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Abstract: HPC offers tremendous potential to process large amount of data
commonly referred to as ‘Big Data’. Due to the immense computational
requirements of Big Data applications, the HPC and Big Data communities are
converging. As a result, heterogeneous and distributed systems are becoming
commonplace. In order to take advantage of the immense computing power of
these systems, distributing data efficiently and leveraging specialized hardware
(e.g. accelerators) is critical. In this paper, we develop a portable, high-level
paradigm that can be used to run Big Data applications on existing and future HPC
systems. More specifically, we will target graph analytics applications, since these
types of applications are becoming increasingly more popular in the Big Data
and Machine Learning communities. Using our paradigm, we accelerate three
real-world, compute and data intensive, graph analytics applications: a function
call graph similarity application, a triangle enumeration subroutine, and a graph
assaying application.

Our paradigm utilizes the popular MapReduce framework, Apache Spark, in
conjunction with CUDA in order to simultaneously take advantage of automatic
data distribution and specialized hardware present on each node of our HPC
systems. We demonstrate scalability with regard to compute intensive portions of
the code that are parallelizable, as well as an exploration of the parameter space
for each application. We show that our method yields a portable solution that
can be used to leverage almost any legacy, current, or next-generation HPC or
cloud-based system.
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1 Introduction

As the Big Data and High Performance Computing communities continue to converge, large-
scale computing on single nodes is becoming less and less feasible. Modern HPC systems
are comprised of many nodes, each containing heterogeneous computing resources. This
poses a challenge for programmers because they need to devise efficient ways to program
such systems in order to distribute their computational tasks across these nodes, as well
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as utilize all the computational resources each node has to offer. In this paper, we tackle
this challenge by proposing a portable, high-level paradigm that can be used to leverage
modern HPC systems to solve Big Data problems. Our high-level paradigm uses Big Data’s
MapReduce framework, Apache Spark (3), to distribute tasks across nodes in our cluster. We
combine this with the HPC framework CUDA (23) to make use of the accelerators present
on each machine in our cluster in order to achieve optimal performance. This combination
of technologies allows our applications to scale to distributed, heterogeneous systems of any
size. In addition, our paradigm enables applications to be both backwards compatible and
forwards compatible (i.e., they can efficiently run on any legacy, current, or next-generation
hardware).

Our approach is fundamentally different from the widely used MPI+X techniques
used to program HPC systems (e.g., MPI+CUDA and MPI+OpenACC). MPI allows the
programmer to explicitly move data, which in some cases results in higher efficiency, but
in many cases it can be cumbersome, since all data movement and memory management is
handled manually (24). Additionally, MPI code is not natively fault-tolerant. The decision
to use Apache Spark allows us to automatically distribute data across nodes in our system,
providing us with a portable, fault-tolerant solution that requires much less development
overhead. This allows the programmer to focus the majority of their efforts on parallelization
and optimization of their algorithms. To that end, we combine Spark with the popular GPU
computing framework CUDA. Spark exclusively handles the distribution of data across
nodes, and it performs the computation directly, when no GPU is present. When a GPU
is present, node-local computations are performed using CUDA kernels. We demonstrate
this technique on three real-world applications: the Fast Subtree Kernel (FSK), triangle
enumeration (7), and graph assaying.

FSK is a modified graph kernel that takes directed trees (graphs with no cycles) as input
and returns a normalized measure of their overall similarity. This compute-bound kernel
can be used in a variety of applications, but for the purposes of this paper, it will be used for
program characterization. In this paper, we use FSK to examine the pairwise similarities
of call graphs generated from decompiled binary applications. The resulting kernel matrix
can be used as an input to a Support Vector Machine (SVM) to generate a model that will
detect malicious behavior in applications (malware), as well as classify detected malware
by type (4). We call these varying types of malicious programs “malware families”.

Triangle enumeration is a data-bound graph operation that counts the number of triangles
(i.e., a cycle on three vertices) in a graph. Although by itself triangle enumeration is a simple
operation, it is used as a subroutine in many larger graph analyses such as spam detection,
community detection, and web link recommendation. Accelerating triangle enumeration
leads to a speed up in these larger graph analyses, much like accelerating BLAS operations
speeds up traditional scientific applications. In this paper, we enumerate the triangles in
Erdős-Rényi (ER) random graphs (8).

Graph assaying is the process of decomposing a graph G into a deck of k-vertex,
induced subgraphs and counting the frequency of each resulting graph. If one views the
k-vertex subgraphs as genes then a graph assay can be thought of as a characterization
of the genetic makeup of the graph G. Triangle enumeration is, effectively, a partial 3-
vertex graph assay where we are only concerned with the expression of a single gene (the
triangle). While graph assaying can be used anytime a complete genetic profile of a graph
is needed, it has recently been proposed as an important tool for understanding the efficacy
of, and training, Spike Coupled Neural Networks (SCNNs). An SCNN is a time dependant,
recurrent neural network which is fundamentally an edge-weighted, directed graph which
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models communication in a brain. Currently, the only methods available for training such
networks are genetic algorithms. The hope is that by understanding the genetic profiles of
successful SCNNs, one could design new, larger SCNNs by seeding these genetic algorithms
with networks having a similar genetic profile appropriately normalized.

The major contributions of this paper are as follows:

• We propose a high-level paradigm for combining MapReduce and accelerators to run
applications portably and scalably on heterogeneous HPC and cloud-based systems.

• We adapt two compute-bound HPC applications, FSK and graph assaying, and
demonstrate scalability with our solution.

• We adapt a data-bound Big Data application, triangle enumeration, and demonstrate
performance optimization through parameter tuning.

• We present results on our heterogeneous cluster with a variety of CPUs and GPUs, as
well as NVIDIA’s PSG cluster, which is homogeneous and utilizes NVIDIA’s next-
generation P100 GPUs.

