent-specification part(or event ex-
pression) and anaction part. The general structure of a
cell script in SSL is:

init: <init� statements>
on: <event� expression>
action: <SSL� Statement� block>

Here,<init � statements> refers to a set of valid SSL
statements that are executed when the script is set up.
The optional event expression, specified using theon
keyword, acts as a filter if it is present. The<event �
expression> may specify a basic event or a user-defined
event and is similar to a boolean expression. Basic and
derived events can be combined using the boolean opera-
tors defined in SSL (i.e.,jj, and &&). When used in con-
junction with theon keyword, the expression is treated as
an event.

Cells in which the event specification part is present are
called event cells. An executable cellis a cell that has
no event specification part. The action part is a sequence
of SSL statements. In an event cell, these statements are
executed only if the event expression is true.

Executable cells allow a manager to request the execu-
tion of a script and return the value of the cell that re-
sults from the execution of the script. This is a syn-
chronous operation and corresponds to the traditional
SNMP framework manager-agent interaction except that
a down-loaded script is executed on the IM before a value
is returned. An executable cell can be executed 1) on a
manager GetRequest or 2) as part of another script pro-
cessing. A variation on this is thetimed-execution cell
that permits periodic execution of a cell based on a time
criteria. For example, a cell could be set up to sum a set
of related counters every hour.

The use of derived events in an event expression makes
it possible to build a hierarchy of events, all of which are
based on the set of basic events supported by the event
model. When a basic event occurs, the cells that are
dependent upon the basic event, or on events generated
as part of event processing, are scheduled for execution.
This event processing propagates until all the cells that
are dependent upon the basic event or on events gener-
ated as part of the event processing have completed their
execution. This whole processing cycle is called anevent-
processing-cycle. The notion of an event processing cy-
cle is used in determining the nodes visited in the event-
dependency graph.



C.2 Operation of the Event Model

The primary functions of the event model include genera-
tion of events, propagation of events and processing event
expressions and dependencies. An event is either gener-
ated by the system (e.g., SNMP based events, timer) or by
a cell (referred to as the source cell). If there are any cells
that are dependent upon the generated event (referred to
as target cells), these cells should receive the event for the
event dependency to be functional. These dependencies
are modeled as a tree with a root node being the source
event and the dependent cells being leaves of the tree.
Propagation of events reduces to tree traversal, and the
spreadsheet can be visualized as a collection of such trees
(i.e. a forest) with each tree representing the propagation
related to a specific event.

The execution of one cell may be made dependent upon
events in another cell through value change and event oc-
curred events. These dependency specifications give rise
to a causality graph [45]. An event expression may be
combined using thejj or the && operators for which the
causality graph is similar to the well known AND-OR
graph [46, pages 102–106]. Thus evaluating event ex-
pressions defined in this event model reduces to AND-
OR graph processing. Evaluating if a condition is true is
equivalent to determining if a rule is true in the AND-OR
graph. Thus the spreadsheet can be modeled as a set of
AND-OR graphs with each graph representing a specific
event hierarchy. In the case of SHAMAN’s event model,
each event forms a node in the graph. If events are com-
bined in a cell, then the cell forms an interior node with
the AND/OR combination reflected at the cell’s node.
The cell dependencies are also part of the event speci-
fication and thus follow the same rules as the basic events
while constructing the AND-OR graph.

The definition of the scope of an event is two-fold: 1)
scope with respect to event propagation and 2) scope with
respect to an event expression evaluation. An event is
available to the system until all the target cells have re-
ceived the event. The cells that receive this event may
store this event depending upon the event expression con-
tained in the cell. Once the event is invalid from an
event expression processing point of view, the event is
discarded by the cell.

When an event is generated by a cell, the event is deliv-
ered to all the nodes (cells) on the event propagation tree.
These cells, in turn, re-evaluate their event expressions to

determine if their event conditions are met. If so, they
generate theevent occurredevent and the event propaga-
tion cycle for this new event is initiated. This cycle con-
tinues until all the events triggered as a result of the orig-
inal event have been forwarded to the respective target
cells. Thus the occurrence of an event in the system can
lead to the generation of other events and the execution
of one or more cells leading to a powerful, well-knit con-
trol specification. Thus, a set of cells, each performing a
simple sub-task, can cooperate to collectively perform a
significant management task.

