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ABSTRACT

Architectures are rapidly evolving, and exascale machines are ex-
pected to offer billion-way concurrency. We need to rethink al-
gorithms, languages and programming models among other com-
ponents in order to migrate large scale applications and explore
parallelism on these machines. Although directive-based program-
ming models allow programmers to worry less about programming
and more about science, expressing complex parallel patterns in
these models can be a daunting task especially when the goal is
to match the performance that the hardware platforms can offer.
One such pattern is wavefront. This paper extensively studies a
wavefront-based miniapplication for Denovo, a production code for
nuclear reactor modeling. We parallelize the Koch-Baker-Alcouffe
(KBA) parallel-wavefront sweep algorithm in the main kernel of
Minisweep (the miniapplication) using CUDA, OpenMP and Ope-
nACC. Our OpenACC implementation running on NVIDIA’s next-
generation Volta GPU boasts an 85.06x speedup over serial code,
which is larger than CUDA’s 83.72x speedup over the same serial im-
plementation. Our experimental platform includes SummitDev, an
ORNL representative architecture of the upcoming Summit super-
computer. Our parallelization effort across platforms also motivated
us to define an abstract parallelism model that is architecture inde-
pendent, with a goal of creating software abstractions that can be
used by applications employing the wavefront sweep motif.
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1 INTRODUCTION

Hardware architectures are rapidly evolving. High performance
computing nodes are becoming increasingly heterogeneous. The
current and anticipated exascale accelerated node architectures are
heterogeneous [9]. They are expected to contain a mix of through-
put and latency optimized cores [42]. Such a balanced mixture of
cores is expected to manage different types of parallelism available
in an algorithm. Memory has advanced as well. 3-D memory stack-
ing with memory moving on-socket provides increased bandwidth
and faster communication.

Such diverse architectures require their own code optimization
strategies, while the application developers prefer a “write-once”
code development strategy in which a single code will execute ef-
ficiently on all targeted architectures. In addition to considering
the underlying hardware, a programming model is also expected
to address requirements of applications and their algorithms. The
programming language that implements the model should pro-
vide the right abstractions to improve the productivity of scientific
developers. Programmers often resort to a trade-off between achiev-
ing portability and high performance. Why? The issue is two-fold.
Adequate application parallelism will not be exposed to the hard-
ware architecture if the algorithm is structured in a way that limits
the level of concurrency that a programming model can benefit
from. Secondly, such a single code representation is possible only
if the programming abstractions are carefully crafted for the pro-
gramming models to provide informative hints to the compilers to
generate optimized code across platforms.

Directives allow us to abstract the rich feature set of hardware
architectures and incrementally improve, port, and maintain the
codebase across platforms. However, there still remains a gap in
the way that they do not adequately expose and parallelize some
of the complex algorithms often found in applications. One such
case is a wavefront-based algorithm that is of critical importance to
solving scientific problems in multiple science domains. Wavefront
algorithms are useful for problems for which the computed result
values have dependencies, requiring that results be computed in
stages (wavefronts) for which each stage’s results depends on results
computed in previous stages.

In this paper, our objective is to study this type of algorithm
and identify challenges in exposing parallelism using high-level
abstractions that can be lowered to de facto parallel programming
languages. We study the Minisweep proxy application [32], that
is illustrative of the complexities in a wavefront-based algorithm.
Parallelizing Minisweep using current directive-based APIs revealed
the gaps in their expressivity and features. We address this issue
by designing and envisioning an abstract parallelism model that
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highlights these gaps with a combination of notations. Having these
proposed notations in a programming language are key to exposing
and mapping wavefront-based parallelism to multiple architectures.

For Minisweep, we use OpenACC and OpenMP along with CUDA.
OpenACC, since its inception in 2012, is being widely used to
port large scale applications spanning several domains such as
ANSYS [40], GAUSSIAN [21], and Icosahedral non-hydrostatic
(ICON) [41] to massively parallel architectures. Similarly, OpenMP
4.5 is being deployed to applications such as Pseudo-Spectral Di-
rect Numerical Simulation-Combined Compact Difference (PSDNS-
CCD3D) [17] and a CFD code for turbulent flow simulation, Quick-
silver [37], a Monte Carlo Transport code.

1.1 Application Under Study

The Minisweep proxy application [32] is part of the Profugus ra-
diation transport miniapp project [5] that reproduces the compu-
tational pattern of the sweep kernel of the Denovo S, radiation
transport code [20]. The sweep kernel is responsible for most of the
computational expense (80-99%) of Denovo. Denovo, a production
code for nuclear reactor neutronics modeling, is in use by a current
DOE INCITE project to model the International Thermonuclear Ex-
perimental Reactor (ITER) fusion reactor [6]. The many runs of this
code required to perform reactor simulations at high node counts
makes it an important target for efficient mapping to accelerated
architectures.

This study involves S, radiation transport algorithms for solv-
ing the linear Boltzmann equation [30]. Here, a continuum model
is used to simulate the density of particles of a given energy and
direction of motion within a 3-D volume. The approach yields a six
dimensional problem (3-D in space, 2-D in angular particle direc-
tion and 1-D in particle energy) that is appropriately discretized
in each dimension. Minisweep includes neutronics calculations for
nuclear reactor [3] and fusion reactor [6] design, radiation shield-
ing, nuclear forensics and radiation detection. The large number of
problem dimensions available in the S, transport algorithm affords
significant opportunities for parallelism on manycore parallel sys-
tems. However, the recursive nature of the wavefront calculation
in the spatial dimensions is a challenge to efficient parallelization.

Denovo was one of six applications selected for early application
readiness on ORNL’s Titan system under the Center for Acceler-
ated Application Readiness (CAAR) project [12] and is part of the
Exnihilo code suite which received an R&D 100 award for modeling
the Westinghouse AP1000 reactor [2]. Minisweep can be considered
a successor to the well-known Sweep3D benchmark [1] and is sim-
ilar to other S, wavefront codes including Kripke [4], SN (Discrete
Ordinates) Application Proxy (SNAP) [7] and PARTISN [13].

Minisweep is used as a vehicle to examine parallelization of
wavefront algorithms in general. However, it has multiple compu-
tational motifs (dense and sparse linear algebra, structured grids)
and parallelism requirements (halo communications, hierarchical
synchronizations, atomic updates) which make the study of this
algorithm relevant to a much broader spectrum of codes.

1.2 Contributions

Our work presents the following contributions:
e An abstract representation elucidating architectural, mem-
ory and threading challenges to programming models for
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such complex wavefront algorithms as used in Minisweep
that can be broadly applicable to applications with a sim-
ilar computational motif. More details in Section 1.1 and
Section 8.

A performance-portable implementation of these abstrac-
tions using OpenACC to offload portions of an application
to a variety of parallel architectures.

A description of the challenges in existing programming
models, and extensions that will allow programmers to over-
come the obstacle of recursivity in the spatial dimensions of
wavefront algorithms without requiring large modifications
to the code base.

2 OVERVIEW OF SWEEP ALGORITHM

The S, transport sweep algorithm possesses features common to
wavefront algorithms in general yet has structure specific to the
requirements of Sy, transport. It can be considered in two parts: first,
a wavefront algorithm relating the computations between gridcells
of a 3-D grid, and second the computations performed on a single
gridcell within this wavefront sweep across a grid.

2.1 Grid-level computations

We consider here a 3-D structured grid, with locally connected
gridcells; see Figure 1. Importantly, the result computed at a grid-
cell is dependent on the results computed at the three neighbor
gridcells in the upstream x, y and z directions; thus the compu-
tation is described by a four-point stencil. This dependency puts
a restriction on the order in which results can be computed. One
possible ordering is a series of wavefronts described by a sequence
of planes of gridcells starting at a corner of the grid and sweeping
through the whole grid (Figure 1). Other orderings are allowed as
well, as long as the dependencies are satisfied.