The rest of the paper is organized as follows: Section 2 provides a high-level overview
of the applications we will use to demonstrate the effectiveness of our solution on both
compute-bound and data-bound applications. Section 3 describes the methodology used
to adapt these applications to run on HPC and cloud-based systems using our proposed
solution. Section 4 presents our results. We discuss related work in Section 5, and we
conclude in Section 6.

2 Application Descriptions

Typically, the HPC and Big Data communities each have their own types of applications:
compute-bound applications and data-bound applications, respectively. As these two
communities continue to converge, we see a growing number of applications containing
elements of both. While some paradigms are designed with one particular application
category in mind, our paradigm is designed to support applications in either category as
well as applications that share elements from both. To demonstrate the robustness of our
high-level paradigm, we select two compute-bound HPC applications and one data-bound
Big Data application. We demonstrate the different techniques and parameters used to adapt
and tune both types of applications on heterogeneous systems effectively. The following
section describes the three real-world applications used in this paper.

2.1 Fast Subtree Kernel

Many real-world systems and problems can be modeled as graphs, and these graphs can
be used for a variety of applications, such as complex network analysis, data mining, and
even cybersecurity. For our compute-bound HPC application, we examine an existing graph
kernel, the Fast Subtree Kernel (FSK). FSK is a specialized graph kernel that takes directed
trees (graphs with no cycles) as input and tells us how similar they are. We will use FSK
to characterize potentially malicious binary applications by representing applications as
graphs, pruning those graphs into trees by removing any cycles found within them, and
constructing a matrix that represents the pairwise similarity of all the binary applications
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in our dataset. This resulting similarity matrix can be used as input to an SVM, which will
generate a classification model from our matrix. This model can then be used to classify
applications as malicious (belonging to one or more categories of malware) or benign.

FSK takes encoded trees as input. An encoded tree is simply a tree that explicitly
represents all possible subtrees in addition to single nodes. In our case, we are starting with
function call graphs generated from a tool called Radare2 (2), which decompiles binaries and
returns a call graph representing the function call hierarchy of the application in question.
In these graphs, nodes represent functions and edges represent function calls. For example,
if function A calls function B, there will be an edge going from A to B. In addition to these
relationships, we represent nodes as feature vectors used to count the types of instructions
present in a given function. Each entry in the feature vector represents a type of instruction,
and the value at each entry is simply a count of the number of times that instruction is used
within the given function. This information allows us to examine individual functions in
an application, while preserving the structural characteristics of that application. However,
FSK examines subtrees in addition to single nodes, so we must first encode these trees by
constructing representations of all the subtrees found in them. In order to do this, we simply
combine the feature vectors of the nodes that make up a particular subtree by performing an
element-wise sum on the feature vectors. Our graphs are then represented as a list of these
feature vectors. Once this has been done, we can start using FSK to construct our similarity
matrix.

The creation of the similarity matrix has two main components, both of which are
embarrassingly parallel. The first component is the pairwise comparisons of all the graphs
in a dataset. Since these comparisons are independent of each other, they can be done in
parallel. In addition to this coarse-grained component, the examination of a given pair of
graphs (A and B respectively) can be performed in parallel as well. All feature vectors
of graph A must be compared with all feature vectors of graph B, and vice-versa. The
comparisons in this fine-grained portion of FSK measure the distance between feature
vectors and considers them similar if their distance is below a predetermined threshold,
delta. Distance between two feature vectors (m and n) of length L is calculated as follows:

distance =

∑L−1
i=0 |mi − ni|

max(max(m,n), 1)
(1)

This calculated distance is then divided by the feature vector length in order to normalize
its value to lie between 0 and 1 as shown below.

normalized_distance =
distance

L
(2)

We keep a count of the total number of similar feature vectors (sim_count) in a given
pair of graphs (A and B), and we calculate their overall similarity using the following
formula:

similarity =
sim_count

len(A) + len(B)
(3)

The resulting similarity values are then stored in the similarity matrix we construct,
which can be analyzed as-is or fed to an SVM to generate a classification model. In
Subsection 3.1, we describe how we implement FSK using our high-level paradigm.
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2.2 Triangle Enumeration

For our data-bound Big Data application, we examine an existing graph operation, triangle
enumeration. Triangle enumeration is the process of counting the number of triangles in a
graph. For this paper, we consider only undirected graphs, but the techniques we describe
are easily extensible to support directed graphs. A triangle is a set of three vertices where
each pair of vertices share an edge (i.e., a complete subgraph on 3 vertices or a cycle on 3
vertices). Figure 1 shows a graph containing 2 triangles (which are highlighted).
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1

2 3
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5

Figure 1: This graph contains 2 triangles (highlighted in red).

Triangle enumeration is used in many ways. It is used in calculating the cluster coefficient
and transitivity ratio of a graph; both of which are a measure of how clustered together
nodes in a graph are. It is also used as a subroutine in graph algorithms for spam detection,
community detection, and web link recommendation. Its prevalence in so many metrics and
algorithms demonstrates its relevance and usefulness in our study. Accelerating triangle
enumeration is of key importance to accelerating these larger graph algorithms, much like
accelerating BLAS operations is important to accelerating scientific simulations.

There are two existing parallel triangle enumeration methods. The first method involves
computing A3, where A is the adjacency matrix of the graph, as described in (15). Each
cell (i, j) within A3 represents the number of possible walks of length three from node i
to node j. Thus, summing the values along the diagonal (i.e., the trace of the matrix) gives
the number of triangles in the graph (after we divide by six to eliminate the over counting
caused by the symmetry of the triangles). This method is parallelized by performing the
computation of A3 in parallel, typically with the use of either a CPU or GPU BLAS library.
For most graphs, this method performs well, but for small or sparse graphs, the overhead
of transferring to and from the GPU outweighs the benefits of parallelism. In addition, this
method is limited by the amount of memory on a single node or GPU.