IV. Prototype Implementation of SHAMAN

A prototype implementation of SHAMAN has been de-
veloped at the University of Delaware; the current version
called Version 2.0 is available at [13]. This prototype is
based on the existing UCD SNMPv2 package [47]. The
standard SNMP agent in the UCD package has been ex-
tended to implement SHAMAN’s IM (Intermediate Man-
ager). The extensions include support for the Spreadsheet
MIB, the Spreadsheet Scripting Language (SSL), and the
event model. Our prototype implementation was initially
developed to run under SUNOS 4.1.3, but has since been
ported to Solaris 2.6.

Figure 9 shows the software architecture of the IM and
the interdependencies of the various modules that con-
stitute the IM. Among these modules, the MIB Mod-
ule, the Interpreter Module, and the Cell Module together
implement the three logical components of the IM, i.e.,
SSMIB, SSL (interpretation) and the event model. The
Polling Subsystem implements the polling of the agents.
The other modules perform support functions like timer
services and providing a communication interface for
polling the agents.

The SNMP Communications Module deals with encod-
ing, decoding, sending, and receiving SNMP PDUs; this
module is a modified version of the UCD SNMP agent.
When a manager requests an operation on the control por-
tion of a cell (i.e., the control table), this module routes
the request to the MIB module for processing. How-
ever, if the manager request is for the data portion of
the cell, the request is routed to the Cell Module via
the input queue. The SNMP communications module is
also responsible for returning responses to the manager
and for providing services to the SNMP Interface module
which include encoding and sending SNMP requests to
the agents being polled, and receiving and decoding the
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Fig. 9. Software architecture of an Intermediate Manager (IM) in SHAMAN

responses received.

The MIB Module provides an implementation of the SS-
MIB internal structures and controls access to it. Any
module that accesses the variables in the SSMIB has to
interface with this module. The MIB Module imple-
ments the SSMIB tables described in Section III-A. It
supports row creation in the data and control tables; it
also supports variable retrieval and modification. From
the spreadsheet perspective, this module supports the re-
trieval of one or more values from a cell, and assignment
to a single cell-element. In addition, this module also
generates the events resulting from such operations.

The primary function of the Interpreter Module is to in-
terpret the SSL (described in Section III-B) and support
the SSL virtual machine. This module interfaces with
the Polling Subsystem to create or delete polling entries,
and with the MIB module to retrieve or modify SSMIB
data table variables. The interpreter consists of two main
parts: 1) a lexical analyzer built using LEX [48] and 2) a
parser-cum-semantic analyzer built using YACC [48] (an
LALR parser generator). A separate context and a state-
ment counter are maintained for each script. The state-
ment counter acts as the program counter for the SSL vir-
tual machine. The Interpreter Module provides services
that permit token analysis, parsing, type checking, execu-
tion of scripts, error detection, and reporting. Additional



details can be found in [40].

The Cell Module implements the cell abstraction. To sup-
port the abstraction, this module implements interfaces
for cell creation, deletion, and execution. In addition, this
module manages the context of each cell and performs
event dependency processing. When an SNMP PDU that
accesses the data table is received by the IM, the SNMP
Communications Module reads the PDU and generates
a suitable internal event that is put into an event queue.
The Cell Module reads the event queue and processes the
events, one at a time. The Cell Module determines the
target cell and thereby the SSMIB variable, based on the
OID of the variable requested, and performs the requested
operation. Further, the Cell Module determines the set of
dependent cells that are recipients of a given event, and
routes the events to those cells.