Modeling the physical problem requires modeling particle flux
in all directions. To accomplish this, an execution instance of the
algorithm performs a total of eight sweeps, one starting at each
corner of the domain. These directions are referred to as “octants.”
The results of all eight octant sweeps are added together form the
final result.

e

Figure 1: Wavefront computational pattern

2.2 Gridcell-level computations

To further describe the algorithm, we define array vs with dimen-
sions vs (nx, Ny, Nz, Ny, e, Na, No). The ny, ny, n, dimensions refer
to the spatial grid size. The dimension n, = 8 is the octants axis,
across which results are summed for the final result. The value n, is
a set of angular directions, and n, is the number of energy groups,
each representing a decoupled instance of the problem. Finally, n,,
represents a set of unknowns for each gridcell based on the spatial
discretization, e.g., finite element coefficients for a gridcell. Though
s is relevant to key computations of the algorithm, the arrays that
actually hold the input and output of the algorithm have the form
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v(ny, Ny, Nz, Ny, Ne, Nm). Here vs and v are related by the fact that
the ng, n, axes are compressed into n,, moments to form v from
vs. The computation at a gridcell then is composed of the following
steps:

(1) Moments-to-angles conversion. For a given octant and en-
ergy group the input vip (ix, iy, iz, *, ie, *) is transformed
into array vjn,s (ix, iy, iz, *, le, *, io) by a small matrix-vector
product that relates the np, moments to the n, angles. The
matrix depends on the octant but is independent of spatial
location, energy group and unknown.

(2) Face contribution. The upstream components from the sweep
are added to vip, s (ix, iy, iz, *, le, *, io)-

(3) Solve. An operation is performed on the array values
Vin,s(ix, Iy, iz, *, le, *, io) Which is coupled between the n,,
unknowns but decoupled in all other dimensions. The result
is Uout,s(iXs iy, iz, *, e, %, io).

(4) Face update. The values of voyr,s(ix, iy, iz, *, le, *, o) are
stored for use downstream by the sweep.

(5) Angles-to-moments conversion. Array
Vout,s (ixs iy, izs *, le, %, 10) is transformed and added to
Vout (ix, Iy, iz, *, ie, *) With another matrix-vector product
depending on octant only.

The computation can be represented mathematically as follows.

To simplify we assume a single octant direction (+x,+y,+z) and a
single energy group. Given matrix M4y, € R"a*"m we have

(Win, ssix, iy,iz)u = MaAM - Oinsiy, iy, iz Jus

where iy, iy, i, is the gridcell spatial coordinate and (-),, denotes
the restriction of the vector to gridcell unknown u. Then

(Vout, siix,iy.iz)a = S((Vin,siiy,iy.iz — Vout,siix—1,iy,iz

— Vout,sjix, iy—1,i, ~ Vout,siix, iyiz—1)a)
where (-)4 is the restriction of the vector to angle a. Notice this
represents the wavefront recursion proper. Here the function S :
R™: — R™u js a solve process which for actual transport solvers
is related to the spatial discretization used but for Minisweep is a
synthetic function chosen to give a known analytic solution for
correctness checking; in either case, the computational cost is minor,
thus the actual choice is not material to algorithm performance.
Finally, for matrix M4 € R"m*"a,

(Uout;ix, iy,iz )u = Mpa - ('Uout,s;ix,iy, iz)u-

2.3 Summary of problem axes

The problem dimensions and their respective couplings are thus
summarized as follows:

e Space: in the x, y and z dimensions, each gridcell depends on
results from three upstream cells, based on octant direction,
resulting in a wavefront problem.

e Octant: results for different octants can be calculated indepen-
dently, the only dependency being that results from different
octants at the same entry of v, are added together and
thus are a race hazard, depending on how the computation
is done.

e Energy: computations for different energy groups have no
coupling and can be considered separate problem instances,
enabling flexible parallelization.

e Moment, angle: for fixed energy, octant and spatial location,
the moments and angles are interrelated by small (dense)
matrix-vector products.

e Unknown: when the problem is represented as angles, a
computation is performed which may couple (only) the un-
knowns within the gridcell; for all other parts of the compu-
tation, elements on this axis are fully independent.

3 PARALLELIZING THE SWEEP ALGORITHM

To map the sweep algorithm to a parallel system, it is of para-
mount importance to minimize data motion as well as maximize
parallelism, these being increasingly critical for high performance
on exascale systems. As a result, the general guiding principle is
that spatial dimensions must be the outermost loops, due to their
sparse coupling, whereas moment, angle and unknown loops must
be innermost due to the strong all-to-all couplings. The specific
approach to parallelizing each axis is as follows:

Space: Spatial parallelism is based on the Koch-Baker-Alcouffe
(KBA) algorithm [25]. Here the 3-D structured grid is decomposed
to processors with a 2-D tiling in x and y (Figure 2). Each processor’s
part of the grid is decomposed into blocks along the z axis. Then a
block wavefront process is applied starting at the corner block of
the domain. Processors proceed in a series of parallel steps, with one
block wavefront computed at each step and block face information
communicated between consecutive steps. For a GPU or other
accelerated processor, the KBA block described above is further
decomposed into subblocks, and the computation is arranged into
a series of subblock wavefronts, which are then mapped to parallel
threads.

| —
L —T

Figure 2: KBA parallel wavefront algorithm

VIV

Octant: Minisweep assigns compute threads to the eight wave-
fronts corresponding to the eight octant directions. The wavefronts
are independent; however there is a potential race condition when
two or more threads are updating the same KBA block on the same
KBA block wavefront step. The solution used in Minisweep is a
grid coloring approach. The KBA block is split in half along each
dimension resulting in eight "semiblocks.” Eight semiblock steps
are taken, and for each step every one of the (up to) eight active
wavefronts is assigned to a different semiblock. This is arranged so
that the wavefront dependencies are satisfied. A synchronization
and thread fence are required between consecutive semiblock steps.

Energy: Since the algorithm is embarrassingly parallel along
the energy axis, this problem axis can be decomposed in any way:
across nodes, across threads in a node, in a core or vector unit, or
any combination.

Moment, Angle: The moment and angle axes are coupled to
each other in an all-to-all fashion via two small matrix-vector prod-
ucts. The moment, angle, and unknown dimensions of the relevant
arrays are ordered to be most rapidly varying, enabling efficient
stride-1 memory access. When possible, the matrix-vector products
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are arranged to fit entirely within a vector unit. If n, or n,, exceed
the vector unit size, a blocking strategy is used with the computa-
tion fitting within the vector unit. Importantly, the moments-to-
angles transform is threaded in angle and the angles-to-moments
transform is threaded in moment (otherwise a reduction across
threads and/or vector lanes is required). Because threads must be
reassigned between moment and angle threads, a synchronization
and memory fence is required between these operations.

Unknown: No couplings exist along the unknowns axis when
the small matrix-vector products are performed, therefore this axis
permits some opportunity for threading here. However, for the inner
solve computation in angle, each unknown may require different
kinds of computations. To prevent poor use of vector units, these
computations are kept serial.

4 ABSTRACT PARALLELISM MODEL

Minisweep defines and implements a set of high level abstractions to
describe the parallelism of its algorithm such that these abstractions
can be used by any similar application implementing the sweep
motif. The goal of these abstractions is to achieve productivity and
performance portability across different architectures (GPUs, Xeon
Phi, CPUs, etc). These abstractions can be instantiated using general
purpose parallel programming languages like CUDA, OpenMP,
and OpenACC. The need for these abstractions is also suggestive
of possible shortcomings in parallel programming languages and
suggests the need for extensions to support applications of this
type.