The second method involves uses the edge list of the graph to generate a list of “angles”
(i.e., a triangle minus one edge). The angle list is then joined with the graph edge list to form
a list of triangles. This method, as described by Jonathan Cohen (7), fits naturally into the
MapReduce paradigm and has traditionally been implemented with Hadoop. The Hadoop
framework allows this algorithm to span multiple compute nodes easily, but it suffers from
a high data movement overhead. In total, the algorithm requires several iterations of maps
and reduces. For each map and reduce, Hadoop must not only shuffle key-value pairs across
the network, but it must also write to disk the output of each map and reduce operation.

We adapt triangle enumeration for heterogeneous hardware by combining these two
existing parallel triangle enumeration methods to create a new hybrid method. The new
method consists of breaking the graph down into multiple subgraphs, as demonstrated in
Figure 2. The triangles in each subgraph are then computed using the first method, and
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the triangles that span the subgraphs are counted with the second method. This hybrid
combination of the existing methods avoids their downsides and maximizes their benefits.
The first method, computing A3, only runs on subgraphs, which means that it will not
overflow the memory of the GPUs on the cluster. This allows the GPUs to be utilized on
graphs that are larger than can fit on a single node. The second method, joining of the angle
and edge lists, no longer has to detect every triangle in the entire graph, but instead only has
to detect the triangles that span subgraphs. This reduces the data movement overhead by
reducing the number of edges and angles that are emitted and shuffled across the network
by the MapReduce framework. In Subsection 3.2, we describe how we implement this new
hybrid method.

Local 
Computation

Local 
Computation

Local 
Computation

Global 
Communication & 

Computation

Figure 2: An example graph that is broken down into subgraphs by our hybrid triangle
enumeration method. The triangles in the subgraphs are counted on the CPU or GPU with
a BLAS library while the triangles that span the subgraphs are counted with a MapReduce
framework.

2.3 Graph Assaying

Assaying a graph G is a general term for characterizing the frequency of each non-
isomorphic subgraph of G of a specified size k, called a k-assay. A k-assay of G consists of
the counts of every induced subgraph ofG on k vertices. Figure 3 shows the simplest case of
a graph assay, a 2-assay. For simple, undirected graphs there are only two non-isomorphic
graphs on 2 vertices: the empty graph (denoted G0 in Figure 3) which has no edge, and
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the complete graph (denoted G1 in Figure 3) consisting of a single edge. A 2-assay of G
is therefore a count of the edges (and non-edges) of G. In the more general case when G
is directed (allowing (a, b) and (b, a) to be edges), or when multiple undirected edges are
allowed, then a 2-assay is no longer a simple edge count. Figure 4 shows a 3-assay of the
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Figure 3: An example of a 2-assay of an undirected graph on 6 vertices. A 2-assay is a
count of the edges and non-edges of a graph.

same graph. There are 4 non-isomorphic (simple, undirected) graphs on 3 vertices. Again,
each of those 4 non-isomorphic graphs is characterized by the number of edges it has: Gi

having i edges.
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Figure 4: An example of a 3-assay of an undirected graph on 6 vertices. There are 3 non-
isomorphic, simple (undirected) graphs on 3 vertices. A 3-assay counts the frequency of
each of these.

Graph assays have been either used, or proposed, for a number of applications. One of
the most popular questions related to graph assays is whether an (n− 1)-assay of a graph G
on n vertices uniquely determines the graphG. The conjecture that (n− 1)-assays uniquely
determine graphs is more commonly referred to as the reconstruction conjecture (see (21)
for a good survey of the problem). While the full conjecture remains open, it has been shown
that a number of graph properties can be reconstructed from assays; for example, for any
k ≥ 2 a k-assay of G can be used to determine the number of edges of G. Additionally, a
number of infinite families of graphs are uniquely determined by their (n− 1)-assays; these
include trees, disconnected graphs, unit interval graphs, maximal planar graphs, outerplanar
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graphs, and others. Though we may not (yet) be able to assert that any two graphs having
the same k-assay are isomorphic, we can be certain that graphs with different k-assays are
non-isomorphic. Graph assays (especially hypergraph assays) are also a fundamental part of
using Flag Algebras (26). Flag Algebras have become an increasing popular and powerful
tool in extremal combinatorics where they are used to understand the asymptotic behavior
of constrained graphs. More recently, graph assays have been proposed, and are currently
being used, to design and train spike coupled neural networks. The assays characterize the
genetic traits of neural networks and are subsequently used to seed evolutionary algorithms
which design newer, larger networks. The software currently used to design and train a
spike coupled neural network produces, through generations of evolution and adaptation,
thousands of diverse networks. The expectation is that a complete assay of these (many)
networks will reveal characteristics (genes) that lead to the best performing networks. These
genes can then be engineered into future generations of neural networks.

3 Methodology

In this section, we describe the general strategy behind our portable, high-level graph
analytics paradigm, which enables our applications to run on heterogeneous HPC and cloud-
based systems. Generally speaking, our paradigm uses Apache Spark (3) for automatic
data/task distribution and CUDA (“X”) for local task computation. Figure 5 shows a high-
level depiction of this paradigm.

More specifically, we use Apache Spark for all inter-node operations (i.e. data
movement, task distribution, and global computation). Such operations include Spark’s
built-in functions for broadcasting, reducing, joining, streaming, etc. For intra-node
operations, our paradigm utilizes computational libraries (e.g. PyCUDA, ScikitCUDA,
SciPy, and NumPy) in conjunction with user-written functions.