Each cell has a context associated with it. The cell con-
text keeps track of a cell’s local variables, control and
data table pointers in the SSMIB for easy, quick access;
in addition, the cell context contains event dependency
information, queues for storing events targeting the cell,
status flags, and the type of the cell. Information needed
to process SNMP requests (e.g. request id) are also a part
of the cell’s context. When a cell is created, an associated
context is created. This allows a cell to be self-contained
and retain history sensitivity across invocations, if nec-
essary. When a cell is deleted, the associated context is
removed.

The Cell Module also maintains event dependency infor-
mation. The event dependency information consists of a
list of <cellid,eventcode> pairs. When an event expres-
sion is true, the action part of the cell script is executed
and the appropriate event is forwarded to the cells listed
in the event dependency list.

The Polling Subsystem design is modular and allows dif-
ferent polling strategies to be implemented without af-
fecting the other IM modules. The Polling Subsystem
consists of a polling manager, core control module, vari-
able lookup module, polling table manager and a polling
dispatcher module. The polling manager module exports
interfaces to create, delete, and lookup poll variables and
provides services to start polling, stop polling, and update
polled variables. The core control module permits the
selection of the appropriate polling strategy. Using this
module, poll requests can be requeued or suspended. The
value lookup module provides interfaces to create, delete

and lookup polling table entries. This module also fa-
cilitates the lookup of variables being polled. The polling
table manager, as the name suggests, manages the polling
table maintained by the Polling Subsystem. The polling
dispatcher module is primarily responsible for forward-
ing poll requests to the SNMP interface module. This
module provides services that permit queuing, and de-
queuing of poll requests, call back interface for process-
ing poll responses, updating values in the spreadsheet,
and call back service for initiating poll requests.

The Timer Module provides the timing services for the
IM. It consists of a timer service routine that is invoked
on every timer tick to maintain a progressive logical IM
clock, an interface to the Polling Subsystem to provide a
poll timer, and a generic timer management service that
allows creation and deletion of timers and maintaining
these timers in a sorted list.

The SNMP Interface module provides agent side commu-
nication and hides the details of SNMP from the Polling
Subsystem. The SNMP interface module interacts with
the Polling Subsystem on one side and the SNMP Com-
munications Module on the other and supports interfaces
that allow the modular replacement of polling algorithms
to experiment with different strategies.

In addition to the Intermediate Manager implementation,
SHAMAN includes a frontend GUI with a collection of
development and design tools to facilitate configuration,
script creation, downloading, and management. The UI
has a language assistant that provides a friendly editing
environment to create SSL scripts. Further, the UI per-
mits displaying graphs that are linked to cells and plot
values of cell variables over time. The GUI was built us-
ing X-Motif [49] and the X toolkit intrinsics [50]; further
details of the GUI can be found in [40].

A. Spreadsheet-based Intermediate Manager Operation

We now illustrate the operation of the IM by extending
the example cited in Section III-A. Recall that in this
example a manager monitors thetcpActiveOpenscounter
from three nodes: sol, tweety, and stimpy. Here we ex-
tend the example by adding the clause that the manager is
interestedonly in the sum of these counters and not in the
individual values of the counters. The manager sets up
a spreadsheet (at the IM) that contains aPollingCell and
a SummationCell. The PollingCell contains the polled
values of the counters on the agent nodes, sol, tweety,



and stimpy. The SummationCell is dependent upon the
PollingCell values, and contains a script that executes to
compute the sum of the three counters when any one of
them changes.

The scripts, developed using the User Interface (UI) lo-
cated on the manager, are loaded into cells using SNMP
SetRequests that also result in the creation of the appro-
priate cells. The SetRequests received by the IM are
routed to the MIB Module which creates the control por-
tion of the cell, if it doesn’t already exist. The control
portion of the cell (i.e., a row in the control table) is cre-
ated using standard SNMPv2 row creation semantics [41,
pages 288–289]. Once the control portion of the cell is
created, the Cell Module creates the associated cell con-
text. The control script is then passed to the Interpreter
Module for determining the number of the data values in
the data portion of the cell, and to execute the initializa-
tion part of the script. The data portion (in this case 3
counters) of the cell is created by the MIB Module. The
manager is informed about the result of the SetRequest
operation using an SNMP GetResponse PDU. When the
script that computes the sum is loaded, the Interpreter
Module uses the Cell Module to register a dependency
of the SummationCell, on the values contained in the
Polling Cell. This registration causes the SummationCell
to be notified of changes in the PollingCell’s values. At
this juncture, all the control has been set up and the vari-
ables are polled at the specified frequency.

