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Abstract

This paper presents a success story of specifying a complex real-life protocol (MIL-STD 188-220) in Estelle and generating test sequences
from the formal specification. 188-220 is being developed in the US Army, Navy and Marine Corps systems for mobile combat network
radios. A key factor in this success story has been the collaboration among the researchers of the University of Delaware and the City College
of the City University of New York, the developers of the US Army Communications–Electronics Command (CECOM), and the protocol
designers in the Joint Combat Net Radio Working Group. Based on the research results, 188-220 test sequences are realizable without timer
interruptions while providing a 200% increase in test coverage. The test cases are being installed at a CECOM test facility.q 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Formal methods in conformance testing are becoming
widely used in the testing of real-life protocols
[6,16,17,24,35,36,76]. OSI conformance testing has been
applied to the Internet protocols such as Hypertext Transfer
Protocol [24], Simple Mail Transfer Protocol [6], and TCP/
IP [36]. Another area of successful application of confor-
mance testing are ATM/B-ISDN protocols, e.g. the testing
of ATM Adaptation Layer protocol [76], ATM switching
systems [16,35], and B-ISDN signalling [17].

There have also been several reports on successful appli-
cation of Estelle to real-life systems [8,14,34,49,58,69].
Estelle was used to automatically implement TP4/IP proto-
col [69], to uncover ISO Remote Operations Service
Element [29] protocol errors [34], and to specify, detect,
and resolve feature interactions in Intelligent Networks

[8]. Most recently, simulation studies [49] of the Estelle
specification of Service Specific Connection-Oriented
Protocol [33] revealed some specification errors and flow
control inefficiencies of the protocol definition. Catrina et al.
[14] showed that it is possible to use an Estelle specification
to automate implementation of a sophisticated transport
protocol (XTP 4.0 [75]). Thees [58] compared performance
of the XTP 4.0 implementations automatically generated
from the Estelle specification with hand-coded implemen-
tations. Both studies point out numerous advantages (and
potential problems) of using Formal Description Tech-
niques (FDTs) for XTP code generation.

This paper presents a success story of specifying a
complex real-life protocol in Estelle, and automatically
generating conformance tests from the formal specification.
The US Department of Defense (DoD)/Joint protocol, called
Military Standard (MIL-STD) 188-220, is being developed
in the US Army, Navy and Marine Corps systems for mobile
combat network radios [19]. With the understanding of the
power of formal description techniques, a key factor in this
success story has been the collaboration among the four
groups: the researchers of the University of Delaware
(UD) and the City College of the City University of New
York (CCNY), the developers of the US Army
Communications–Electronics Command (CECOM) in
New Jersey, and the protocol designers in the Joint Combat
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Net Radio (CNR) Working Group (WG). As a result of this
success story, the synergistic framework to developC4I
(Command, Control, Communications, Computers, and
Intelligence) systems with the help of formal methods serves
as a model for future DoD standards development [19].

Since this paper is a case study promoting a successful
application of Estelle to a real-life protocol, it includes a
cross-section of activities over the past few years. Section 2
provides the background on the collaboration among the
MIL-STD 188-220 sponsors, research and development
teams, and standards organizations. Sections 3 and 4 briefly
overview the formal description technique Estelle and 188-
220, respectively. Section 5 presents a part of the Estelle
specification of 188-220, and gives examples of errors and
ambiguities found thanks to formally specifying the proto-
col. A general approach adopted at UD and CCNY to test
generation from an Estelle formal specification is described
in Section 6. This section also summarizes recent research
results obtained in minimum-length test generation based on
Estelle specifications. Section 7 contains information on
practical results in test generation and delivery. Finally,
Section 8 presents the authors’ view on the improvements
to the protocol development process due to using formal
methods.

2. History of MIL-STD 188-220 development

In 1994, UD’s Protocol Engineering Laboratory began its
involvement with the US Army in using Estelle
[11,28,57,60] to formally specify a military standard MIL-
STD 188-220 [18]. An initial small contract with the Army
Research Laboratory supported both simulation and speci-
fication of the 1993 version of 188-220 [13,45]. The formal
specification research effort received the attention of the
CECOM Software Engineering Center, which leads the
effort to evolve 188-220 to meet the Army’s requirements
for battlefield digitization, through the Joint CNR WG, itself
responsible for the evolving 188-220 standard.

From 1995 to 1998, at least fifty changes to the English
specification of 188-220 resulted from UD’s efforts using
Estelle to formally specify the standard [2,18] (see Fig. 1).
While the English text takes precedence in case of disagree-
ment with the formal specification,the Estelle specification

of 188-220is an official part of the military standard.To the
best of our knowledge, 188-2201 represents one of the first
major national or international standards officially including
an Estelle specification. There are other examples of inter-
national standards that include Estelle specifications such as
OSI session protocols [30,48], OSI Distributed Transaction
Processing [31], and OSI File Transfer, Access and Manage-
ment protocol [27].

CECOM is developing a Conformance Tester that auto-
matically evaluates a 188-220 implementation identifying
where it differs from the standard. The test generation
research was initiated as part of the US Army’s Advanced
Telecommunication and Information Distribution Research
Program (ATIRP) in January 1996, when UD’s Protocol
Engineering Lab began research collaboration with
CCNY. Efforts were focused on automatically generating
test cases from the Estelle specifications. Generating tests
from formal specifications such as pure finite state machines
(FSMs) has been extensively studied in the literature. But
the inherent complexity of 188-220 is far beyond specifying
with pure FSMs, hence the need to use a more powerful
specification language such as Estelle, ISO 9074. Unfortu-
nately, generating tests from Estelle specifications presents
difficult theoretical and practical problems. UD and CCNY
faculty and students continue to investigate these problems
with the practical motivation of applying the results towards
188-220 test case generation.

As mentioned above, automatic generation of tests from
Estelle specifications presented various theoretical
problems:

1. During testing, if active timers are not taken into account,
they can disrupt the test sequences, failing correct imple-
mentations (or worse, passing incorrect ones). Therefore,
timers have to be incorporated as constraints into the
extended FSM (EFSM) model of an Estelle specification.

2. Test sequence generation is limited by the controllability
of an Implementation Under Test (IUT) [7]. Testers may
not have direct access to all interface(s) in which the IUT
accepts inputs (typically, the interfaces with upper layers,
or with timers). In this case, some inputs cannot be
directly applied; the interactions involving such inter-
faces may render some portions of the protocol untest-
able, and may introduce non-determinism and/or race
conditions during testing.