Figure 6 shows our three applications (FSK, Triangle Enumeration, and Graph Assaying)
written using our paradigm. The orange text represents inter-node communication and
computation performed using Spark. The blue text represents the intra-node computation
performed by user-written functions that utilize PyCUDA and ScikitCUDA. Note that each
application requires 10 or fewer lines of additional code in order to utilize Spark and run on
distributed systems. This small amount of programmer overhead allows for massive gains
in parallelism by distributing tasks/data across all the nodes in a distributed system. Once
this distribution is complete, our paradigm can utilize any available accelerators local to
each node, via CUDA, to add a level of fine-grained parallelism to our paradigm, in addition
to the coarse-grained parallelism provided by Spark.

Unlike most traditional HPC applications, we decided to forego the use of MPI and
instead use Spark for two reasons.

• First, Spark automatically distributes the data/tasks with a single function call (i.e.,
sc.parallelize). MPI requires manual distribution by the programmer.

• Second, Spark is natively fault-tolerant. If a particular distributed operation fails, Spark
automatically detects the failure and recovers. Fault-tolerance for MPI is not natively
supported. While it is possible via extensions to the library, these extensions induce
additional programmer overhead (5; 9).

Unlike many traditional Big Data applications, we chose to distribute our data/tasks
with Spark rather than Hadoop for three reasons.
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Figure 5: A high-level depiction of our proposed paradigm, which uses Spark for data/task
distribution in conjunction with a local computational framework (X) on each node.

• First, Spark is a memory-based MapReduce framework. Unlike Hadoop, it is not
required to write each intermediate state out to disk.

• Second, in addition to map and reduce, Spark supports a wide-range of high-level
functions such as join, union, intersection, and cartesian. This greatly
reduces the programming overhead for many common distributed operations.

• Third, Spark supports applications written in Python. Python has excellent support
for calling out to C/C++ libraries. This greatly simplifies the use of BLAS and GPU
libraries for our local task computations.

The following subsections elaborate on the specific implementation details of our
applications.

3.1 Fast Subtree Kernel - Task Distribution on a Compute-Bound Application

As mentioned in Subsection 2.1, the Fast Subtree Kernel (FSK) has two major components:
the pairwise comparison of all graphs in a given dataset (coarse-grained parallelism) and the
comparison of all feature vectors within a given pair of graphs (fine-grained parallelism).
As stated in Section 3, Spark is our chosen solution for automatic task distribution. To
this end, we utilize Spark to distribute the pairwise graph comparison tasks. Once these
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conf = SparkConf()
sc = SparkContext(conf=conf)
comp_rdd = sc .parallelize(graph_comparisons , numSlices=1024)
broadcast_graph_list = sc .broadcast(encoded_graph_list )
comp_sim = comp_rdd.map(MapGraphSimilarity)
collected_sim = comp_sim.collect()

(a) FSK Spark code

conf = SparkConf()
sc = SparkContext(conf=conf)
G_spark = sc .parallelize(G, numSlices=args . num_partitions)
global_angles = G_spark.mapPartitions(count_triangles)
G_zero = G_spark.flatMap(MakeUpperEdgeListSpark)
global_tris = global_angles .union(G_zero)
global_tris = global_tris .combineByKey(Combiner, MergeValue, MergeCombiners)
global_tris = global_tris .flatMap(EmitTrianglesSpark)
global_count = global_tris .count()

(b) Triangle Enumeration Spark code

conf = SparkConf()
sc = SparkContext(conf=conf)
subgraphs_rdd = sc .parallelize(subgraphs , numSlices=1024)
broadcast_G = sc .broadcast(G)
subgraph_frequencies = comp_rdd.map(MapSubGraphCompare.countByKey())

(c) Graph Assaying Spark Code

Figure 6: Spark code snippets from our applications. Function calls highlighted in orange
are Spark function calls. Functions highlighted in blue are user-written functions that are
accelerated on the GPU.

tasks have been delegated to nodes, we can run FSK locally on each node and compare
the encoded subtrees of each pair of graphs delegated to that particular node. Note that
graphs are not loaded from the disk into memory until they are ready to be analyzed. In
most real applications, the dataset would be too large for all the graphs to fit in memory.
For example, applications in the fields of climate change (sea level rise, carbon footprint),
cancer illness, national nuclear security (real–time evaluation of urban nuclear detonation),
Nuclear Physics (dark matter), life sciences (biofuels), medical modeling, and design of
future drugs for rapidly changing and evolving viruses all deal with massive amounts of
data. As the data sets examined by these types of applications grow exponentially, computers
today do not offer enough resources to gather, calculate, analyze, compute and process them
by themselves. Instead, it becomes necessary to utilize multiple machines simultaneously
in order to process such massive amounts of data.
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Much like these applications, FSK faces the challenge of performing operations across
massive datasets. More specifically, FSK has to perform a pairwise similarity calculation
of every pair of graphs in the dataset it is given. Because of this, we simply create a list
of comparison tasks to be performed, and we use Spark to distribute these tasks across our
nodes. When a node receives a set of tasks, it loads the appropriate graphs for each task
from disk, executes FSK on the given pair, and stores the output in a list that is collected by
the master Spark process and used to construct the resulting similarity matrix.