The Polling Subsystem is responsible for polling thetc-
pActiveOpenscounters on sol, stimpy and tweety. The
Polling Subsystem uses the services of the Timer Mod-
ule to maintain a poll timer; when this timer expires,
the Polling Subsystem is notified by the Timer Module.
The Polling Subsystem interacts with the SNMP Interface
Module to group multiple variables into a PDU (if possi-
ble); in this example, however, no grouping is possible.
The poll requests (SNMP GetRequests) are forwarded to
the agents. When the corresponding responses arrive at
the IM, the SNMP Interface Module informs the Polling
Subsystem. The MIB Module is used by the Polling Sub-
system to update the appropriate row (cell-element) in the
data table with the value of the polled variable. The up-
date causes a value change event to be generated, and de-
livered to the SummationCell. The event originates in
the MIB Module when the PollingCell is updated, and
is forwarded to the SummationCell via the Cell Module.
The SummationCell (Cell Module) verifies that the event

received causes the event condition to become true, and
uses the Interpreter Module to execute the action part of
the script. The action part computes the sum of the cur-
rent values of the counters and the SummationCell’s data
portion is updated to contain the current sum. The man-
ager can then retrieve this value using an SNMP GetRe-
quest. Thus, the sum of the counters gets updated without
the manager’s intervention and the manager can retrieve
the current value as and when needed.

V. Example Application: Location Management in a
Battlefield Network

We now describe an example application for SHAMAN
that will highlight some important features of the SSL
and the event model. The example involves location man-
agement in a battlefield network scenario with potentially
thousands of mobile nodes that are controlled from com-
mand centers which need to constantly keep track of the
current location of each node [14].

Consider a group of nodes that individually move on a
battlefield according to the needs of the situation. Each
node requires to be periodically monitored by a manager
that keeps track of the current location of the node and
the amounts of fuel and ammunition left. The manager
may take appropriate action if these amounts fall below
specified limits.

Each node has an SNMP-manageable MIB with the fol-
lowing variables:

� xPositionwith the x coordinate of the current node po-
sition,
� yPositionwith the y coordinate of the current position,
� remFuelindicating the amount of fuel remaining in the
vehicle,
� remAmmoas the amount of ammunition remaining.

The total number of such nodes to be managed may be
too large for a single manager to handle. Moreover, there
may be distance constraints so that we may wish to have
a node be managed by a manager that is located close
by. Figure 10 depicts a hierarchical management solution
using the SHAMAN approach that is appropriate for this
situation.

We designate two Intermediate Managers, named IM1
and IM2, with management authority over nodes that are
within their spheres of management as shown by the cir-
cles in the figure. Each IM periodically polls each node



IM 1 IM 2

Top-level Manager

Fig. 10. Hierarchical Location Management for Mobile Nodes in a Battlefield Network

within its management domain to obtain its current vari-
able values. If any action is required for the fuel or am-
munition, then the top-level manager is informed.

As the nodes in this system move around, they may mi-
grate from the management domain of one IM to the do-
main of the other. This may necessitate a “handoff” of
the management authority over this node to the second
manager. The need for a handoff may be detected by the
IM responsible for each node. Each time a node’s loca-
tion is polled, it can be determined if the node has entered
an intermediate zone (shown in Figure 10 as the intersec-
tion of the two management domains). If it has, and if it
is rapidly moving towards the second zone, the top-level
manager is informed which then initiates the handoff of
the node to the second IM. This information about rapid
movement can be determined from the previous and cur-
rent position of the node.