3. Infeasible test sequences may be generated unless
conflicting conditions based on protocol’s timers that
may be running simultaneously are resolved (the so-
calledconflicting timers problem).

The timing and controllability issues were present in the
EFSM model of the Estelle specification of MIL-STD
188-220 [3,20]. Based on the results of the investigating
problems (1) and (2) by the UD and CCNY joint group
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Fig. 1. History of MIL-STD 188-220 development.

1 In the rest of the paper, 188-220 refers to the version “B” of the stan-
dard, completed in January 1998.



[20,23,66], UD has been providing CECOM with auto-
matically generated test sets since 1997. The sizes of the
resulting FSMs derived from the Estelle specification range
from 48 to 303 states, and from 119 to 925 transitions. The
corresponding test sequences range from 145 to 2803 test
steps. These tests are free of interruptions due to unexpected
timeouts while their coverage of the number of testable
transitions increased from approximately 200 to over 700
by utilizing multiple interfaces without controllability
conflicts. Current research focuses on the conflicting timers
problem.

3. Estelle

In 1989, Estelle was published as one of two ISO Inter-
national Standard Formal Description Techniques (FDT) for
the specification of computer communication protocols
[11,28]. As shown in Fig. 2, Estelle specifies a protocol’s
behavior as a set of communicating extended finite state
machines. To avoid ambiguity among different readers of
a specification, the Estelle language itself has a formal,
mathematical, implementation-independent semantics.

Estelle is an expressive, well-defined, well-structured
language that is capable of specifying distributed, con-
current information processing systems in a complete,
consistent, concise, and unambiguous manner. An Estelle
specification aims at discovering and resolving ambiguities

in the original English document that would cause interpre-
tation problems for implementors.

An Estelle specification consists of two parts: architecture
and its behavior. The architecture specifies a collection of
systems of nested modules. Each module’s behavior is
described by an extended FSM. These EFSMs interact via
the sending of interactions over a set of channels. The inter-
actions are conceptually stored in infinite FIFO queues
enabling transitions in the receiving module which are
fired when all enabling conditions are satisfied. A complex
set of rules define either a parallel or synchronous firing of
transitions within each EFSM. Overall, the many features of
Estelle allow a user to formally specify a wide variety of
network protocol behaviors. Further information about
Estelle can be found in Refs. [57,60].

One major benefit of an Estelle specification as a model
of a communication protocol is that it can be used as input to
a conformance test generation tool. Since Estelle makes it
possible to create a complete and unambiguous protocol
model, the test cases generated from it can potentially
achieve higher fault coverage than hand-generated ones,
and are reproducible with far less effort as 188-220 evolves
in the future. These advantages are the primary motivations
for using Estelle to specify 188-220.

4. MIL-STD 188-220

The Protocol Engineering Lab researchers at UD used
Estelle to specify parts of the 188-220 protocol suite. This
suite was developed to meet the requirements for horizontal
integration, seamless Internet communications and
increased mobility using combat network radios [19]. This
protocol, a critical piece of the new Joint Technical Archi-
tecture, is now mandated for CNR communications. It is
being implemented in US Army, Navy and Marine Corps
systems, and has been demonstrated initially during the
Army’s Advanced Warfighting Experiment in 1997. 188-
220 is now receiving allied/international attention, while
portions of its protocol architecture have been promulgated
in the Internet Engineering Task Force. Expected outcomes
from its use are: seamless connectivity ofC4I systems
(discussed briefly in Section 8), horizontally integrated
information networks, and joint interoperableC4I systems
for the warfighter.

188-220, originally developed in 1993, evolved to 188-
220A with substantial new functionality, including support
for new radio technology and integration with Internet
protocols (commercial IP, TCP, and UDP at the network
and transport layers). Version 188-220B, whose architecture
is depicted in Fig. 3, describes the protocols needed to
exchange messages using CNR as the transmission media.
These protocols include the physical, data link and part
of the network layer of the OSI model. The protocols
apply to the interface between host systems and radio
systems. Hosts usually include communications processors
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Fig. 2. Estelle: ISO international standard 9074.

Fig. 3. MIL-STD 188-220 protocol architecture. Parts of the protocol where
FDTs were used during the development are circled.



or modems that implement these lower layer protocols. The
unshaded portions of Fig. 3 indicate those protocols and
extensions that were developed specifically for use with
CNR.

MIL-STD 188-220 Datalink layer specifies several
service types, each intended to handle different types of
traffic with different quality of service (QoS) demands. A
188-220 station can actually process several different types
of traffic simultaneously (and almost orthogonally). MIL-
STD 188-220 Network Layer consists of Internet (IP) Layer,
Subnetwork Dependent Convergence Function (SNDCF),
and Intranet Layer. The Intranet Layer has been dedicated
to routing intranet packets between a source and possibly
multiple destinations within the same radio network. The
Intranet Layer also accommodates the rapid exchange of
topology and connectivity information—each node on the
radio network needs to determine which nodes are on the
network and how many hops away they are currently
located.

5. 188-220 Estelle specification

To help a reader realize the magnitude of formally speci-
fying a protocol of 188-220 size and complexity, let us give
some numbers. The Datalink (Network) layer specification
consists of 69 (19) documents describing architecture, inter-
faces, EFSM, and state table of each module. The Datalink
layer specification is accompanied by three (for Datalink
classes A, B, and C) Estelle source code files with approxi-
mately 1600, 8700, and 2400 lines of code, respectively.
The Estelle source code for the Network layer has 7150

lines of code, defining 34 states and 370 transitions in
seven EFSMs.

Due to its large size, it is not possible to include the actual
Estelle specifications in this paper. For a more detailed
description of the semantics of Estelle specification com-
ponents (communication channels, interactions, etc.), the
reader may consult our paper on Datalink Layer specifi-
cation [2], or may visit the Web site at http://www.cis.ude-
l.edu/~amer/CECOM. In the next section, we present an
overview of the Network Layer architecture with a focus
on the Topology Update and Source Directed Relay func-
tions of the Intranet sublayer.

5.1. Intranet layer architecture

Fig. 4 shows the interface and general architecture of the
Network layer. The architecture represents the protocol
stack at a single station, as well as an interface with
operator “module” which can interact with several different
layers in the stack. The operator module abstracts the link
layer’s interactions with both a human operator and a
system management process.2

Fig. 5 shows the internal structure of the Intranet Layer.
The two main Intranet Layer functionalities, Source Direc-
ted Relay (SDR) and Topology Update (TU) exchange,
were encapsulated in separate component modules of the
Intranet Layer module. This simplifies the design of the
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2 Note that the numbers in Figs. 4 and 5 refer to interactions, and are
consistent throughout the figures (e.g. number 12 refers toOP-min-update-
per in all three figures).