The large number of problem dimensions inherent in S, transport
solves makes the need for managing thread parallelism axes and
hierarchical memories via use of abstraction layers acute. However,
the techniques described here are applicable to many other prob-
lems requiring multidimensional parallelism, for example, batched
dense linear algebra, block sparse linear solvers, and others.

Abstract machine model: Modern compute node hardware
has an execution hierarchy. For example, a compute node may be
composed of multiple GPUs, each with multiple cores possessing
hardware threads and employing vector units composed of vec-
tor lanes. Some of these have co-located memories, for example
node main memory, GPU high bandwidth memory or GPU shared
memory associated with a streaming multiprocessor (SM) core. Exe-
cution threads are also associated with each level: for NVIDIA GPUs,
in-warp threads execute in lock-step within a warp, in-threadblock
threads are associated with an SM, and the thread grid is associated
with the GPU. One can thus view a node as a hierarchy of execution
units, with local memory and compute threads, and in particular
hardware threads can be thought of as indexed as a tuple depending
on the location in the hierarchy. Threads also have characteristics
based on location, e.g., thread synchronization across different cores
of a node may be impossible or much slower compared to on-core
synchronization. Likewise memories at different levels have differ-
ent speeds, and thread access to memories may have NUMA effects
depending on the level. Note that these concepts readily apply to
heterogeneous node as well as homogeneous systems.

To abstract the characteristics of heterogeneous / homogeneous
architectures, we use the concept of “place,” borrowing ideas from
X10 and Chapel (“locales”). A place is an abstract location (in our
case, a node of a computer) where work can execute using local
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executions units with local memories where threads can possibly
synchronize with each other (e.g., barriers, memory fences) and
access its memory. What we want to explore is how to generalize
a flat model of places (e.g., that originially X10 and Chapel used
to abstract an entire system) to more local hierarchical abstrac-
tions with concepts such as Hierarchical Tree Places [48] or Chapel
(Sub-locales) [14] to abstract the new trends of complex memory
hierarchies and accelerators. An architecture can be described as a
set of “hierarchical places,” where at the higher level places com-
municate with each other via message passing or remote puts/gets.
In the node, places can be nested in order to abstract the memory
hierarchy of an architecture and its local execution units. In our
abstract machine model, a nested place can access the memory of its
parent place, but sometimes cannot synchronize with sibling places.
This restriction is due to the way a child place can be mapped to
GPU SMs, across which it is not possible to synchronize.

We use the term “place threads” to refer to execution threads
associated with each of the specific places. In Minisweep, place
threads are created during execution via an adaptor function which
instantiates or destroys the threads for the requested places in the
underlying architecture; in practice, this is implemented for exam-
ple by launching a CUDA kernel or entering an OpenMP parallel
region, depending on programming language implementation on
the given architecture.

Abstract arrays: In Minisweep, an “abstract (multidimensional)
array” is defined as an object that consists of a list of dimensions
and a base pointer associated with a memory place in the hierar-
chy. Array elements are accessed using a multiindex through an
indexing function. In this way the memory layout is controlled
by an abstraction layer that can be easily modified based on the
architecture. An abstract array thus has a local view within the
place (and its children) at which it is allocated.

Abstract threads: Each independent variable of the science
problem is assigned an abstract “threading axis” of abstract thread
indices assigned to the corresponding problem axis. For example,
the axis of n, energy group values is assigned a set of (n, or fewer)
abstract compute thread indices used to compute those values. The
collection of these abstract thread indices (which can be used to
describe threads applied to the problem dimensions of energy, oc-
tant, y location, z location, etc.) form a tuple or thread multiindex,
which will be later bound to a place thread.

Instantiation of the abstract threaded region: A fundamen-
tal operation for multithreaded or accelerated codes is entry into
a fork-join parallel region. In Minisweep this is abstracted as a
multithreaded region that instantiates the abstract threads. These
regions can be nested and mapped to the same or different places.

Binding of abstract threads to places: A mapping of the ab-
stract thread multiindex to a place thread multiindex is made based
on the type of parallelism required. For example, since spatial wave-
fronts of the sweep algorithm require barriers between wavefronts,
the spatial y and z dimensions must necessarily be mapped to
threads within a place (e.g., threadblock on a GPU) that allows syn-
chronization. By comparison, energy groups are fully decoupled,
thus no restrictions are placed on where the abstract energy thread
axis is mapped.

Parallel worksharing construct: This construct schedules work
along problem axes to a set of abstract threads and executes the
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work in parallel. The array index values for a given problem axis are
distributed to the abstract thread indices via a block decomposition.
For example, the full set of n. energy groups is partitioned into
blocks which are in turn assigned to abstract energy threads. Ta-
ble 1 describes the mapping of problem axes and associated abstract
threads to the place thread hierarchy for the algorithm discussed
in Section 2. It is evident that the ability to synchronize a subset of
threads, akin to a barrier within an MPI sub-communicator, would
be of benefit, since synchronization does not scale well to large
thread counts. Figure 3 is a simplified version of S, sweep par-

Abstract Arrays Allocation

AbstractArrayAllocation (vin(nx,ny,nz,ne,nm,nu): place_main)
AbstractArrayAllocation (vout (nx,ny,nz,ne,nm,nu): place_main)
AbstractArrayAllocation (neighbors (num_neighbors ,ne,na,nu): place_main)

Multithreaded Regions for Abstract Threads
AbstractMultithreadedRegion (abstract_threads_e: place_main) {
AbstractMultithreadedRegion (abstract_threads_a ,

abstracts_thread_xy: place_local) {

Do_All Parallel Worksharing

Do_All(e in range(0,ne); abstract_thread_e) {

AbstractArrayAllocation (vs(na,nu): place_local)
do(w in range(0,w_max)) {
Do_All Parallel Worksharing
Do_All((x,y) in avefront(w); abstract_thread_xy) {
z = z_coord(x,y,w)
Do_All Parallel Worksharing Matrix—Vector Product
Do_All(a in range(0,na); abstract_thread_a) {
do(u in range(0,nu)) {
vs(a,u) = 0
do(m in range(0,nm)) {
vs(a,u) += a_from_m(a,m) » vin(x,y,z,e,m,u)
1}
} End of Do_All(a)
Do_All Parallel Worksharing
Do_All(a in range(0,na); abstract_thread_a) {
Apply upstream wavefront dependencies
do(i neighbor of (x,y,z) in wavefront(w—1)) {
do(u in range(0,nu)) {
vs(a,u) —= neighbors(i,e,a,u)

Computation based on unknowns
solve (vs,a)

Save downstream wavefront dependencies
do(i neighbor of (x,y,z) in wavefront(w+1)) {
do(u in range(0,nu)) {

neighbors (i, e,a,u) = vs(a,u)

} End of Do_All(a)
Do_All Parallel Worksharing Matrix—Vector Product
Do_All(m in range(0,nm); abstract_thread_m) {
do(u in range(0,nu)) {
vout(x,y,z,e,mu) = 0
do(a in range(0,na)) {
vout(x,y,z,e,mu) += m_from_a(a,m) » vs(a,u)
1
} End of wavefront loop w
AbstractArrayFree (vs)
} End of Do_All(e)
1 End of AbstractMultithreadedRegions
AbstractArrayFree (vin, vout, neighbors)

Figure 3: Abstract representation of wavefront algorithm

problem | dependency GPU Intel Phi
dimension type threading threading
energy (none) grid OpenMP thread
octant coloring threadblock CPU thread
spatial y wavefront | threadblock CPU thread
spatial z wavefront | threadblock CPU thread
moment all-to-all warp, serial vector, serial
angle all-to-all warp, serial vector, serial
unknown all-to-all warp, serial vector, serial

Table 1: Problem dimensions mapping to thread hierarchy.

allelization using the abstract parallelism model. The pseudocode
shows the allocation of the required arrays and definition of the
hierarchical thread regions, followed by nested parallel loop over
energy groups, serial loop over wavefronts, parallel loop over grid-
cells in the wavefront, and then the three threaded operations of
moment-to-angles, solve and angles-to-moments.