Figure 11 shows the structure of the spreadsheet that con-
tains the control for this location management applica-

tion. Since the actual variables that reflect the current
position are located in the respective agents, the SSL is
used to set up the polling of these variables as a script in
a cell that we will refer to as apolling cell (shown as P in
Figure 11). In order to keep track of the past and present
positions of the nodes, ahistory cellis used (shown as H
in Figure 11) . Thehistory cellstores the previous and
current values ofxPositionandyPosition. To determine
which IM’s domain the node is currently in, astatus cell
(shown as S in Figure 11) is defined. This cell contains
a script that computes the current domain for the node,
given the past and current location of the node. There is
one cell of each type for each node being managed. In ad-
dition, dependencies must be set up to link the history cell
to change when the polling cell changes. Further, the sta-
tus cell needs to be linked to the history cell to perform
the domain computation when the values in the history
cell get updated. Once these cells are set up, as the lo-
cation information gets updated, corresponding updates
occur in the history cell, resulting in the recomputation
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Fig. 11. Spreadsheet Structure for Location Management

of the status. A (higher-level) manager can poll the status
cells to determine the current location and status of the
nodes.

If a node has transitioned from one IM’s domain to the
other, the manager needs to perform the “handoff” oper-
ation. The manager performs this operation by informing
the IM, under whose domain the node was previously lo-
cated, to stop polling the node. In addition, it informs the
IM under whose domain the node is currently located, to
start monitoring the node. Polling is suspended when a
manager executes the script contained in adeactivation
cell (shown as D in Figure 11); polling is resumed when
the script in anactivation cell(shown as A in Figure 11)
is executed.

Figure 12 shows the script set up in the polling cell for
a node namedroamer. A MIB variable is denoted in
the script by its fully qualified name which includes the
variable name and the hostname where the MIB is lo-

cell[2,0]:
label: PollingCell;
init: poll xPosition@roamer; // sets$$.1

poll yPosition@roamer; // sets$$.2
poll remFuel@roamer; // sets$$.3
poll remAmmo@roamer; // sets$$.4

Fig. 12. Location Management: Polling Cell Script

cated. For instance, the MIB variableremFuel in the
noderoameris referred to asremFuel@roamer. The val-
ues obtained from the polls are stored in the four internal
values of the form $$.n. The polling cell is updated pe-
riodically through polls of the MIB variables at the agent
at the default frequency configured at the IM.

The history cell for the noderoamer is set up using
the script shown in Figure 13. The event specification
[PollingCell].1 && [PollingCell].2 causes the action part



cell[4,0]:
label: HistoryCell;
init: $$.1 = 0; $$.2 = 0; $$.3 = 0; $$.4 = 0;

on: [PollingCell].1 && [PollingCell].2;
action:

$$.1 = $$.3; // save old x value
$$.2 = $$.4; // save old y value
$$.3 = [PollingCell].1; // copy new x value
$$.4 = [PollingCell].2; // copy new y value

Fig. 13. Location Management: History Cell Script

of this cell (the history cell) to be executed whenever
the values ofxPositionandyPosition in the polling cell
change. Further, this script copies the old values of the
x andy positions to be saved in local variables $$.1 and
$$.2, and the latest polled values to be copied from the
polling cell into local variables $$.3 and $$.4. Thus, this
cell maintains two sets ofx andy coordinates, the cur-
rent set and the previous set. This information can be
used to compute the velocity of the node, or its direction
of movement.

The status cell (shown in Figure 14) executes each time
there is a change in the values of HistoryCell. The com-
putation performed in the action part of this cell is at the
heart of the location management function executed in
the IM that is responsible for managing a given node.
The value of the cell, $$.1, contains the current status for
this node, with 1 indicating that IM1 is responsible for
managing it, 2 indicating that IM2 is responsible, while
3 indicates that the node has entered a transition zone (in
the overlapping part of the management domains). When
the node enters the transition zone and is traveling fast
(indicated by a large change in its x-position), manage-
ment responsibility is immediately transferred by chang-
ing the status to 2. Otherwise, we wait until the node
has reached the end of the transition zone. If the status
of the node changes to 2, the top-level manager may be
informed by an SNMP Trap (not shown here) so that ap-
propriate changes may be effected in the spreadsheets of
the two IMs. For instance, the polling of this node by IM1
may be disabled while polling by IM2 may be enabled.