FSMs that model the entire layer, and also allows for gener-
ating test cases for each functionality separately.

The SDR module receivesIL_Unitdata_Reqmessages
throughSNDCFSAPinteraction point. It starts/stops a vary-
ing number ofEND_END_ACKtimers, one for each IP
packet that has been sent but not yet acknowledged. The
TU module interacts with the SDR module by notifying it of
any topology changes that take place dynamically. The TU
module communicates with two timers:Topology_Update
TimerandTopology_Update_Request Timer. The former is
started after a topology update message is sent by the
station. According to 188-220A, a station is not allowed
to send another topology update message until the timer
expires. The latter performs the same role for topology
update request messages.

Both SDR and TU modules can send and receive
messages from the datalink layer through theirlower_mux
interaction points—the messages from the two modules are
multiplexed by the parent Intranet Layer module. A peer
operator or management component is connected directly
to the Topology Update module and can set parameters that
are relevant in topology update mechanism. Part of the
diagram inside the dash-lined rectangular contains modules
that handle XNP procedures: joining and leaving the net
with either centralized or distributed control, and parameter
update requests.

5.2. Problems and ambiguities found in 188-220 through
formal specification

Primary goals in developing an Estelle formal specifi-
cation are:

1. discover and document problems and ambiguities that are
commonly seen in a standard written in natural language;

2. verify the protocol;
3. simulate the protocol;
4. automate code implementation;
5. automate test generation process.

MIL-STD 188-220 project focuses on goals (1), (3), and (5),
with simulation studies done by the US Army as reported in
Ref. [19]. Although the formal verification of 188-220 is not
part of the project, some of the errors found during the
formal specification can also be classified as part of goal
(2). Achieving goal (4) is an open issue; manufacturers, who
were already developing implementations before the Estelle
specification was created, now have an option to use the
Estelle specifications for automated code generation.

In the process of developing the Estelle specifications of
the Data Link layer and, most recently, the Intranet Layer,
more than fifty problems in the original English specifi-
cation have been documented. Here we present a represen-
tative cross-section of examples of ambiguities found and
corrected, demonstrating the difficulty of defining protocol
operations in a natural language.

Examples range from ambiguities such as:

• “…a station shall wait for some period of timebounded
by the probabilityof the remote ack time expiration.”

• the Intranet Layer allows a station to enterQuiet mode
whereas the Data Link layer refers to a station being in
response mode off. It was unclear how these two terms
differ, if at all;

to more serious examples of correctness/completeness such
as:

• Intranet routing was originally defined based on spanning
trees of the Intranet topology. However the draft stan-
dard’s examples did not comply with the mathematical
definition of a spanning tree.

• The phrase “may report to the higher layer protocol, and
may initiate appropriate error recovery action” was added
in several locations when the datalink layer identified an
error condition such as a lack of acknowledgment after
the maximum allowed number of retransmissions.

A few more selected examples are presented in Appendix A
to illustrate the nature of errors found in the protocol. All
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these problems were reported back to the CNR Working
Group and subsequently removed from the standard.

6. Test case generation

Test scripts (test cases) specify a logical sequence of test
steps that are performed by a Conformance Tester to indi-
vidually test a given protocol entity. The test scripts are
input to the Conformance Tester which in turn stimulates
an IUT, and assesses the IUT’s responses to determine if the
IUT correctly implements the protocols. Since it is impos-
sible to exhaustively test an implementation in practice, a
good set of test scripts should at least check those events that
affect state/transition, boundary conditions, and stress
points. The test scripts themselves should be structured as
independent modular components to facilitate modifying
and adding to the scripts in response to 188-220’s continu-
ing evolution.

A number of techniques have been proposed to generate
test sequences from Estelle specifications [42,43,61,62,74].
However, full Estelle specifications of large systems may
prove to be too complex for direct test case generation. As
shown in Fig. 6, there are several ways of generating test
sequences from Estelle specifications. One approach would
be toexpandEstelle’s EFSMs thereby converting them to
pure FSMs. This would be useful since methods exist for
generating tests directly from pure FSMs (e.g. [1]). Unfor-
tunately, converting even simple EFSMs can result in the
state explosion problem, that is, the converted FSM may
have so many states and/or transitions that either it takes
too long to generate tests, or the number of tests generated is
too large for practical use.

As an alternative, UD and CCNY joint group uses an
intermediate approach, where an Estelle EFSM is partially
expanded (hence resulting in some more states and tran-
sitions), but not expanded completely to a pure FSM. The
EFSM is expanded partially just enough to generate a set of
tests that is feasible and practical in size. Determining which

features to expand in the general case is the difficult aspect
of this research.

Test Case Generation Research: Conformance test
generation techniques reported in the literature
[1,7,39,46,55,62], using a deterministic finite-state machine
(FSM) model of a protocol specification, focus on the opti-
mization of the test sequence length. However, an IUT may
have timing constraints imposed by active timers. If these
constraints are not considered during test sequence gener-
ation, the sequence may not be realizable in a test labora-
tory. As a result, valid implementations may incorrectly fail
the conformance tests (or, nonconformant IUTs may incor-
rectly pass the tests).

Another problem in test sequence generation is due to the
limited controllability of an IUT. Typically, the inputs
defined for the interfaces with upper layers or with timers
cannot be directly applied by the tester. In this case, the
testability of an IUT may severely be reduced; in addition,
non-determinism and/or race conditions may occur during
testing.

In Sections 6.1 and 6.2, the research results to eliminate
the timing constraints and controllability problems which
appear in the EFSM model of the 188-220 are outlined.
The current research is focusing on the so-calledconflicting
timers problem, where infeasible test sequences may be
generated unless conflicting conditions based on timers
are resolved, as described in Section 6.3.

6.1. Timing constraint problem

During testing, traversing each state transition of an IUT
requires a certain amount of time. A test sequence that
traverses too manyself-loops(aself-loopis a state transition
that starts and ends at the same state) in a given state will not
be realizable in a test laboratory if the time to traverse the
self-loops exceeds a timer limit as defined by another tran-
sition originating in this state. In this case, a timeout will
inadvertently trigger forcing the IUT into a different state,
and thereby disrupting the test sequence before all of the
self-loops are traversed. If this unrealizable test sequence is
not avoided during test generation, most IUTs will fail the
test even when they meet the specification. Clearly, this is
not the goal of testing. Therefore, a properly generated test
sequence must take timer constraints into account.