5 TRANSLATION OF ABSTRACT
PARALLELISM MODEL

This section shows flavors of how different models, CUDA, OpenMP
and OpenACC parallelize Minisweep. The narrative also discusses
what we need (referring to Section 4) and what the models lack
discussed in Section 6.

5.1 CUDA

The main sweep function, Sweeper_sweep(), of Minisweep has a
KBA pipeline loop to support the KBA block sweep calculations and
related asynchronous face communication between nodes using
MPI. For the CUDA case, faces and KBA blocks are also transferred
to and from the GPU asynchronously; for systems not requiring
offload, these calls do nothing. A mirrored array datatype, resem-
bling the underlying mechanisms of OpenACC, maintains copies
of an array on CPU and GPU and manages transfers; an accessor
function returns the CPU or GPU pointer depending on where
the computation takes place. For details, see [24]. The key kernel
operation of Minisweep is the block sweep operation, in function
Sweeper_sweep_block(). This is launched as a CUDA kernel or al-
ternatively is initiated as a parallel region in OpenMP, as described
above in the abstract model. Since energy groups are independent,
the energy thread axis is mapped off-threadblock into the GPU
thread grid; all other axes are mapped in-threadblock due to cou-
pling requirements as described earlier. As discussed in Section 2,
an execution instance of the algorithm performs a total of eight
sweeps and the CUDA port of minisweep performs these sweeps.

5.2 OpenMP

OpenMP is used to run Minisweep natively on a multicore or many-
core processor with OpenMP 3.1 parallel directives and the OpenMP
4.0 simd directive. The model also implements KBA. OpenMP runs
with a single thread of execution until the block sweep function is
encountered, at which point threads are spawned in energy, octant
and the y and z spatial dimensions. The temporary arrays placed
in GPU shared memory for the CUDA case are now CPU arrays,
with one part of the array reserved for each compute thread. Since
the OpenMP model uses a SIMD loop rather than thread numbers
to access vector lanes, loops are placed in the code for the angle,
moment and unknown dimensions, and each of these dimensions
is assigned only a single thread; for the CUDA case, however, these
axes receive multiple threads and the SIMD for loop is removed. The
OpenMP port models the particle flux in all directions, i.e. performs
a total of eight sweeps using the tasks concept.

5.3 OpenACC

Our OpenACC proof-of-concept for our abstract parallelism model
consists of two parts: parallelizing the initialization of faces at the
beginning of the sweep and parallelizing the in-gridcell computa-
tions. Also something to note is that this proof-of-concept only
sweeps in one direction eight times thus computing the same num-
ber of computations one would compute using CUDA or OpenMP
that is already sweeping in eight directions. OpenACC does not
provide a vocabulary for tasks to follow a similar approach to that
of OpenMP to sweep in eight directions, hence further study and
exploration is required.
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Parallelization of the face initializations involves five nested
loops (spatial decomposition of gridcells, unknowns within gridcell,
energy groups and angles). However, it is worth noting that PGI’s
OpenACC compiler only provides us with two levels of parallelism
currently: gang (block) and vector (thread). The compiler is yet to
thoroughly exploit the worker level of parallelism. So, in order to
map a loop nest of five loops onto the accelerator to achieve full
parallelization, we utilized OpenACC’s collapse clause to collapse
a specified number of nested loops into one large loop, which we
can then map at either the gang or vector level. For Minisweep’s
face initializations, we collapse the outer three loops (corresponding
to the unknowns and two spatial dimensions of the gridcells) and
execute at the gang level. We also collapse the inner two loops
(corresponding to the energy groups and angles) and execute at the
vector level.

Parallelization of the in-gridcell computations in Minisweep is
not as trivial, as there are data dependencies between gridcells, as
mentioned in Section 2.1. To that end, we utilize the KBA parallel
sweep algorithm (discussed in Section 3) in order to exploit gang-
level parallelism across the x, y, and z gridcell loops. Since there is
currently no existing high-level language that provides functional-
ity for implementing this type of parallel sweep, the programmer
must modify the loop nest manually in order to achieve the desired
behavior. This involves creating an outer wavefront loop that iter-
ates over the wavefront decomposition, as discussed in Section 2.1
and shown in Figure 1. The computations within these wavefronts
can be parallelized, albeit not trivially. First we must parallelize
across the inner two dimensions: y and x. This spawns a number of
threads on the GPU. Within each of these threads, we calculate our
z value based off of the thread’s y and x values and the wavefront it-
eration number. Then, we can perform a bounds check to determine
whether that z value is within the bounds of the wavefront being
examined (denoted by the current wavefront iteration number).
This allows us to exploit parallelism across gridcells, while still
accounting for data-dependencies between wavefront iterations.

The embarrassingly parallel in-gridcell computations are per-
formed for each energy group within each gridcell. We mark these
computations for execution at the vector level. A representation of
the result is shown in Figure 4. Note that this code snippet is also
the serial code if one were to simply remove all the directives.

6 PROGRAMMING MODEL LIMITATIONS
6.1 General

In all cases, inadequacies of current compilers required that some
code be rewritten in an unnecessarily low-level fashion to obtain
correctness and/or performance. This seems to be a systemic chal-
lenge, insofar as it is difficult for compiler teams to develop mature
and performant compilers for frequently changing complex pro-
cessor hardware. Programming models support vectorization in
different ways, leading to portability challenges. CUDA treats vector
lanes as threads, whereas OpenMP uses SIMD loops and OpenACC
has a vector clause for parallel loops. Such differences can lead
to increased use of undesirable ifdefs if it is required to support
these multiple programming models. Developers would prefer a
single highly performant programming model with a high level of
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+——— Loop over wavefronts ——=
for (wavefront = 0; wavefront < num_wavefronts; wavefront+=1) {

+——KBA threading ——+

#pragma acc loop independent gang, collapse (2)
for( iy=0; iy<dim_y; ++iy )
for( ix=0; ix<dim_x; ++ix ) {

int iz = wavefront — (ix + iy);
if (iz »= 0 && iz <= wavefront & iz < dim_z) {

+———moments to angles——=
#pragma acc loop independent vector, collapse(3)

for( ie=0; ie<dim_ne; ++ie )
for( iu=0; iu<NU; ++iu )
for( ia=0; ia<dim na; ++ia ) {
P result = (P)o;

#pragma acc loop seq
for( im=0; im < dim_nm; ++im )
{ /+——moments to angles conversion—+/ }

}

e——solve ——=
#pragma acc loop independent vector, collapse (2)
for( ie=0; ie<dim ne; ++ie )

for( ia=0; ia<dim na; ++ia )

{ /«——solve calculation——+/ }

+———angles to moments—— =
#pragma acc loop independent vector, collapse(3)
for( ie=0; ie<dim_ne; ++ie )
for( iu=0; iu<NU; ++iu )
for( im=0; im<dim_nm; ++im ) {
#pragma acc loop seq
P result = (P)0;
for( ia=0; ia<dim_na; ++ia )
{ /«——angles to moments conversion—=«/ }

Figure 4: Sweep loop nest with OpenACC annotations

abstraction targeting all architectures rather than the need to use
multiple programming models within a code.