As mentioned before, the polling is suspended using a
deactivation cell and resumed using an activation cell. As
part of the activation, the status of the node is updated to
reflect the IM on which the cell is being activated. The

activation cell shown is for IM1 and thus shows the status
being updated to 1. For IM2, the corresponding status
will be 2. The two cells shown in Figure 15 illustrate
these operations.

The top-level manager can get an Intermediate Manager
to either start or stop the polling of noderoamerby exe-
cuting the appropriate cell above.

In addition to the cells described thus far, additional cells
are used to define constants for the application. Recall
that in the location management example the domains
of the two Intermediate Managers are defined as circles.
Two cells can be set up, one for each IM, to contain the
constants that define the circular area. Each cell contains
three values: thex andy coordinates of the center, and
the radius of each circle. In Figure 16, cells [1,1] and
[1,2] contain the three values for IM1 and IM2 respec-
tively. Cell [1,3] defines the threshold (in the X-direction)
above which the node is assumed to be moving fast. If
this threshold is exceeded when a node is in the overlap-
ping area of the two IMs, then a “handoff” is initiated.

The location management application described here has
been implemented in SHAMAN and shown as a demo in
some of the ARL/ATIRP Annual Symposiums; it is also
available from the SHAMAN web page [13]. The power
of SHAMAN is evident from this location management
example. Delegation is achieved by downloading the
scripts to the IM and letting the IM perform the location
tracking task; the concept of MIB views has been demon-
strated using the polling cells where only the relevant
variables are selected for monitoring from the agents;
event hierarchy is demonstrated using the dependencies
between the polling, history and status cells. Many fea-
tures of SSL are illustrated using the scripts contained in
the cells.

VI. Topology Reconfiguration of Tactical Internets
with SHAMAN

We now describe a second application of SHAMAN to
perform topology reconfiguration in mobile wireless tac-
tical battlefield internets. Such a battlefield environment
is characterized by high degree of mobility of nodes, sud-
den appearance and disappearance of network elements
(such as routers, switches, links, etc.). It is thus im-
portant for automatic configuration management of such
networks that the appropriate network connectivity be re-
generated after a change has occurred in the underlying



cell [6,9]: // status of roamer
label: NodeStatus;
init: $$.1 = 1; // initially IM1’s domain
on: [HistoryCell].3 && [HistoryCell].4;
action:

$5 = 0; $6 = 0; // initialize local variables
// Using IM1 circle’s center, compute the squares of the distances in the
// x and y directions.
$1 = ([IM1Domain].1- [HistoryCell].3)� ([IM1Domain].1 - [HistoryCell].3);
$2 = ([IM1Domain].2 - [HistoryCell].4)� ([IM1Domain].2 - [HistoryCell].4);
// Using IM2 circle’s center, compute the squares of the distances
$3 = ([IM2Domain].1 - [HistoryCell].3)� ([IM2Domain].1 - [HistoryCell].3);
$4 = ([IM2Domain].2 - [HistoryCell].4)� ([IM2Domain].2 - [HistoryCell].4);

if ( $1 + $2< [IM1Domain].3� [IM1Domain].3 ) // in IM1’s domain?
then $5 = 1; endif; // yes.
if ( $3 + $4< [IM2Domain].3� [IM2Domain].3 ) // in IM2’s domain?
then $6 = 1; endif; // yes.
if ( $5 == 1 && $6 == 1 ) // is current point in both domains?
then