The presented methodology [66,67] optimizes the test
sequence length and cost, under the constraint that an IUT
can remain only a limited amount of time in some states
during testing, before a timer’s expiration forces a state
change. The solution first augments an original graph repre-
sentation of the protocol FSM model. Then it formulates a
Rural Chinese Postman Problem solution [44] to generate a
minimum-length tour. In the final test sequence generated,
the number of consecutive self-loops never exceeds any
state’s specified limit. In most cases, this test sequence
will be longer than one without the constraint since limiting
the number of self-loop traversals likely requires additional
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visits to a state which otherwise would have been
unnecessary.

The methodology uses UIO sequences for state verifi-
cation. However, the results presented also are applicable
to test generation that uses distinguishing or characterizing
sequences. Earlier results of this study, limited to verifica-
tion sequences that are self-loops, are presented in Ref. [66].
The later paper [67] generalizes these earlier results to both
self-loop and non-self-loop verification sequences.

6.1.1. Practical motivation
Examples of protocols that contain many self-loop tran-

sitions in their FSM models include ISDN Q.931 for supple-
mentary voice services, MIL-STD 188-220 [18] for Combat
Net Radio communication, and LAPD [68], the data link
protocol for the ISDN’s D channel. For example, in ISDN
Q.931 protocol (Basic voice services, for the user side), each
state has an average of nine inopportune transitions, which
requires the traversal of 18 self-loop transitions during test-
ing. A Q.931 implementation has several active timers that
are running in certain states, e.g. timerT304 running in state
Overlap sending, and timerT310 in stateOutgoing call
proceeding. An EFSM modeling the TU functionality of
the Intranet Layer has three active states in which one or
two timers are running [66].

It is not always possible to delay the timeout at a tester’s
convenience. In real protocols, there may be timers whose
timeouts are difficult to set by the tester, e.g. acknowledg-
ment timers’ timeout values often are computed by the
implementation. Moreover, a tester may want to test an
IUT’s behavior for different settings of the IUT’s internal
timers, to be able to test the IUT’s correctness for various
configurations of the timers.

In addition to the original self-loops of a specification
model, additional self-loops are typically created when gener-
ated test sequences use state verification techniques such as
unique input/output (UIO) sequences [54], distinguishing
sequences [5,38], or characterizing sequences [5,38].

6.1.2. Optimizing tests under timing constraints
Let EselfandEvnslbe the sets of self-loop and non-self-loop

edges to be tested, respectively. Letdself�vi�; the number of
self-loops of vertexvi, be defined as the number of edges in

Eself incident onvi. Let dmin_self�vi� be the minimum number
of times any tour covering all edges ofEvnsl < Eself must
include vertexvi [ V:

Let dstate_ver�vi� be the number of self-loop transitions
used to verify whether an IUT is in statevi. Suppose that
during testing, a given vertexvi [ V can tolerate at most
max_self�vi� self-loops executed at one visit to vertexvi.
Attempting to remain in statevi to execute 11
max_self�vi� self-loops would result in disruption of a test
sequence. Testing a self-loop transition involves traversing
the self-loop transition followed by applying the state
verification self-loop sequence, which containsdstate_ver�vi�
transitions.

Due to space limitations, we are unable to include the
detailed derivation ofdmin_self(vi). In Ref. [66], we prove
that the minimum number of times vertexvi must be visited
in a test sequence is as follows:

dmin_self�vi� �
din�vi� if dself�vi� # �din�vi� p D1�vi��
G�vi� if dself�vi� . �din�vi� p D1�vi��

(
�1�

wheredout�vi� and din�vi� are, respectively, the out-degree
and the in-degree of vertexvi in Evnsl, and where

G�vi� � din�vi�1
dself�vi�2 �din�vi� p D1�vi��

D2�vi�
� �

�2�

D1�vi� � max_self�vi�2 dstate_ver�vi�
1 1 dstate_ver�vi�

$ %
�3�

D2�vi� � max_self�vi�
1 1 dstate_ver�vi�

$ %
�4�

G0�V 0;E0� (G0 is obtained fromG by removing self-loop
edges) is converted toGp(Vp,Ep) by splitting each vertex
v0i [ V 0 satisfying

dmin_self�vi� . max�din�vi�;dout�vi�� �5�
into the two verticesvp�1�

i ; vp�2�
i [ Vp (Fig. 7).

Then, vp�1�
i is connected tovp�2�

i with a set of edges

with cardinality ofdmin_self�vi� : Ep
1 �def S

v0i [V 0 g��vp�1�
i ; vp�2�

i �;
dmin_self�vi��: Each edge inEp

1 is assigned infinite capacityb
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and a zero costc . These fake edges will force additional
visits tovi in a minimum-cost tour ofG.

We then use network flow techniques (similar to Aho et
al. [1]) to maximize the flow on graphGp with minimum
cost. This flow defines a minimum-cost tour ofG under
timing constraints.

Example: Consider the FSM (represented by the graph
G�V;E�) with self-loop transitions shown in Fig. 8. Suppose
that verticesv0, v2, andv3 of the FSM can tolerate at most
three, andv1 at most two self-loop transitions during each
visit. Let transitionse10 ande11 correspond to timeouts.
After eithere10 ore11 is triggered, the FSM is brought into
statev3.

UIO sequences and the values ofmax_self, dstate_verand
dmin_selffor verticesv0, v1, v2, andv3 are as follows:

Vertex UIO max_self dstate_ver dmin_self

v0 e0 3 1 2
v1 e2 2 1 3
v2 e6,e7 3 2 4
v3 e9 3 1 2

The Chinese postman method [63] when applied to the
graph without any self-loop repetition constraint results in
the test sequence

e0;e0;e1; e2;e2;e2;e10;e9; e9;e9;e12;e0; e1; e3;e2;e4;e6;

e7;e6;e6; e7;e11;e9;e12; e1; e4;e7;e6;e7; e8; e6;e7;e5;e0

�6�

containing 34 edges. Edges used for the purpose of state
verification appear in bold.