The Minisweep code requires in several places a thread synchro-
nization or barrier over only a subset of threads. A barrier across
fewer threads could potentially run much faster in current hardware.
This feature is not currently supplied by any of the programming
models, though in principle a barrier across a subset of OpenMP
threads could be written, and the new CUDA 9 Cooperative Groups
feature may be useful here.

The Minisweep design makes it easy to change the mapping of
machine threads to abstract problem threads and problem dimen-
sions. A more challenging goal is to allow easy modification of the
execution hierarchy. Such a design would allow easy loop order
permutation and other loop restructuring operations, loop blocking
to optimize cache use or reduce loop overheads, and on-demand
reassignment of loop axes either to parallel threads or alternatively
serial execution. Such changes generally require motion of signifi-
cant portions of code, e.g., to optimize for loop invariant quantities.
Presently this must be done by hand, and is not directly supported
by programming models or imperative programming languages as
currently conceived. Likewise, the use of accessor functions in Min-
isweep permits easy modification of memory locale and layout for
an array. One must still however schedule memory transfers across
the memory hierarchy manually for peak performance. Automatic
transfers via paging/caching such as the CUDA Unified Memory
feature and similar functionality for Intel Phi on-package mem-
ory will simplify programming for this, however past experience
has shown that manual prefetching of data across the hierarchy
is sometimes necessary to attain high performance. As memory
layers proliferate, e.g., with inclusion of NVRAM, managing this
will become more challenging.
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6.2 CUDA

CUDA by nature provides a lower level programming model com-
pared to directives-based methods. Though the CUDA runtime API
provides a slightly higher abstraction level than the CUDA driver
API], both cases require ifdefs to make a code portable between
CUDA for GPUs and standard C/C++ for conventional architectures.
CUDA has the advantage that vector lanes are addressed explic-
itly as threads, resulting in reliable vectorization. However, certain
coding constructs can lead to losses in performance in unexpected
ways. For example, in the course of developing the Denovo sweeper
and Minisweep, it was observed that when loop bounds were passed
into a CUDA kernel within a struct, performance was noticeably
degraded compared to when passed in as scalars. Furthermore, in
some cases a for loop that was provably one-trip at compile time
ran slower than when the loop was altogether removed, necessi-
tating use of an ifdef to make a single CUDA / OpenMP-SIMD
code. CUDA additionally has limitations with repect to deep copy
of structs and classes—since pointers in a host struct are invalid
on the device—though this is improving with the support of GPU
Unified Memory. In short, limitations of this nature can make it chal-
lenging to raise the abstraction level in CUDA codes and maintain
performance portability with other platforms.

6.3 OpenMP

Intel Phi performance typically depends on the effective vectoriza-
tion of loops, using the native simd directive or alternatively the
OpenMP simd directive. In the process of porting Minisweep to the
Intel Phi using the Intel compiler, challenges to loop vectorization
were encountered. In one case an array accessor function needed to
be flattened by removing its use of a struct in order to enable the
loop to vectorize. In another case the compiler failed to remove a
provably loop invariant quantity from a loop, inhibiting vectoriza-
tion. Also, the compiler would not vectorize the outermost loop of
a deep loop nest, though CUDA had no problem threading this loop.
The differing treatment of vector lanes as threads by CUDA and by
SIMD loops in OpenMP required the undesirable use of special case
code to handle the differences. Also, CUDA generally favors larger
kernels to minimize kernel launch overhead and maximize data
reuse, whereas with the Intel compiler it is difficult or impossible
to vectorize large, complex loops in one piece. These differences
made it challenging to support the different platforms without spe-
cial case programming. Overall, the difficulty of predicting a priori
when a complex loop would vectorize and the need at times to
rewrite code at a lower abstraction level was detrimental to writing
maintainable, performance portable code. We also explored convert-
ing current the OpenMP 3.1 code to 4.5. Adapting doacross for this
type of wavefront problem would have been a potential direction to
take. However doacross assumes a flat memory hierarchy (shared
memory) but what we need for our type of case study is to map
data objects to a memory hierarchy (e.g. place and child place) that
would allow the wavefront computations to be more data-centric
and be scheduled where the data is.

6.4 OpenACC

Similarly to OpenMP, we faced a number of challenges when im-
plementing our parallelization strategy discussed in Section 5.3 in
OpenACC. Our parallelization efforts also identified compiler bugs

that we reported to the PGI team. The first issue was handling array
accesses in the original Minisweep implementation. Accessor func-
tions are used to calculate the address of the flattened 5-dimensional
array accesses that occur throughout the Sweeper_sweep function,
as described in Section 4. These functions returned the address
of the array access in question, which was then dereferenced by
the Sweeper_sweep function in order to perform the manipulation
on the array element. OpenACC requires that we use the routine
directive to convert these function calls to routines. However, the
compiler was unable to properly generate routine code for functions
utilizing external variables like these array accesses do. We had to
eliminate the use of these functions and inline the calculation of
the array address into the array accesses within the given loops,
resulting in a more traditional array access. Unfortunately this is
detrimental to efforts to raise the abstraction level of the code.

Another issue was related to loop bounds. In Minisweep, input
parameters are stored in a globally defined struct. Since these values
are representing the sizes of each dimension of the application,
they are used later as loop bounds. However, while parallelizing,
OpenACC does not assume that no aliasing is being done since
this struct is defined globally (out of scope). There are two simple
solutions to this issue. First, the compiler flag -Msafeptr can be
used to specify that there is no aliasing. However, this would not be
the best option for this application as there is some sort of pointer
aliasing present elsewhere. Instead, we simply extract the value of
the dimension being used for a given loop bound and store it in an
integer variable prior to the start of the accelerated loop.

The final issue we faced was identified as a compiler bug in PGI
OpenACC 17.10. OpenACC can use kernels or parallel to gen-
erate code from an accelerated region. With kernels, the onus
is on the compiler to check for dependencies and generate code,
whereaas with parallel, the onus is on the programmer; failure
to do so will result in inaccurate results. In our case, we observed
that even though we used the parallel directive, the compiler still
performed dependency checks as if we had used kernels directive.
We confirmed this behavior by parallelizing a loop with a known
dependency. The compiler generated parallel code but showed in-
correct results. We then added a collapse clause to the end of this
loop directive, and we specified that it should be collapsed with the
next loop in the loop nest, which contained no such dependencies.
The result here was that the compiler reported that it parallelized
this collapsed loop nest, but the results of the computation were
accurate. Due to the increased runtime, we were able to conclude
that the inner loop was indeed executing in parallel, but the outer
loop was executing in serial despite what the compiler had reported.
All of these issues were easily overcome in practice, but identifying
them presented significant challenges along the way.

7 EVALUATION & RESULTS

As a validation of portability, Table 3 shows Minisweep results
for one GPU of the Titan Cray XK7 system (CUDA), one GPU of
the Summitdev IBM Minsky system (CUDA) and one node of the
Percival Cray XC40 KNL system (self-hosted OpenMP 4.0). The
problem solved has ne = 64, ng = 32, and ny, = 4, with ny,ny,n; =
32 The codes are not fully optimized, in particular one of the inner
loops for the OpenMP-KNL case did not vectorize. However, all
cases across different hardware and software environments attained
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Machine CPU

GPU

NVIDIA PSG (V100) | Intel Xeon E5-2698 v3 (16 cores)

NVIDIA Tesla V100 (16GB HBM2)

NVIDIA PSG (P100) | Intel Xeon E5-2698 v3 (16 cores)

NVIDIA Tesla P100 (16GB HBM2)

NVIDIA PSG (K40) | Intel Xeon E5-2690 v2 (10 cores) | NVIDIA Tesla K40 (12GB GDDR5)

ORNL Titan AMD Opteron 6274 (16 cores) | NVIDIA Tesla K20X (6GB GDDRS5)

ORNL Summitdev IBM POWERS (10 cores) NVIDIA Tesla P100 (16GB HBM2)
ORNL Percival Intel KNL 7230 (64 cores) N/A

Table 2: Specifications of the nodes in the systems we used to test different configurations of Minisweep.

a similar 4-5% of peak flop rate, a typical figure for this algorithm
which has significant memory accesses, register usage and integer
index calculations. This result suggests that the code is in fact
performance portable, since reasonable performance is reached for
all systems.