// check with the previous x position, if the delta is greater than the
// threshold specified, it means that the node is traveling fast.
// Based on the direction, adjust the status.
if ( [HistoryCell].1> [HistoryCell].3 ) // prev x> curr x
then // moving right to left

if ( ([HistoryCell].1 - [HistoryCell].3)> [SpeedThreshold].1 )
then $$.1 = 1; // threshold exceeded, status = IM1’s domain
else $$.1 = 3; // no, still in common territory
endif;

else // previous x pos� current x pos
if ( ([HistoryCell].3 - [HistoryCell].1)> [SpeedThreshold].1 )
then $$.1 = 2; // threshold exceeded, status = IM2’s domain
else $$.1 = 3; endif; // no, still in common territory

endif;
else

if ( $5 == 1 ) // current location purely in IM1’s domain
then $$.1 = 1; // status = IM1’s domain
else $$.1 = 2; endif; // status = IM2’s domain

endif;

Fig. 14. Location Management: Node Status Cell Script

network. In other words, the management system should
respond and adapt to the changing network conditions.

An algorithm for such adaptive reconfiguration of tacti-
cal internets has been developed by Telcordia [51]. We
first briefly summarise this algorithm and then outline its
implementation in SHAMAN.

The algorithm uses a semi-formal approach with heuris-
tics for network topology generation that produce good,
though not optimal, results, with the advantages that the
algorithm is fast and easy to implement. Two constraints

are imposed on the generated connectivity: (a) Every
node (either a router within a subnet or a subnet) in the
network must be able to communicate with every other
node via at least one path that is within H hops, where
Hop Count H is a parameter, and (b) Every communicat-
ing node pair has more than one possible route through
the underlying network. Constraint (a) ensures quick
dissemination of the battlefield information while con-
straint (b) ensures robustness/service survivability, since
the presence of multiple paths helps find alternate paths
for communication in the event of a failure along a given
communication path. In addition to the above two con-



cell[3,0]: // Manager executes this cell
label: DisableNode;
action:

deactivate[PollingCell];

cell[3,1]: // Manager executes this cell
label: EnableNode;
action:
[NodeStatus].1 = 1;

activate [PollingCell];

Fig. 15. Location Management: Activate and Deactivate
scripts

cell[1,1]:
label: IM1Domain;
init: $$.1 = 100; $$.2 = 100; $$.3 = 350;

cell[1,2]:
label: IM2Domain;
init: $$.1 = 700; $$.2 = 100; $$.3 = 350;

cell[1,3]: // Defines the threshold to determine
//if status change is necessary

label: SpeedThreshold;
init: $$.1 = 50;

Fig. 16. Location Management: Cells containing constants

straints, there is also a constraint on the degree of each
node (Degree Bound D) that results from physical limita-
tions on the number of interfaces at each node.

The approach taken by this algorithm consists of two
steps. First, the underlying network is partitioned into
subnets in such a way that the total links required to re-
alize a fully meshed interconnection within each subnet
and among the subnets is kept as small as possible. To do
this, an expression is derived for the total number of net-
work links (L) for the above scenario, and a minimization
is performed for L with respect to I, the number of nodes
within a partition. Since the value obtained for I may be
a real number, rounding operations may be required to
get the closest integer value for I that corresponds to the
minimum L. The actual partitioning of nodes can then be
done based on knowledge about groups of nodes that are
expected to have the highest traffic patterns among them.

After the network is partitioned into subnets, the second
step applies a heuristic to generate connectivity within

each subnet and across the subnets subject to the given
constraints. The heuristics are based on using the well-
known Dijkstra’s shortest-path algorithm to compute the
shortest path tree from a given node to all other nodes
within the network. This shortest path algorithm is mod-
ified to accommodate the constraints that are imposed
on the configuration by the application. Since the ac-
tual number of network links is determined based on this
heuristic, the partition based on the minimization opera-
tions discussed in the earlier paragraph will not be strictly
optimal. However, the approach as a semi-formal ap-
proach is expected to yield reasonable (though not op-
timal) results.

Since the connectivity is generated independently for
each subnet, this task can be delegated to an Interme-
diate Manager (IM) for each subnet, such as those de-
ployed in SHAMAN. These IMs can perform the compu-
tations needed to generate the connectivity and also the
operations required for reconfiguring the routers within
the subnet to conform to the new connectivity. The con-
nectivity computation may be triggered either explicitly
by the top-level manager, or by a change in some of the
constraint parameters (such as Hop Count H or Degree
Bound D), or by changes in node positions as monitored
periodically by the IM.