As can be seen from the underlined part of the above test
sequence, aftere1 is traversed, the IUT should stay in state
v1 for a time that allows at least three self-loop traversals.
However, this part of the test sequence is not realizable in a
test laboratory because the timeout edgee10 will be trig-

gered after the second consecutive self-loop traversal (i.e.
max_self�v1� � 2�: The IUT will prematurely move intov3

and the test sequence will be disrupted.
To address the problem of test sequence disruption due to

timeouts, the graph of Fig. 8 is converted to the graph shown
in Fig. 9. Since in this example all UIO sequences are self-
loops, the simplified conversion presented in Ref. [66] is
sufficient. The vertices for which a premature timeout may
disrupt a test sequence, which arev1 and v2, are split and
then connected bydmin_self�v1� � 3 and dmin_self�v2� � 4
edges, respectively.

Considering the constrained self-loop problem, the test
sequence for the graph of Fig. 9 is obtained as

e0;e0; e1;e2;e10;e9; e9; e9;e12;e0;e1; e2; e2;e4;e6;e7;

e11; e9; e12;e1;e3;e2; e4; e6;e6;e7;e5; e0; e1;e4;e7;e6; e7;

e5;e1; e4;e8;e6;e7;e5 (7)

containing 40 edges.
Although longer than that of Fig. 8, the test sequence in

Fig. 9 is minimum-length with the introduced self-loop
constraint. During each visit to verticesv0, v1, v2 and v3,
the number of consecutive self-loop edges traversed is less
than or equal to the maximum allowed number of self-loop
traversals. Therefore, this test sequence is realizable in the
test laboratory.

6.2. Controllability problem

Consider a testing framework where the interfaceI1

between the IUT and the (N)-layer in the System Under
Test (SUT) [7] is not externally accessible (Fig. 10). In
other words, the inputs from�N 1 1�-layer cannot be
directly applied to the IUT, nor can the outputs gener-
ated by the IUT be observed at�N 1 1�-layer. Such an
interface I1 is called semicontrollableif FSM1 can be
utilized to supply inputs to the IUT. On the other hand,
the tester can apply inputs to the IUT directly by using
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Fig. 8. Minimum-cost test sequence without self-loop repetition constraint. Fig. 9. Minimum-cost test sequence with self-loop repetition constraint.



a lower tester, which exchangesN-PDUs with the IUT
by using the�N 2 1�-Service Provider. The interfaceI0

between the lower tester and the IUT is therefore
directly controllable.

The methodology presented in Ref. [23] addresses the
problem of generating optimal realizable test sequences in
an environment with multiple semicontrollable interfaces.
The methodology fully utilizes semicontrollable interfaces
in an IUT while avoiding the race conditions. An algorithm
is introduced in Ref. [23] to modify the directed graph
representation of the IUT such that its semicontrollable
portions become directly controllable, where possible. In
the most general case, obtaining such a graph conversion
may end up with exponentially large number of nodes.
However, it is shown [23] that special considerations such
as the small number of interfaces interacting with an IUT
and diagnostics considerations make the problem size feasi-
ble for most practical cases.

6.2.1. Practical motivation
As motivation for solving the controllability problem, a

real protocol is considered where an SUT’s�N 1 1�-layer
must be utilized indirectly to test certain transitions within
the (N)-layer IUT.

188-220 focuses on three layers: Physical, Datalink, and
Network. The Network layer contains an Intranet sublayer.

An SUT contains the (N)-layer IUT implemented in the
Datalink layer, and the Intranet sublayer, which is part of
the �N 1 1�-layer, as shown in Fig. 11.

In the CECOM’s environment used for testing 188-
220 implementations, the upper layers cannot be
directly controlled. Therefore, the IUT’s transitions
that are triggered by the inputs coming from the
Network layer are not directly testable. An example
SUT transition that causes a controllability problem is
the transitiont1 from the Class A-Type 1 Service Data-
link module [18,20], shown in Fig. 11. Theinput/event
field for this transition requires aDL_Unitdata_Req
from the �N 1 1�-layer. Unfortunately, the interface
between the IUT and the�N 1 1�-layer is not directly
accessible for generating this input. Initially, it appears
that transitiont1 is untestable.

To trigger this transition, which requires the�N 1 1�-
layer to pass aDL-Unitdata.Reqdown to the (N)-layer,
feedback from the�N 1 1�-layer must be used. To force a
DL-Unitdata.Reqfrom the�N 1 1�-layer, the tester sends a
PL-Unitdata.Indto the IUT (similar to the messagea in Fig.
10) that contains an intranet layer message telling the
�N 1 1�-layer to relay the frame to a different network
node. The IUT outputs this message to the�N 1 1�-layer
(see messageb in Fig. 10), and the�N 1 1�-layer FSM
responds by outputting the desiredDL-Unitdata.Req
(messagec in Fig. 10). Finally, the datalink layer generates
the desired outputPL-Unitdata.Req (corresponding to
messaged in Fig. 10) which can be observed by the lower
tester.

In fact, 70% of the transitions the Class A-Type 1 Data-
link Service module are based on not directly controllable
inputs. Without indirect testing, test coverage would be
seriously limited—only approximately 200 transitions out
of 750 would be testable. However, by applying the techni-
que outlined in this paper, over 700 of defined transitions
(.95%) can be tested. The application of the presented
technique to 188-220 is described in detail in Ref. [21].

Similar controllability problems can also be pointed out
in testing the IEEE 802.2 LLC Connection Component
[23,32].
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Fig. 11. MIL-STD 188-220: example of the controllability problem.

Fig. 10. Testing (N)-layer IUT with an (N 1 1)-layer semicontrollable inter-
face.



6.2.2. Optimizing tests with multiple semicontrollable
interfaces

To optimize tests with multiple semicontrollable inter-
faces, modeling SUT as a single FSM was proposed
[22,23]. A semicontrollable interfaceIi is implemented as
a separate FIFO buffer. During testing, a buffer may be
empty or store an arbitrary sequence of inputs to the IUT
generated indirectly throughIi. For eachIi, we define vari-
able v i that has a distinct value for each permutation of
inputs that theith buffer can hold. The proposed model
consists of graphG (which represents the IUT’s FSM) and
the variablesv1;v2;…;vF :

An FSM modeling the SUT can be obtained by expanding
G and v1;v2;…;vF into G0�V 0;E0�: An algorithm for
converting G�V;E� to G0�V 0;E0� proceeds as follows (a
detailed description of the algorithm along with its pseudo-
code is available in Refs. [22,23]):

Step 0—Definitions:
Let Bi denote a sequence of inputs buffered at theith
semicontrollable interface. Each statev0 [ V 0 has two
components: the original statev [ V; and the current
configuration ofF buffers, i.e.v0 � �v; B̂1;…; B̂F�: The
algorithm constructs all possible buffer configurations
with up tobi inputs buffered atIi.
Step 1—Initialize:
r 0, root ofG0, as (r,B,…,B) (root of G and configuration
of empty buffers);E0 as empty set;V0 as {r 0}; Q, queue of
vertices, asV0.
Step 2—Repeat until Q is empty:

(1) extractv0 � �vstart; B̂1;…B̂F� as first element from
Q, where�B̂1;…B̂F� is current configuration
(2) given the current vertexv0 � �vstart; B̂1;…B̂F�;
perform the following steps for each original outgoing
edgee� �vstart; vend� [ E :

◦ create new configuration�B1;…BF� based on the class

of e (Fig. 12):
Class 1:e is triggered by an input from and gener-
ates output(s) to an LT;
Class 2:e is triggered by an input from an LT and
generates an outputoq,l (buffered inBq to create a
new configuration) atIq;
Class 3:e is triggered byap,k (extracted fromBp to
create a new configuration) fromIp and generates
output(s) to an LT;
Class 4:e is triggered by an inputap,k from Ip and
generates an outputoq,l at Iq. Apply rules for Class 3
and Class 2 to create a new configuration.

◦ create new vertexv0new� �vend;B1;…BF� [ V 0; and
new edgee0new� �v0; v0new� [ E0

◦ include new edges inE0 iff inputs in �B̂1;…B̂F� cannot
trigger other edges outgoing fromvstart

◦ append toQ end verticesv0new [ V 0 of new edges
included inE0.

Step 3—Retain only strongly connected states:
remove fromV0 all vertices from whichr 0 cannot be
reached, and remove fromE0 all edges incident to such
vertices.

Based on the practical considerations discussed in Ref.
[23], the algorithm can be refined to meet the following
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Fig. 12. Classes of edges inG0 (dashed-lined outputs are optional).

Table 1
Inputs and outputs for the edges of Fig. 13. A?x denotes receiving inputx
from A. B!y denotes sending outputy to B

Edge Input Output Edge Input Output

e1 LT ?x1 FSM1!o1,1 e6 LT ?x6 LT!y6

e2 LT ?x2 FSM2!o2,1 e7 LT ?x7 LT!y7

e3 FSM1?a1,1 LT!y3 e8 FSM1?a1,2 LT!y8

e4 FSM2?a2,1 FSM1!o1,2 e9 LT ?x9 LT!y9

e5 LT ?x5 FSM2!o2,2 e10 LT ?x10 LT!y10



objective: “generate a test sequence that, at any point in
time, avoids storing more than one input in only one of the
buffers(where possible).” Satisfying this objective yields a
linear running time in the number of semicontrollable inter-
faces and the number of edges inG. If this objective cannot
be satisfied, the running time grows and nondeterminism
may not be avoided during testing.

Example: Consider the IUT of Fig. 13 which is interacting
with semicontrollableFSM1 and FSM2 through the semi-
controllable interfacesI1 and I2, respectively. The IUT’s
FSM (represented by graphG) is described in Table 1.
Transitione1, triggered by inputx1 from the lower tester,
generates outputo1,1 to FSM1. In response,FSM1 sends input
a1,1 which triggers transitione3. (In general,ai; j is the
expected response tooi; j :� Transitione2, which is triggered
by a lower tester’s inputx2, outputso2,1 to FSM2, which
responds with inputa2,1 triggeringe4. Thene4 outputso1,2

to FSM1, which responds witha1,2 triggering e8. On the
other hand, transitionse5, e6, e7, e9, ande10 can be trig-
gered directly by the lower tester.e6, e7, e9, ande10 do not
generate outputs to the semicontrollable interfaces.e5
generates outputo2,2 to FSM2, which does not send any
input to the IUT.

After conversion (Fig. 14), each state ofG is replaced
with at most four related states inG0 corresponding to
the buffer configurations at a semicontrollable interface.
Each edgee is annotated ase.x, where x� 0;1;2; 3;
depending on the input buffered in thee.x’s start
state, as shown in Fig. 14. The solid edges in Fig. 14 are
the mandatory edges that are incident to nodes that corre-

spond to the case where both buffers are empty; the dashed-
line edges are the ones that can be traversed only when
either buffer contains an input. Due to the practical diagnos-
tic considerations [23], we prefer testing edges when no
inputs are buffered in semicontrollable interfaces. The
Aho et al. [1] optimization technique gives the minimum-
length test sequence forG0 shown in Table 2. Steps with
(! ) indicate that an edge is tested in this step. Note that,
for simplicity, the UIO sequences [54] are not included in
this sequence.

6.3. Conflicting timers problem

Suppose that a protocol specification defines a number of
timers, c1;…; ck; such that a timerci may be started and
stopped in transitions defined in statesvi andui, respectively.
Each timerci can be associated with a boolean variableTi

whose value isTRUEif ci is running, andFALSEif ci is not
running. Let f be a formula obtained from variables
T1;…;Tk by using logical connectives∧ , ∨ , and : .
Suppose that a specification contains transitions with condi-
tions of a form “iff ” for some formulaf . It is clear that
there may exist infeasible paths in the FSM modeling a
protocol, if two or more edges in a path have inconsistent
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Fig. 14. Graph transformation applied to the graph of Fig. 13. Mandatory
and optional edges appear in solid and dashed lines, respectively.

Table 2
Minimum-length test sequence for the IUT of Fig. 13

Step Edge Input Output Step Edge Input Output

! 1 e1.0 LT ?x1 FSM1!o1,1 8 e7.2 LT?x7 LT!y7

2 e5.1 LT ?x5 FSM2!o2,2 ! 9 e8.2 FSM1?a1,2 LT!y8

! 3 e3.1 FSM1?a1,1 LT!y3 10 e7.0 LT?x7 LT!y7

! 4 e6.0 LT ?x6 LT!y6 ! 11 e5.0 LT?x5 FSM2!o2,2

! 5 e7.0 LT ?x7 LT!y7 ! 12 e9.0 LT?x9 LT!y9

! 6 e2.0 LT ?x2 FSM2!o2,1 13 e10.0 LT?x10 LT!y10

! 7 e4.3 FSM2?a2,1 FSM1!o1,2 14 e6.0 LT?x6 LT!y6

Fig. 13. IUT interacting with two semicontrollable interfaces.



conditions. For example, for transitionse1: if (Ti) then { }
ande2: if ( : Ti) then{ }, a path e1, e2 is inconsistent unless
e1 setsTi to FALSE(which happens when timerci expires in
transitione1). The problem of generating tests free of such
conflicts is called theconflicting timers problem.