It is worth noting that not all tasks in this system are computationally comparable.
Executing a set of pairwise comparison tasks involving many large graphs is much more
expensive than executing a set of tasks involving predominantly small graphs. Fortunately,
Spark provides functionality to overcome this obstacle as well. The parallelize
function used to split our list of comparison tasks, as shown in Figure 6, also has an optional
second argument which allows the programmer to specify how many partitions to split the
data into. In this case, we are simply partitioning a list of comparison tasks that need to
be performed. By increasing the number of partitions, we decrease the number of tasks
sent to a node in a given partition. Spark distributes these partitions out to workers one at
a time, and it sends additional tasks out to workers as they complete the tasks they have
already been assigned. In the case of FSK, this creates a load-balancing dynamic. Since the
graphs that workers have to examine vary in size, some comparison tasks will take longer
to execute than others. New partitions of the task list are sent to workers as they complete
their assigned tasks, so nodes with less demanding tasks are not left idling while other nodes
with more computationally intensive tasks are finishing up their comparisons. In the case of
a cluster with multi-generational hardware, this load-balancing functionality allows older
hardware to contribute to the computation without creating a bottleneck. Overall, this helps
to ensure that we get the most out of every node on our HPC system.

3.1.1 Interoperating Python and CUDA

Once the task list has been partitioned and workers have received their tasks, FSK can
be run one of two ways: using the CPU or using an accelerator. Another major benefit of
Spark is that we can specify how many executors to spawn on each node. This enables our
paradigm to provide parallel execution of tasks on the CPU with no programmer overhead.
This is accomplished by spawning one Spark executor per core. However, we also wanted
to explore whether the GPU is better suited to handle these pairwise comparisons. Since
our Spark code is written using the python interface of Spark (i.e. PySpark) and our GPU
code is written in CUDA, we needed a way to launch CUDA kernels from Python source
code. PyCUDA provides exactly the interface needed to do this, and it does it in a way
that is very intuitive, while requiring very minimal effort on the programmer’s end (18).
When PyCUDA is enabled, our paradigm spawns one Spark executor per GPU. With the
combination of Spark and PyCUDA, our paradigm is able to achieve a massive amount of
parallelism in both the coarse-grained and fine-grained components of FSK, respectively.

3.2 Triangle Enumeration - Data Distribution on a Data-Bound Application

As mentioned in Subsection 2.2, the hybrid triangle enumeration consists of three steps.
First, we use Spark to partition the graph and distribute the subgraphs across the cluster.
Second, we use either CPU or GPU BLAS libraries, SciPy (16) and ScikitCUDA (11)
respectively, to calculate A3 in order to count the number of triangles in each subgraph.
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Third and finally, we again use Spark to count the number of triangles that span subgraphs
and sum up the triangles found in each subgraph.

Specifically, the partitioning and distribution of the subgraphs in done automatically
using Spark’s parallelize function. This function provides an option for manually
specifying the number of partitions, a parameter we explore further in Subsection 4.3. The
local task computations (i.e., calculating A3) are performed using either SciPy, a python
module that supports sparse matrix multiplication on the CPU, or ScikitCUDA, a python
module that wraps the CUBLAS GPU library. For both of these BLAS libraries, we calculate
A3 by performing two consecutive symmetric matrix multiplications (SYMM). One SYMM
is used to perform A ∗A = A2 and another SYMM is used to perform A2 ∗A = A3.
Determining where to perform the local computation, either on the CPU or GPU, is another
parameter that is explored in Subsection 4.3. As shown in Figure 6, the counting of the
subgraph-spanning triangles is done using a combination of Spark’s flatMap, union,
and count methods.

3.2.1 Optimizing the Graph Partitioning

It is also important to note that while we consider changing the number of partitions that
Spark creates when we call parallelize, we do not attempt to control the content
of the partitions for two reasons. First, the random ER graphs lends themselves well
to uniform, random partitioning. Specifically, when partitioning an ER graph, the only
attribute that affects the characteristics of the subgraphs is the size of the subgraphs. Spark’s
default partitioning behavior is to make each partition the same size, which results in the
subgraphs all being approximately the same. This behavior of ER graphs leaves little room
for optimization of the content’s partitions since the cost of optimizing the partitioning
would outweigh the benefits. Second, a real-world use-case of Triangle Enumeration will
most likely use it as a subroutine, meaning that the data will already be partitioned based
on the requirements of the higher-level use-case. Thus, Triangle Enumeration should avoid
reshuffling the already distributed graph. For these two reasons, we avoid the use of
expensive partitioning algorithms (which we expect will not improve performance) and
allow Spark to partition the graph into equally-sized subgraphs.

3.3 Graph Assaying - Task and Data Distribution on a Compute-Bound
Application

Graph assaying is the process of characterizing the frequency of each non-isomorphic
subgraph of a graph G of a specified size k, as mentioned in Section 2.3. This is called a
k-assay. We represent a graph as anNxN adjacency matrix, whereN is equal to the number
of nodes in the graph. The number of subgraphs can be calculated by computing

(
N
k

)
.

Since, each subgraph characterization is not dependent on any external information, these
characterizations can be done in parallel. Once each subgraph is characterized, a reduction
is performed in order to count the frequency of each type of subgraph found in G.

We can use Spark’s map and countByKey functions to perform both of these
operations. We use map to send subgraph characterization tasks to each node in our cluster.
We then call countByKey on the results to calculate the frequency of each characterized
subgraph, and we report these results. As discussed in Section 3.1, our implementation
of graph assaying benefits from Spark’s lazy evaluation of task assignments. While the
computational requirements of each subgraph characterization do not vary greatly, we could
experience a difference in runtime on non-homogeneous clusters. If a node with older/slower
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hardware is taking a long time to complete its given task, Spark does not have to wait in
order to issue new tasks to the faster nodes in the cluster. This creates a load-balancing type
of behavior that can help us harness every ounce of performance our cluster has to offer.
In addition, Spark’s countByKey function provides a well-optimized reduction of these
characterizations. Each node will reduce its local results, and then Spark will merge the
results from each node in a final global reduction stage.