This algorithm has been implemented in SHAMAN and
demonstrated at the ARL/ATIRP Annual Conference in
March 2001. It is also a part of the joint demo that has
been designed for the entire task on Adaptive Network
Management to showcase the technologies developed by
all the partners in this task. Since the implementation is
quite complex, we will not present the SHAMAN scripts
here as we did for the Location Management application,
but only outline the overall structure of the implementa-
tion.

To implement this algorithm in SHAMAN, we use a
structure of cells in the spreadsheet which make it easy
to modularize the different logical components of the al-
gorithm. The first column of cells are used for external
interaction from the SHAMAN entity, i.e., for communi-
cation with the top-level manager. This column includes
a cell used as the trigger for topology generation. The
manager will do an SNMPGet operation on this cell to
command the SHAMAN IM to begin topology reconfig-
uration when it is necessary to do so. Another cell is used
to store the generated topology; this topology is then set
into an agent MIB that is used to drive the input to the di-



rectory service system from where it is accessible to the
manager.

A second column of cells stores global parameters and
data. These include the number of nodes in the network,
the node addresses, the maximum limit on nodal connec-
tivity (Degree Bound D), and the limit on the maximum
length of the shortest path between two nodes (Hop Count
H). The third column contains local structures to be used
by the various components of the algorithm. These are
the node positions (which are polled from the agents in
the nodes), the path cost matrix, the direct link costs, and
the predecessor of each node in the shortest path tree.

The remaining columns and cells in SHAMAN’s spread-
sheet are used for the code corresponding to the algo-
rithm’s components. The first of these is the Chain gener-
ation function, which initially generates chains between
the nodes that are as long as possible without violating
the maximum length constraints. The second is Dijkstra’s
algorithm which finds the shortest paths from each node
to every other node. The third component is a function
to create shorter paths whenever the algorithm has paths
that are unacceptably long. This is done by adding di-
rect links between the nodes so that path lengths may be
reduced. The final component is a function to perform
checks on the nodal degree constraint.

In the process of implementing this algorithm, a number
of features in SHAMAN’s Spreadsheet Scripting Lan-
guage (SSL) were found to be extremely useful. These
include the storage of two-dimensional tables in cells,
since the adjacency matrix corresponding to the network
connectivity can be stored and operated on as a table in a
cell. Dynamic specification of cell names allows a cell to
be specified dynamically within an expression by using
a variable. This feature permits flexibility in applying an
operation to a number of cells by putting the operation
within a loop and changing the variable value in each it-
eration to refer to the desired cell. Dynamic specification
of OIDs and hostnames permits a MIB variable to be ac-
cessed in SSL by using variables to specify its OID and
the hostname of the node where it resides. Finally, the
foreachrow and foreachcol statements permit easy loop-
ing over a two-dimensional structure or table stored in
a cell without explicit or prior knowledge of the size of
the table. This is particularly useful when the number of
nodes in an internet changes dynamically.

VII. Conclusions

This paper has described SHAMAN, a hierarchical
scripting framework that extends the existing Internet
management framework to support delegation and user
customization of control and data. We achieve this using
a novel spreadsheet-based MIB in an Intermediate Man-
ager that allows management tasks to be viewed as a set
of scripts in related, cooperating cells in a spreadsheet.
We described the different components of SHAMAN in-
cluding the Spreadsheet MIB which acts as a repository
for scripts and data, the Spreadsheet Scripting Language
that integrates well with the information model of the In-
ternet management framework, and an event model that
supports asynchronous processing.

The concept of hierarchical management using SHAMAN
is well-suited to the management of tactical battlefield
networks because these networks require a scalable but
flexible management strategy because of the large num-
ber of nodes and the high degree of mobility. We have
demonstrated the utility of SHAMAN through the two
example applications of location management and topol-
ogy reconfiguration in tactical battlefield networks. A
prototype implementation that includes these two appli-
cations as demos is available from the SHAMAN web
page.
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