Note that the conflicting timers problem is a special case
of the general feasibility problem of test sequences. There
are two distinctive features of the conflicting timers
problem: (1) time variables are linear, and (2) time variable
values implicitly increase as time elapses. By considering
these two features, we expect to solve this case more
efficiently than we could solve the general feasibility
problem; hence, it is beneficial to formulate this problem
separately.

188-220 Datalink Layer defines several timers that can
run concurrently and affect behavior of the protocol. For
example,BUSYandACK timers may be running indepen-
dently in a FRAME_BUFFEREDstate. If either timer is
running, a buffered frame cannot be transmitted. IfACK
timer expires whileBUSYtimer is not running, a buffered
frame is retransmitted. If, however,ACK timer expires
while BUSYtimer is running, no output is generated.

In the test cases delivered to CECOM, such conflicts are
handled by manually expanding EFSMs based on the
number of conflicting timers. An efficient solution to the
conflicting timers problem that eliminates the redundancies
of manual state expansion is expected to significantly
shorten the test sequences while providing the same fault
coverage.

Similar inconsistencies, but based on arbitrary linear
variables, are present in EFSMs modeling VHDL speci-
fications [64]. Uyar and Duale presented algorithms for
detecting [64] and removing [65] inconsistencies in
VHDL specifications. Current research in UD and
CCNY is focused on adapting these algorithms for detecting
and removing inconsistencies caused by a protocol’s
conflicting timers.

7. Results: generation and delivery of test scripts

Using the initial results, UD and CCNY collaboratively
generated tests for the SAP components of 188-220’s Data
Link Layer Class A. Class A stations implement Type 1
(Unacknowledged and Coupled Acknowledged Datalink
Connectionless) Service, with the original EFSM consisting
of 1 state and 15 transitions. Based on the Class A SAP
functionalities, the original EFSM was divided into three
EFSMs modeling: (1) general behavior of the SAP
component interacting with two destinations; (2) datalink
precedence; and (3) an IUT’s behavior when interacting
with up to 16 destinations. Since the total number of
states/transitions that would be obtained after full expansion
to a pure FSM was infeasibly large, each of the three EFSMs
was expanded to a form closer to a pure FSM, but still
containing some extensions.

To avoid state explosion problem, each expanded EFSM
focused on certain protocol functionalities while restricting
others. For example, in 188-220, a sender can interact
with up to 16 destinations, each of which may be free
or busy. In general behavior tests, destinations are
allowed transit between free or busy mode, but the sender
is restricted to communicate with at most two of them. In
multidestination tests, the sender communicates with up
to 16 destinations, which are forced to remain in free
mode at all times.

Each expanded EFSM was then used in automated
test generation. Table 3 shows the sizes of the expanded
EFSMs and the tests that were generated from them.
For example, the precedence tests set for Class A-
Type 1 Service was based on an expanded EFSM of
303 states and 401 transitions. The minimum-length test
sequence generated for this machine consists of 1316
input/output pairs covering every transition in the expanded
EFSM at least once.

In 1997, these Class A tests were delivered to CECOM
for use in its 188-220 testing facility. Fig. 15 shows a
sample of the delivered test scripts. The figure depicts
the test group #92 from Datalink Class A-Type 1
service tests. Each test group is a subsequence of a
full test sequence that starts and ends in the initial
state. In the first step, the technique of utilizing semi-
controllable interfaces presented in Section 6.2 is used.
The lower tester sends a packet with three destination
addresses:IUT_addr, des_addr_1, and des_addr_2. The
setting Relay� Yes in the INTRANET clause tells the
first addressee, i.e. the IUT, to relay the packet to the
two remaining addressees. As a result, the IUT sends a
packet with its address as a source, anddes_addr_1and
des_addr_2as destinations, as if it were originated by
the IUT’s Intranet Layer. In the second and third steps,
the IUT’s packet sent in the first step is acknowledged
by des_addr_2and des_addr_1, respectively. Each test
step is further annotated with the test description, the
number of the corresponding Estelle transition(s), and
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Table 3
188-220 Datalink tests: a single step corresponds to one input/output
exchange

Test set # of states # of transitions # of test steps

Class A Type 1 service
General behavior 298 799 1732
Precedence 303 401 1316
Multidestination 112 119 145

Class C Type 1 service
General behavior 298 799 1732
Precedence 193 357 1314
Multidestination 112 119 145

Class C Type 4 service
General behavior 235 925 2803
Outstanding frames 48 172 264
Multidestination 112 119 145



the appropriate section(s) from the 188-220 official
document.

Since the summer of 1997, the work on test generation
expanded to include Class C. Class C also allows Type 1
Service as in Class A, but it additionally defines Type 4

(Decoupled Acknowledged Connectionless) Service. As in
the case of Class A, three EFSMs were used to generate
three sets of tests for each Class C service. The sizes of
the EFSMs and the corresponding minimum-length tests
are shown in Table 3. For example, the general behavior
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Fig. 15. A sample of test scripts delivered to CECOM.



tests set for Class C Type 4 Service was based on an EFSM
of 235 states and 925 transitions. The minimum-length test
sequence generated for this machine consists of 2803 input/
output pairs. These tests were delivered to CECOM in 1998.

At the time this paper was written, the implementations
from three major manufacturers were being tested at
CECOM. The tests generated by the UD and CCNY team
have uncovered several implementation errors, including
lack of mandatory capabilities in Datalink layer, and
problems with multi-hop Intranet Relaying.

8. Conclusions: improvements to protocol development
process

8.1. Integration of Estelle into system development

Traditional sequential process of system development is
known to be inefficient since it allows unnecessary duplica-
tion and does not facilitate tracking of rapidly changing
technology. With 188-220 as a critical component, a syner-
gistic framework forC4I (Command, Control, Communica-
tions, Computers, and Intelligence) systems development
has been established [19] (Fig. 16). It combined several
parallel activities: developing protocol standards and speci-
fications, formally specifying protocols in Estelle, building
conformance tester hardware and software, “field testing”,
modeling and simulation, as well as resolving and docu-
menting the solutions to standards-related technical issues
by the Joint CNR Working Group. (WG participants include
representatives from DoD services/agencies, industry, and
academia.)

Using formal methods as part of this process helped
create a high quality protocol standard, which is robust,
efficient, and relatively error-free. Also, due to the struc-
tured nature of Estelle, the specification process progressed
at an accelerated pace compared to the English specifica-
tions (188-220 was completed on time, setting a rare exam-
ple in protocol standards arena).