System Cores | GF/s | GF/s | % peak
(SMs) | peak GF/s
Titan(K20X) 14 1311 | 55.9 4.26

Summitdev(P100) 56 5312 | 244.8 | 4.61
Percival(Phi7230) 64 2662 | 124.9 4.69

Table 3: Comparative performance on several platforms.

We evaluate the effectiveness of our abstract wavefront paral-
lelism model by comparing the runtimes of our parallel implementa-
tions of Minisweep (described in Section 5) to the runtime of a serial
version of the code on multiple HPC systems. Table 2 describes the
hardware available on nodes of each system. Note that the NVIDIA
Professional Service Group (PSG) machines and the ORNL Titan
machine are existing state-of-the-art HPC systems, while ORNL
Summitdev is a development cluster representative of what hard-
ware will be present on nodes in ORNL’s next-gen supercomputer
Summit [27]. We also utilized the PSG cluster’s V100 node, which
houses NVIDIA’s next-generation GPU, which will be present on
nodes in Summit. We used PGI’s 17.10 compiler to compile our
OpenACC and OpenMP. We have also used GCC 6.3.0 for and ICC
17.0 for OpenMP codes. Compiling the code using Intel’s OpenMP
compiler was not successful and required code restructuring to take
advantage of SIMD in minisweep.

Our experimental configuration is a representative example of
what a real run of Minisweep within the Denovo radiation transport
code looks like. Our problem dimensions are designed to be as large
as we can fit on a single GPU: n, = 64, n, = 32, and n,, = 4, with
Ny, ny,nz = 32, on K20x/K40 and ny., ny,nz = 64 on P100/V100.

Figures 5 and 6 present the results when running different imple-
mentations of Minisweep using this configuration in the form of
speedups over the baseline serial implementation on existing HPC
systems. Note that the speedup results presented were obtained
by calculating the average of a series of runs for each implemen-
tation. There are a few notable results. First, our multicore CPU
GCC’s OpenMP (3.1) and OpenACC implementations yield favor-
able speedups. Note that GCC’s OpenMP performed better than
PGI’'s OpenMP. As mentioned in Section 5.3, we have currently
parallelized the in-cell computations, as well as the spatial decom-
position utilizing the KBA parallel sweep algorithm to resolve data

dependencies, as discussed in Section 2.1. This implementation
boasts a larger speedup than our OpenMP GCC version, as well as
our CUDA configuration when parallelized over the same problem
dimensions. Our OpenACC KBA configurations yields an addition
layer of parallelism across spatial dimensions and shows a much
larger speedup compared to configurations which only execute in-
cell computations in parallel. This leads us to conclude that there is
additional performance to be gained, albeit not trivial to implement.
It is also worth noting that our OpenACC implementation running
on NVIDIA’s next-generation Volta GPU boasts an 85.06x speedup
over serial code, which is larger than the 83.72x speedup over the
same serial implementation achieved by CUDA. This supports our
claim that our proposed extension to existing high-level program-
ming models is worthwhile, both from a performance standpoint, as
well as a programming productivity standpoint. Currently, without
major code modification, this challenge cannot be overcome.

Minisweep Speedups

B Serial MOpenMP Multicore (PGI) B OpenMP Multicore (GCC) M OpenACC Multicore B OpenACC GPU B CUDA M OpenACC GPU (KBA) B CUDA (KBA)
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Figure 5: Minisweep’s speedups over serial using differ-
ent runtime configurations. CUDA version is parallelized
along the same dimensions as the OpenACC GPU configura-
tion. The corresponding KBA configurations utilize the KBA
blocking method for additional parallelism across spatial di-
mensions.

Absolute runtimes for GPU configurations utilizing the KBA
parallel sweep algorithm are presented in Figure 7. As shown, our
OpenACC GPU implementation performs well compared to its
CUDA counterpart in all cases. In addition to its excellent GPU
performance, it is worth noting that this same OpenACC implemen-
tation was used to obtain results on our multicore CPU platforms by
simply recompiling and specifying a different target. No additional
code modifications were necessary to achieve this demonstration
of portability. We contend that this provides additional evidence for
the importance of an extension that would allow us to parallelize
the outer spatial dimensions, yielding additional parallelism across
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Figure 6: Minisweep’s speedups over serial using different
runtime configurations: ORNL’s next-gen Summitdev clus-
ter.

gridcells without requiring a major coding effort on the part of
the programmer. As stated in Section 4, this type of abstraction
will benefit any wavefront-type code that performs some type of
spatial dimension sweep. Our OpenACC proof-of-concept of such
an abstraction demonstrates this on a real-world wavefront-type
application used at a major national laboratory. Since these types
of codes are very common in computational scientific applications,
we contend that this contribution has far-reaching implications for
modern-day HPC applications.

KBA GPU Runtimes
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Figure 7: Absolute runtimes (sec) of OpenACC & CUDA ex-
periments on all GPUs used. Note that the V100/P100 prob-
lem size is an order of magnitude > K40/K20x configuration,
as mentioned earlier.

Scientifically, neutron flow simulation can take a considerable
amount of computing time. If not for speeding up these simulation
runs using accelerators, scientists will have to resort to simulating
a model that is potentially less accurate leading to questionable re-
sults. This can be quite a risky task to rely on for scientists working
in nuclear reactor facilities.

8 RELATED WORK

Considered as far back as 1974 by Lamport [28], wavefront compu-
tations are found in linear equation solvers [31, 35], gene sequence
alignment [43] and radiation transport [11, 25], iterative solution
methods [38], particle physics simulations [26], and parallel solu-
tion of triangular systems of linear equations [22]. Smith Water-
man, a local sequence alignment algorithm, has mapped wavefront
algorithm to GPUs [39], on Cell BE [45] and on FPGAs [15, 49].
ASCI Sweep3D wavefront application undergoes rapid succession of

wavefront and solves a 1-group neutron transport problem on IBM
Blue Gene/P machine [23] by using blocking techniques. Prelimi-
nary studies to use TBB, Cilk, CnC, and OpenMP 3.0 for wavefront
in [19] indicate that a higher-level template is required for less ex-
perienced users. AWE Chimaera [34], NAS-LU [10] use a variation
called "hyperplane’ algorithm [29] and [36] discusses acceleration
of generalized pipeline wavefront applications.. Proxy apps such
as Kripke [4], SNAP [7] (mimicking communication patterns of
PARTISN [13] transport code) are wavefront codes investigating
different data layout patterns and parallelism. Coarray Fortran-
based Sweep3D’s comparable performance to that of the MPI is
discussed in [18]. Approaches using loop skewing [46] to derive
the wavefront method of execution of nested loops is discussed
in CHILL [16], a polyhedral compiler transformation framework.
Other related work include [44, 47]. Other approaches are High Pro-
ductive Computing System (HPCS) languages: Chapel [14], X10 [33]
and Fortress [8] but do not offer enough abstractions or vocabu-
lary for heterogeneous platforms. HTP [48] proposed a hierarchical
tree place to map to an architecture and schedules task to different
different nodes in the tree.