3.3.1 Challenges when using the GPU

Since our graph assaying algorithm only has one layer of exploitable parallelism, we had
to adjust our strategy when adapting the code to run on the GPU. Instead of using Spark
to distribute each subgraph comparison as a task, we partitioned ranges of subgraphs to
be sent as tasks to each node using Spark. For example, if we have a total of 100 subsets
in a graph and 4 nodes in a cluster, we have Spark send a chunk of 25 subgraphs to each
node. Once the tasks have been assigned to each node, we perform all subgraph analyes on
the GPU using CUDA. Since each subgraph analysis is independent of all other subgraph
analyses, this approach is well-suited for the GPU. It is worth noting that if the number of
subgraphs being examined is small, the computation will not saturate the GPU, and thus,
it will not perform well. However, the GPU will greatly outperform the CPU in almost
all other cases. The reduction of these results is performed in a similar manner, but since
we are using Spark to distribute tasks instead of mapping across all subgraph comparisons
individually, we must perform the local and global reductions ourselves, instead of simply
calling countByKey like we do in the CPU implementation.

4 Evaluation & Results

This section presents our results for all three applications (FSK, triangle enumeration, and
graph assaying) using our portable, high-level paradigm described in Section 3.

4.1 Experimental Infrastructure and Software Used

Machine # CPU GPU
1 Intel Xeon E5520 (2x, 4 cores each) NVIDIA K20 (5GB GDDR5)
2 Intel Xeon E5-2603 (2x, 4 cores each) NVIDIA GTX TITAN X (12GB GDDR5)
3 AMD Opteron 6320 (2x, 8 cores each) NVIDIA K40 (12GB GDDR5)

Table 1 Specifications of the machines in our local hybrid cluster used for testing. Note that the
cluster consists of CPUs from different vendors, as well as NVIDIA GPUs spanning
multiple architectural generations, with differing amounts of memory.

All three applications were run on both a local cluster, with non-uniform hardware,
and NVIDIA’s PSG cluster. Our local cluster consists of three nodes, with a total of 32
CPU cores, connected over a commodity gigabit ethernet network. The specifications of
each node are detailed in Table 1. The nodes in our cluster were specifically chosen in
order to demonstrate the portability and generality of our paradigm. The cluster’s hardware
spans both multiple vendors and also multiple architectural generations. We also ran our
applications on NVIDIA’s Professional Solutions Group (PSG) cluster, which granted us
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Machine # CPU GPU
1-4 Intel Xeon E5-2698 v3 (2x, 16 cores each) NVIDIA P100 (16GB HBM2)

Table 2 Specifications of the nodes in NVIDIA’s PSG cluster used for testing. Note that the cluster
consists of uniform hardware in each node, as well as NVIDIA’s state-of-the-art P100
GPUs, which utilize next-generation HBM2 memory technology.

access to nodes equipped with NVIDIA’s P100 GPU, which includes the latest memory
technology, High-Bandwidth Memory (HBM2), instead of the GDDR5 memory technology
used in the GPUs in our local cluster (1). HBM is a new memory technology that features 3D
die-stacked, on-chip memory. This offers 3.5x bandwidth per watt compared to GDDR5.
The fact that we used the latest GPU architecture equipped with next-generation memory
technology in conjunction with older hardware proves that our paradigm is both forward
and backward compatible.

Non-uniform hardware was not the only challenge we faced in this work. The machines
in our local cluster also featured non-uniform hardware. For example, two of the machines
are running Ubuntu 14.04, while the third is running CentOS 6.6. This presented a challenge
because CentOS 6.6 relies on Python 2.6. Since our other machines have Python 2.7 as
their default version, we had to install 2.7 on the CentOS machine in order to be able to run
Spark across all three. We overcame this obstacle by creating a Python virtual environment
(virtualenv) on each of our machines with the necessary versions of Python and all of our
required libraries (PyCUDA, Scikit-CUDA, SciPy, etc). In addition to creating uniform
Python virtual environments, we made sure to upgrade all three machines to the latest
version of CUDA (8.0) for optimal compatibility. Once this was complete, we were able to
successfully run our experiments across all three machines, despite the varying operating
systems.

4.2 Fast Subtree Kernel

The runtime of FSK is examined on both clusters in two stages. First, we examine the
scalability and portability of running FSK across multiple nodes in a distributed system.
Second, we run FSK on the GPU in order to examine its runtime on different components
of heterogeneous systems.

4.2.1 Multi-Node Scalability

As shown in Figure 7a, we achieve good scalability for both of the larger dataset sizes
examined. The small amount of overhead in distributing tasks across nodes is noticeable in
the case of a small dataset because the computation is so trivial. As a result, the achieved
speed up is minimal. A real-world application examines thousands (if not millions) of
graphs, leading us to conclude that these results are very promising. Additional nodes can
be added for larger datasets in order to process very large datasets in short amounts of
time. It is worth noting that our initial experiments on multiple nodes were sub-optimal
due to Spark using a small number of partitions. As mentioned in Section 3, increasing the
number of partitions used to distribute tasks creates an automatic load-balancing system
between Spark’s executor processes. Since we achieved favorable multi-node scalability,
we maintain that this technique can be used to efficiently distribute tasks on any HPC or
cloud-based system.
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Figure 7b’s results look slightly less scalable compared to Figure 7a at first glance. Notice
that the medium-sized dataset boasts a 3x speedup, while the largest dataset shows less
than a 2x speedup. While running FSK on the largest dataset on the cluster, we experienced
intermittent failures with one of the nodes in the system. This node was later taken down for
maintenance for an extended period, and thus, it did not affect any of our other experiments.
We decided to include these results as they are as a testiment to Spark’s native fault tolerance.
This job completed without any checkpointing or restarting. Despite the overhead caused
by these failures, we still achieved almost a 2x speedup.
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Figure 7: Single-node and multi-node runtime results for FSK run on each cluster. Note
that even for a very large dataset, we still achieve a significant speedup.