Since it is relatively easier to extract modeling informa-
tion from a formal specification, the researchers at UD and
CCNY were able to solve a number of theoretical problems,

which resulted in the development of new testing methodol-
ogies. By applying these new results, the conformance tests
for 188-220 were generated while the protocol was still
evolving. Performing initial conformance tests on proto-
types uncovered several interoperability errors very early
in the development process.

Following this success of the 188-220 development, the
synergistic efforts to developC4I systems with the help of
formal methods serves as a model for DoD standards
process and development for the future [19].

8.2. Advantages of formal methods in eliminating protocol
errors

The difficulties of describing protocol operations with
clarity, precision, and consistency by using a natural
language are illustrated by the examples in Section 5.2. In
addition to the vagueness introduced by a natural language
description, ambiguities and contradictions are difficult to
detect when related protocol functionalities are defined in
different document sections separated by pages of unrelated
text. Such problems are eliminated in a formal Estelle speci-
fication. All actions in a particular context are defined in one
place within the Estelle specification. The specifications
make the conditions for state transitions explicit through
Estelle constructs. Indeed, the very process of creating
these constructs enables formal specifiers to detect some
of these types of ambiguities which are difficult to see in
normal reading.

8.3. Observations on applicability of formal methods

As concluding remarks for this paper, we report the
following observations based on our experience during the
formal specification and test generation for 188-200.

To develop an Estelle formal specification of a protocol,
we must not only define its architecture and interface
components (e.g. as in Figs. 4 and 5 for 188-220), but we
must also carefully specify the behavior of each module of
these components. This definition, achieved through the
creation of EFSMs, is the most difficult and time-consuming
step of creating a formal specification. A syntax-directed
editor improves the readability for testers who are not
FDT-trained; it also is useful in writing non-trivial specifi-
cations. Moreover, the modeling and specification
languages, such as SDL [25,26] and UML [50], enjoy wide-
spread industrial popularity, partially due to their standard
graphical representation. Therefore, it will be a natural
extension for Estelle to include a graphical editor (such an
editor has recently been created [56]). Once all states and
transitions of a protocol (including inputs and outputs) are
finalized, the writing of the Estelle code itself is fast and
straightforward.

Since 188-220 is a multilayer, multifunction protocol of a
considerable size and complexity, manual generation of
conformance test sequences would be both inefficient and
ineffective. As seen from Table 3, the tests already delivered
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Fig. 16. Estelle as part of synergistic efforts to developC4I systems.



to CECOM contain approximately 10,000 test steps. It is
clear that manually generating test sets of this size from the
protocol textual description is not a trivial task.

A number of conformance test generation techniques
have been proposed [1,7,9,46,53,55,59,62], each of which
is expected to give better results for a certain class of proto-
col specifications depending on the nature and size of the
protocol. The experience obtained in generating tests for
188-220 suggests that to successfully test today’s complex
protocols by using formal methods, an ideal test generation
tool should support multiple test generation techniques [41].
They can range from Postman tours [1] or fault-oriented
tests [70,72] for mid-size protocols (i.e. the number of states
in the order of thousands), to guided random walk
approaches [39,73] for large protocols (i.e. the number of
states larger than tens of thousands).

State explosion problem has been a major issue for
generating FSM models out of EFSM representations of
protocols [15,52,71,72]. One common procedure for
converting EFSMs into FSMs simultaneously performs
reachability analysis and online minimization [15,40];
this conversion is based on combiningequivalent states
[54] by using the notion ofbisimulation equivalence
[47]. Another approach proposes the elimination of
inconsistencies in EFSM models [64,65]. Efficient algo-
rithms such as these should be implemented in any test
generation tool using FSM models. If the final FSM
model is not confined to a manageable size, the test
sequences generated from it will be infeasibly long
regardless of the test generation method.

Finally, a test house may require its own proprietary
format for the executable tests. Although TTCN is accepted
as input by many test tools, a proprietary test format may be
preferable for a given protocol, if this format is more read-
able by the domain experts, or is simpler to parse by soft-
ware tools. The output of a test generation tool should easily
be custom-tailored for a particular format, possibly by using
simple application generators.
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Appendix A

A.1. Examples of errors found in 188-220

• The standard indicates in Section3 5.3.8.1.2.e thatk is a
link parameter defined to be the “maximum number of

outstanding I PDU’s.” But in Section 5.3.7.2.5.1, we see
that the “…RR command is sent to a destination station
when thek value at the originating station reaches half of
the k value for that connection.” In Section 5.3.7.2.5.1,
the first reference tok indicates thatk is a variable which
is being used as a counter, while the second reference tok
hask being a static parameter for that connection. In this
case, the standard was changed such that the variable
counting the number of outstanding I PDUs was not
referred to ask.

• Section 5.3.7.2.5.4.2 states that “When an I PDU has
been received and not more than one frame is missing,
the station may retain the information field of the out-of-
sequence I PDUs and send a SREJ PDU for the missing I
PDU.” This sentence implies at most one missing I PDU
when sending an SREJ PDU. The next sentence,
however, states “A station may transmit one or more
SREJ PDUs, each containing a different N(R) with P-
bit set to 0.” This sentence implies that there can be
more than one missing I PDU (otherwise why send multi-
ple SREJ PDUs with different N(R)?). At the 13 March
meeting, the WG changed this section to indicate that an
SREJ PDU may be sent whenat least one, rather than “no
more than one,” I PDU is detected as missing.

• In Section 5.3.6.1.9, the standard indicates that “the
URNR response PDU shall be used to reply to a UI
command PDU with the P-bit set to 1, if the UI command
cannot be processed due to a busy condition.” Since the
UI cannot be processed, this indicates the URNR doesnot
acknowledge the UI. However, Section 5.3.5.2.3.2 states
that “the F-bit set to 1 shall be used to acknowledge the
receipt of a command PDU with the P-bit set to 1.” And
Section 5.3.7.1.5.4 indicates that “a URNR response
PDU, with F-bit set to 1, may be sent by the remote
station to advise the originator of the associated UI
command PDU that it is experiencing a busy condition
and is unable to accept UI PDUs.” The combination of
the last two excerpts implies that URNR response PDUs
doacknowledge the corresponding UI PDU. A correction
of this contradiction was approved at the 13 March 96
WG meeting. Section 5.3.5.2.3.2 was changed to read
“the F-bit set to 1 shall be used torespondto the receipt
of a command PDU with P-bit set to 1.” No acknowl-
edgment is implied.
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