However most of the above discussed strategies are solutions to
specific problem types, or incurs steep learning curve thus making
them not quite so favorable to easily adapt for large scale applica-
tions. Taking this up as a challenge, our work proposes solution
using directives and demonstrate the parallelization of a multi-
dimensional Minisweep using OpenACC on different platforms. The
parallelization process revealed shortcomings in current directive-
based model that we address by proposing an abstract model for
expressing wavefront parallelisms in programming models.

9 CONCLUSION & FUTURE WORK

This paper examines the challenges faced when porting a wave-
front application to state-of-the-art HPC systems using directives
using Minisweep as the case study. We present a performance-
portable OpenACC implementation of Minisweep, as well as an
analysis of this implementation’s performance compared to opti-
mized multicore CPU and GPU implementations of the same code
using OpenMP and CUDA, respectively. Results demonstrate that
utilizing high-level parallel programming abstractions, such as Ope-
nACC, can achieve comparable performance to low-level, optimized
parallel implementations. All of these designs and implementations
are reflections of an abstract parallelism model that we propose for
wavefront algorithms. This model motivates enhancing program-
ming models with software abstractions to parallelize wavefront
problems on multiple platforms, while minimizing programmer
overhead.

As part of our ongoing work, we plan on applying our findings
outlined by this work on additional applications to further demon-
strate the efficacy of our abstract parallelism model, formulating
and automating the process of transforming loop nests into the KBA
method discussed in Section 3, and investigating techniques for
performing wavefront sweeps across multiple GPUs and/or nodes
in HPC systems.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S. Department
of Energy, Office of science, and this research used resources of the



PASC’18, July 2018, Congress Center Basel, Switzerland

Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-000R22725.

The authors would also like to thank NVIDIA for donating us
a Titan Xp and providing us access to their Professional Service
Group (PSG) machine that we have used for this work.

REFERENCES

[1] 1995. The ASCI SWEEP3D README File. (1995). http://www.ccs3.lanl.gov/PAL/

[2

[3

[9

[10

[11

[12

[13

[14

[15

[16

(7

[18

[19

[20

[22

]

]

]

]

]

]

]

]

]

]

software.shtml [Online; accessed 24-June-2014].

2014.  Scientists successfully test code that models neutrons in reactor
core. R&D Magazine (2014). https://www.rdmag.com/news/2014/02/
scientists-successfully- test-code-models- neutrons-reactor-core.

2014. Supercomputer team wins award for core work. World
Nuclear News (2014). http://www.world-nuclear-news.org/
NN-Supercomputer-team-wins-award-for-core-work-0707147.html [On-
line; accessed 15-August-2017].

2017. Kripke. (2017). . https://codesign.llnl.gov/kripke.php [Online; accessed
15-August-2017].

2017. ORNL-CEES. https://github.com/ORNL-CEES/Profugus. (2017).

2017. Quadrillions of calculations per second for fusion. ITER Newsline
(2017). https://www.iter.org/ajax/www/pop/wd_700/lang_/urldepth_0/id_
newsline_ofinterest-670 [Online; accessed 15-August-2017].

2017. SNAP: SN (Discrete Ordinates) Application Proxy. (2017). . https://github.
com/lanl/SNAP [Online; accessed 15-August-2017].

Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen,
Sukyoung Ryu, Guy L Steele Jr, Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund,
et al. 2005. The Fortress language specification. Sun Microsystems 139, 140 (2005),
116.

James A Ang, Richard F Barrett, Robert E Benner, D Burke, C Chan, J Cook,
David Donofrio, Simon D Hammond, Karl S Hemmert, SM Kelly, et al. 2014.
Abstract machine models and proxy architectures for exascale computing. In
Hardware-Software Co-Design for High Performance Computing (Co-HPC), 2014.
IEEE, 25-32.

David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. 1991. The NAS parallel benchmarks. The International Journal of
Supercomputing Applications 5, 3 (1991), 63-73.

Christopher Baker, Gregory Davidson, Thomas M Evans, Steven Hamilton, Joshua
Jarrell, and Wayne Joubert. 2012. High performance radiation transport simula-
tions: preparing for Titan. In SC 2012 International Conference for. IEEE, 1-10.
Christopher G. Baker, Gregory G. Davidson, Thomas M. Evans, Steven P. Hamil-
ton, Joshua J. Jarrell, and Wayne Joubert. 2012. High Performance Radiation
Transport Simulations: Preparing for TITAN. In Proceedings of Supercomputing
Conference SC12.

Randal S. Baker. 2014. PARTISN on Advanced/Heterogeneous Processing Sys-
tems. (2014). http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/
LA-UR-13-20948 [Online; accessed 24-June-2014].

Bradford L Chamberlain, David Callahan, and Hans P Zima. 2007. Parallel
programmability and the chapel language. The International Journal of High
Performance Computing Applications 21, 3 (2007), 291-312.

Sunita Chandrasekaran, Shilpa Shanbagh, Ramkumar Jayaraman, Douglas L
Maskell, and Hui Yan Cheah. 2013. C2FPGA?A dependency-timing graph design
methodology. JPDC 73, 11 (2013), 1417-1429.

Chun Chen, Jacqueline Chame, and Mary Hall. 2008. CHILL: A framework for
composing high-level loop transformations. Technical Report. Technical Report
08-897, U. of Southern California.

M. P. Clay, D. Buaria, and P. K. Yeung. 2017. Improving Scalability and Accelerat-
ing Petascale Turbulence Simulations Using OpenMP. http://openmpcon.org/
conf2017/program/. (2017). To Appear.

Cristian Coarfa, Yuri Dotsenko, and John Mellor-Crummey. 2006. Experiences
with Sweep3D implementations in Co-array Fortran. The Journal of Supercom-
puting 36, 2 (2006), 101-121.

Antonio J Dios, Angeles G Navarro, Rafael Asenjo, Francisco Corbera, and
Emilio L Zapata. 2011. A case study of the task-based parallel wavefront pattern..
In PARCO. 65-72.

T. M. Evans, W. Joubert, S. P. Hamilton, S. R. Johnson, J. A Turner, G. G. Davidson,
and T. M Pandya. 2015. Three-Dimensional Discrete Ordinates Reactor Assembly
Calculations on GPUs. In ANS 2015.

Roberto Gomperts. 2016. Quantum Chemistry on GPUs. http://images.nvidia.
com/content/tesla/pdf/quantum-chemistry-may-2016-mb-slides.pdf. (2016).
Michael T Heath and Charles H Romine. 1988. Parallel solution of triangular
systems on distributed-memory multiprocessors. SIAM J. Sci. Statist. Comput. 9,
3 (1988), 558-588.

S
)

&
22

m
fla’

[32

[33

[34

[35

[38

[39

[40

[41

[42

[43

[44

[45

[46

Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez

Accelerated Strategic Computing Initiative. 1995. The ASCI sweep3d benchmark
code. (1995).

Wayne Joubert. 2017. Minisweep. https://github.com/wdj/minisweep. (2017).
KR. Koch, R.S. Baker, and R.E. Alcouffe. 1992. Solution of the first-order form of
the 3-D discrete ordinates equation on a massively parallel processor. Transactions
of the American Nuclear Society 65 (1992), 198-199.

Kenneth R Koch, Randal S Baker, and Raymond E Alcouffe. 1992. Solution of the
first-order form of the 3-D discrete ordinates equation on a massively parallel
processor. Transactions of the American Nuclear Society 65, 108 (1992), 198-199.
Oak Ridge National Lab. 2017. SUMMIT. https://www.olcf.ornl.gov/summit/.
(2017).

Leslie Lamport. 1974. The Parallel Execution of DO Loops. Commun. ACM 17(2)
(1974), 83-93.

Leslie Lamport. 1974. The parallel execution of DO loops. Commun. ACM 17, 2
(1974), 83-93.