4.2.2 CPU vs. GPU

The machines used for these tests are the machines described in Tables 1 and 2. In addition to
achieving the best runtimes using GPUs, as shown in Figure 8a, we demonstrate the forward
and backward compatibility of our paradigm. We were able to successfully run our code
across three nodes, each equipped with a different generation of NVIDIA GPU, as shown in
Table 1. This demonstrates the portability of our paradigm. As shown in Figure 8b we also
successfully ran FSK across nodes in NVIDIA’s PSG cluster, which utilize next-generation
P100 GPUs that feature state-of-the-art HBM2 memory technology. This supports our claim
that our paradigm is portable, since the memory technology used in these GPUs differs
from the traditional GDDR5 memory found in all three GPUs on our local cluster. This
also allows us to show that our paradigm is forward compatible with next-generation GPU
hardware. It is worth noting that each of these nodes were equipped with two extremely
powerful state-of-the-art CPUs, totaling 128 physical CPU cores across four nodes. We
only utilized one P100 GPU on each of the nodes, and the runtimes were comparable. Since
there were a total of 8 CPUs and only 4 GPUs, we consider the comparable runtime to be
a success and a testament to the computational ability of the P100 GPU.

4.3 Triangle Enumeration

Previous work has shown that triangle enumeration is a data-bound application that is
sensitive to the data it is operating on (15). Dense graphs, like the community subgraphs
found in social networks, are well suited for the GPU while sparse graphs, like computer
network graphs, are well suited for the CPU. Therefore, the performance of triangle
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Figure 8: GPU runtime results for FSK running on both clusters. Runtimes for multi-node
CPU and multi-node GPU are shown. Note that GPU runtimes include data transfer to and
from the accelerator.

enumeration is evaluated and optimized in two stages in order to take advantage of this
prior knowledge. First, we analyze the impact of changing the number of partitions on the
performance of triangle enumeration in an attempt to minimize the overhead incurred by
moving data. Second, we analyze the scenarios where it is optimal to execute the local
computation on the GPU vs execute the local computation on the CPU.

4.3.1 Optimizing the Data Movement

Figures 9 and 10 show the runtime of triangle enumeration when running with 12, 36, 72, and
144 partitions (which are all multiples of the number of nodes on both clusters) for graphs
of a fixed size (i.e., 5000 nodes) with two different edge densities (i.e., .001 and .05). For a
graph density of .001, as shown in Figure 9, the fewer the number of partitions, the faster the
runtime. In this case of a sparse graph, the local computation will only find triangles if the
partitions are large enough. If the partitions are too small, the local computations will find
no triangles, and the entirety of the counting will be performed by the Spark computation at
the end of the application. This will result in a high amount of inter-node data movement.
For a graph density of .05, as shown in Figure 10, the greater the number of partitions,
the faster the runtime. In this case of a dense graph, each individual partition contains a
significant number of triangles and a 4 to 1 mapping of tasks to GPUs means that multiple
kernels can be queued to run on the same GPU. This allows data transfers to and from the
GPU to overlap with computation on the GPU which reduces the intra-node data movement
costs.

4.3.2 Optimizing the Local Computation

Figure 11 shows the runtime of the local computation of triangle enumeration on the CPU
and on the P100 GPU of a single PSG cluster node w.r.t the properties of the graph (i.e., graph
size and density). Figure 11a shows the runtime of the local computation when running
on the CPU using the sparse matrix multiplication methods provided by SciPy. In this
figure, runtimes above 6 seconds are clipped to 6 seconds. As expected with sparse matrix
multiplication, this method only performs well when the graph is sparse (i.e., density≤ .005)
or small (i.e., size ≤ 1000). Figure 11b shows the runtime of the local computation when
running on the GPU using dense matrix multiplication provided by ScikitCUDA, which
ultimately uses NVIDIA’s CUBLAS library. As expected with dense matrix multiplication,
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Figure 9: Performance of Triangle Enumeration running on both clusters with a variable
number of partitions for ER graphs with 5000 nodes (N) and an edge density (P) of .001.
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Figure 10: Performance of Triangle Enumeration running on both clusters with a variable
number of partitions for ER graphs with 5000 nodes (N) and an edge density (P) of .05.

the performance of this method is not affected by the density of the graph and is only affected
by the graph size. Also expected is that the runtime increases polynomially w.r.t the graph
size, since the size of the adjacency matrix is N2 where N is the size of the graph. It is
important to note that for very sparse (density ≤ .003) or very small (size ≤ 1000) graphs,
the CPU implementation actually performs better than the GPU implementation. For both
small and sparse graphs, it is not worth the cost of transferring the adjacency matrix to the
GPU.
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Figure 11: Runtime for computing A3 on the CPU with SciPy and on the GPU with
ScikitCUDA for graphs of varying size and density

4.4 Graph Assaying

The runtime of our graph assaying application is examined in three stages. Much like we
did with FSK in Section 4.2, we will examine the scalability of this application, as well as
comparing the runtime of the GPU with that of the CPU. In addition to these metrics, our
third metric will involve changing the number of Spark partitions in conjunction with the
use of the GPU to see how it affects performance.

4.4.1 Multi-Node Scalability

Figure 12a demonstrates a significant speedup for large dataset sizes when running on
multiple nodes using Spark, since the computational cost greatly outweighs the overhead of
distributing tasks and data across nodes. These results are very consistent with the results
from our other compute-bound application, FSK, as discussed in Section 4.2, leading us to
conclude that these results are promising. Using a very similar technique, we have ported
two compute-bound applications to our paradigm using Spark and CUDA, and we achieved
a favorable speedup in both cases. Again, Figure 12b looks a little less impressive at first
glance due to the overhead of distributing tasks with their associated data across nodes using
Spark. Despite this overhead, our results prove that this technique scales well to very large,
distributed systems.

4.4.2 CPU vs. GPU

Figures 13a and 13b demonstrate the scalability of our system utilizing the accelerators
present on each of the nodes in our HPC systems. We see that our graph assaying application
performs even more efficiently using the GPU than our other compute-bound application,
FSK. The GPU outperforms the CPU when using large graphs on both our hybrid cluster
consisting of a range of NVIDIA GPUs, as well as NVIDIA’s PSG cluster consisting of
nodes equipped with their next-generation P100 GPUs. It is worth noting that the graph being
examined only needs to be copied to each GPU once. Each subset can then be examined
using the GPU, and the results are copied back to the host Spark worker, where they are
reduced globally by Spark. Therefore, for a large number of examined subsets, the GPU
greatly outperforms the multi-core CPU.
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Figure 12: Single-node and multi-node runtime results for Graph Assaying run on each
cluster. Note that even for a very large dataset, we still achieve a significant speedup.
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Figure 13: GPU runtime results for Graph Assaying running on both clusters. Runtimes
for multi-node CPU and multi-node GPU are shown. Note that GPU runtimes include data
transfer to and from the accelerator.

4.4.3 Optimizing GPU Performance

We decided to perform an additional experiment for our graph assaying application involving
performance tuning of our GPU implementation by varying the number of Spark partitions
used. As shown in Figure 14, the number of Spark partitions used can greatly affect the
performance of an application depending on how it is structured by the programmer. In
our case, the graph assaying algorithm can operate on many subsets, while only copying
the graph onto the device once. Therefore, splitting up the computational tasks into more
partitions reduces the load on the GPU, leading to performance degradation, since the GPU
will become less and less saturated.

In order to achieve the best results on our graph assaying application, the number of
partitions used needed to be minimized in order to saturate the GPU, while still maintaining
enough Spark partitions to guarantee that any given task’s size does not result in GPU
memory being overflowed by the results of the computation. Once we achieved this balance,
we gained superior performance utilizing our GPUs in our hybrid cluster, as well as the
P100 GPUs on NVIDIA’s PSG cluster. We expect that this type of tuning will translate well
to any GPU application that operates on a large amount of data.
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Figure 14: GPU runtime results for Graph Assaying running on both clusters with varying
numbers of Spark partitions. Note increasing the number of partitions results in less
saturation of the GPU.

4.5 Reproducibility

For anyone interested in reproducing our work, our paradigm and the two applications
are open-source and can be found at https://github.com/rsearles35/
WACCPD-2016. Instructions for setting up a Spark cluster, running the code, and ultimately
reproducing our results can also be found in the GitHub repository.

5 Related Work

Many applications take advantage of heterogeneous hardware using an approach known as
MPI+X that leverages MPI for communication and an accelerator language (e.g., CUDA
and OpenCL) or directive-based language (e.g., OpenMP and OpenACC) for computation.
Codes that utilize MPI+OpenACC include: the electromagnetics code NekCEM (25), the
Community Atmosphere Model - Spectral Element (CAM-SE) (22), and the combustion
code S3D (20). Codes that utilize MPI+OpenMP include computational fluid dynamics
MFIX (10), Second-order Mller-Plesset perturbation theory (MP2) (17), and Molecular
Dynamics (19).

Several prototype MapReduce frameworks have been specifically designed to take
advantage of multi-core CPUs and GPUs: Mars (12), MapCG (13), and MATE-CG (14).
Unfortunately, they all have limitations which reduce their portability and incur a much
higher programming overhead than our solution. All three prototypes are restricted to a
single node or GPU, which greatly limits the size of problems that they can handle. In
addition, all three prototypes use CUDA as their backend GPU language, which limits the
supported hardware to only NVIDIA GPUs. Mars (12) stores all the intermediate results in
GPU memory, which requires the user to specify beforehand how much data will be emitted
during theMap phase. This step requires additional effort from the programmer and is highly
error-prone. MapCG uses a C-like language for its Map and Reduce functions which is
then converted to OpenMP and CUDA code for parallelism. This restricts the capabilities of
the application to their C-like language, which doesn’t support many of the advanced feature
of CUDA. MATE-CG does not support a Map operation and limits the user to using only
Reduce and Combine operations, which makes porting existing MapReduce applications
much harder.

https://github.com/rsearles35/WACCPD-2016
https://github.com/rsearles35/WACCPD-2016
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Shirahata et al. (27) present a method for scheduling Map tasks on either the CPU
or GPU depending on a dynamic profile of the task. Chen et al. (6) create a MapReduce
framework that is optimized specifically for AMD’s Fusion APUs. With the Fusion APU,
the GPU shares the same memory space as the CPU, which enables their framework to do
both pipelining and scheduling of MapReduce tasks across the CPU and GPU.

6 Conclusion & Future Work

This paper presents a portable, high-level paradigm for combining the MapReduce paradigm
with accelerators in order to run on heterogeneous HPC and cloud-based systems. We
demonstrate scalability using our FSK and graph assaying applications, and we demonstrate
effective techniques for optimizing a data-bound Big Data application using triangle
enumeration. We also demonstrate the portability of this solution by collecting results on
cluster composed of multiple generations of differing hardware, including multi-core Intel
CPUs and NVIDIA GPUs, as well as NVIDIA’s PSG cluster containing nodes fitted with
their next-generation P100 GPUs.

In the future, we plan to further optimize each applications’ local performance by
building a runtime scheduler that would determine whether to run a given task on the CPU
or GPU based on that task’s characteristics. We will also further examine the scalability of
our solution by running all three applications with much larger datasets across many more
nodes.
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