Edward W. Larsen and Jim E. Morel. 2010. Advances in Discrete-Ordinates
Methodology. In Nuclear Computational Science: A Century in Review, Yousry
Azmy and Enrico Sartori (Eds.). Springer, New York, Chapter 1, 1-84.

Ruipeng Li and Yousef Saad. 2013. GPU-accelerated preconditioned iterative
linear solvers. Journal of Supercomputing 63(2) (February 2013), 443-466. https:
//doi.org/10.1007/s11227-012-0825-3 http://link.springer.com/article/10.1007%
2Fs11227-012-0825-3 [Online; accessed 24-June-2014].

Bronson Messer, Ed D’Azevedo, Judy Hill, Wayne Joubert, Mark Berrill, and
Christopher Zimmer. 2016. MiniApps derived from production HPC applications
using multiple programing models. The International Journal of High Performance
Computing Applications 0, 0 (2016), 1094342016668241. https://doi.org/10.1177/
1094342016668241 arXiv:http://dx.doi.org/10.1177/1094342016668241

Josh Milthorpe, V Ganesh, Alistair P Rendell, and David Grove. 2011. X10 as a
parallel language for scientific computation: Practice and experience. In IPDPS,
2011 IEEE International. IEEE, 1080-1088.

Gihan R Mudalige, Mary K Vernon, and Stephen A Jarvis. 2008. A plug-and-play
model for evaluating wavefront computations on parallel architectures. In IPDPS.
IEEE International Symposium on. IEEE, 1-14.

S.J. Pennycook, S.D. Hammond, G.R. Mudalige, S.A. Wright, and S.A. Jarvis. 2012.
On the Acceleration of Wavefront Applications using Distributed Many-Core
Architectures. Comput. J. 55, 2 (2012), 138-153. https://doi.org/10.1093/comjnl/
bxr073 http://comjnl.oxfordjournals.org/content/55/2/138 [Online; accessed 24-
June-2014].

Simon ] Pennycook, Simon D Hammond, Gihan R Mudalige, Steven A Wright,
and Stephen A Jarvis. 2011. On the acceleration of wavefront applications using
distributed many-core architectures. Comput. 7. 55, 2 (2011), 138-153.

David F Richards, Ryan C Bleile, Patrick S Brantley, Shawn A Dawson,
Michael Scott McKinley, and Matthew J O?Brien. 2017. Quicksilver: A Proxy App
for the Monte Carlo Transport Code Mercury. In Cluster Computing (CLUSTER),
2017 IEEE International Conference on. IEEE, 866—873.

Francois Roddier and Claude Roddier. 1991. Wavefront reconstruction using
iterative Fourier transforms. Applied Optics 30, 11 (1991), 1325-1327.

Edans Flavius de O Sandes and Alba Cristina MA de Melo. 2011. Smith-waterman
alignment of huge sequences with gpu in linear space. In IPDPS, 2011 IEEE
International. IEEE, 1199-1211.

Sunil Sathe. 2016. Accelerating the ANSYS Fluent R18.0 Radiation Solver with
OpenACC. https://tinyurl.com/yacxh5g7. (2016).

Will Sawyer, Guenther Zaengl, and Leonidas Linardakis. 2014. Towards a multi-
node OpenACC Implementation of the ICON Model. In EGU General Assembly
Conference Abstracts, Vol. 16.

John Shalf. 2013. Computer Architecture for the Next Decade: Adjusting to the
new normal for computing. EEHPC Workshop (2013).

T. F. Smith and M. S. Waterman. 1981. IdentiinAcation of Common Molecular
Subsequences. Journal of Molecular Biology 147(1) (1981), 195-197.

Anand Venkat, Mahdi Soltan Mohammadi, Jongsoo Park, Hongbo Rong, Rajk-
ishore Barik, Michelle Mills Strout, and Mary Hall. 2016. Automating wavefront
parallelization for sparse matrix computations. In Proc. of SC16. IEEE Press, 41.
Adrianto Wirawan, Kwoh Chee Keong, and Bertil Schmidt. 2007. Parallel DNA
sequence alignment on the cell broadband engine. In International Conference on
PPAM. Springer, 1249-1256.

Michael Wolfe. 1986. Loops skewing: The wavefront method revisited. Interna-
tional Journal of Parallel Programming 15, 4 (1986), 279-293.

Justin M Wozniak, Timothy G Armstrong, Michael Wilde, Daniel S Katz, Ewing
Lusk, and Ian T Foster. 2013. Swift/t: Large-scale application composition via
distributed-memory dataflow processing. In Cluster, Cloud and Grid Computing
(CCGrid), 2013 13th IEEE/ACM International Symposium on. IEEE, 95-102.
Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. 2009. Hierarchical Place
Trees: A Portable Abstraction for Task Parallelism and Data Movement.. In LCPC,
Vol. 10. Springer, 172-187.

Peiheng Zhang, Guangming Tan, and Guang R Gao. 2007. Implementation of
the Smith-Waterman algorithm on a reconfigurable supercomputing platform. In
Proc. of HPRCTA: held in conjunction with SC07. ACM, 39-48.


http://www.ccs3.lanl.gov/PAL/software.shtml
http://www.ccs3.lanl.gov/PAL/software.shtml
https://www.rdmag.com/news/2014/02/scientists-successfully-test-code-models-neutrons-reactor-core
https://www.rdmag.com/news/2014/02/scientists-successfully-test-code-models-neutrons-reactor-core
http://www.world-nuclear-news.org/NN-Supercomputer-team-wins-award-for-core-work-0707147.html
http://www.world-nuclear-news.org/NN-Supercomputer-team-wins-award-for-core-work-0707147.html
https://codesign.llnl.gov/kripke.php
https://github.com/ORNL-CEES/Profugus
https://www.iter.org/ajax/www/pop/wd_700/lang_/urldepth_0/id_newsline_ofinterest-670
https://www.iter.org/ajax/www/pop/wd_700/lang_/urldepth_0/id_newsline_ofinterest-670
https://github.com/lanl/SNAP
https://github.com/lanl/SNAP
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-20948
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-20948
http://openmpcon.org/conf2017/program/
http://openmpcon.org/conf2017/program/
http://images.nvidia.com/content/tesla/pdf/quantum-chemistry-may-2016-mb-slides.pdf
http://images.nvidia.com/content/tesla/pdf/quantum-chemistry-may-2016-mb-slides.pdf
https://github.com/wdj/minisweep
https://www.olcf.ornl.gov/summit/
https://doi.org/10.1007/s11227-012-0825-3
https://doi.org/10.1007/s11227-012-0825-3
http://link.springer.com/article/10.1007%2Fs11227-012-0825-3
http://link.springer.com/article/10.1007%2Fs11227-012-0825-3
https://doi.org/10.1177/1094342016668241
https://doi.org/10.1177/1094342016668241
http://arxiv.org/abs/http://dx.doi.org/10.1177/1094342016668241
https://doi.org/10.1093/comjnl/bxr073
https://doi.org/10.1093/comjnl/bxr073
http://comjnl.oxfordjournals.org/content/55/2/138
https://tinyurl.com/yacxh5g7

	Abstract
	1 Introduction
	1.1 Application Under Study
	1.2 Contributions

	2 Overview of Sweep Algorithm
	2.1 Grid-level computations
	2.2 Gridcell-level computations
	2.3 Summary of problem axes

	3 Parallelizing the Sweep Algorithm
	4 Abstract Parallelism Model
	5 Translation of Abstract Parallelism Model 
	5.1 CUDA
	5.2 OpenMP
	5.3 OpenACC

	6 Programming Model Limitations
	6.1 General
	6.2 CUDA
	6.3 OpenMP
	6.4 OpenACC

	7 Evaluation & Results
	8 Related Work
	9 Conclusion & Future Work
	References

