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ABSTRACT

The QuantLib library is a popular library used for many
areas of computational finance. In this work, the parallel
processing power of the GPU is used to accelerate QuantLib
financial applications. Black-Scholes, Monte-Carlo, Bonds,
and Repo code paths in QuantLib are accelerated using
hand-written CUDA and OpenCL codes specifically targeted
for the GPU. Additionally, HMPP and OpenACC versions of
the applications were created to drive the automatic genera-
tion of GPU code from sequential code. The results demon-
strate a significant speedup for each code using each paral-
lelization method. We were also able to increase the speedup
of HMPP-generated code with auto-tuning.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming— Parallel Programming; D.3.2 [Programming Lan-
guages|: Language Classifications— Concurrent, distributed,
and parallel languages; J.1 [Administrative Data Pro-
cessing]: Financial

General Terms

Performance
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Computational Finance, GPGPU, GPU, HMPP, OpenACC,
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1. QUANTLIB

QuantLib [3] is a open-source library written in high-level
C++ used for quantitative finance. The application in-
cludes codes to evaluate a variety of option types, bonds,
and swaps. It also contains models for yield curves, interest
rates, and volatility as well as a number of methods including
analytic formulae, tree methods, finite difference methods,
and monte-carlo. The library is well-developed and contains
many parameters and options within each module.
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This work focuses on applying GPU acceleration on par-
ticular paths of Black-Scholes, Monte-Carlo, Bonds, and
Repo financial applications in the QuantLib library.

2. GPU ACCELERATION OF QUANTLIB

In recent years, the graphics processing unit (GPU) has
evolved from specialized hardware to a powerful parallel pro-
cessor that can be used as a co-processor to the CPU to
accelerate particular applications [17]. The development of
CUDA and OpenCL [14] environments allows programmers
to compile and run parallel kernels targeted for GPUs with-
out needing to map the kernels to a graphics environment
such as OpenGL. Furthermore, the development of directive-
based GPU programming allows the programmer to target
the GPU by simply placing pragmas in sequential code with
the compiler generating the code to drive parallelism. This
work looks at using CUDA and OpenCL as well as Ope-
nACC and HMPP directives to accelerate QuantLib code
paths.

2.1 CUDA/OpenCL Environments

The QuantLib library is written in object-oriented C++
that contains many layers of abstraction and supports a large
range of parameters for computation. With a goal of GPU
acceleration of particular code paths in the library, the tar-
get, applications are run line-by-line using a debugger to de-
termine the areas of code that must be implemented in CU-
DA /OpenCL. Code flattening, or the removal of high-level
code abstraction, is applied to the high-level C++4 code. The
original code is translated into a set of lower-level structures
and functions implemented outside of the class environment.
This code modification allows the program to run in the
more limited GPU environment.

In order to fairly compare the GPU implementations to
a sequential CPU run, the same implementation without
the abstraction in QuantLib is written for the CPU. The
modified code is validated by comparing the outputs of the
modified code to the output values of the original high-level
code when using the same input values and parameters.

2.2 Directive-Based GPU Acceleration

The HMPP Workbench 3.2.1 compiler from CAPS En-
treprise [10] is used to compile and run the directive-based
parallel versions of the financial applications. Both the Ope-
nACC and HMPP directive-based languages are used to
drive GPU code generation. The HMPP workflow from an-
notated source code to binary executable is shown in Figure
la. OpenACC is an open standard that was developed by
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NVIDIA, CAPS, PGI, and Cray. OpenACC has a similar
syntax to OpenMP to drive parallelism on the GPU [22].
An illustration of OpenACC with a sequential region and a
parallelized loop using the ‘region’ pragma is shown in Fig-
ure 1b. Meanwhile, HMPP was developed by CAPS and
provides advanced options including optimizations such as
loop unrolling and permutation.

The stripped-down sequential CPU implementation de-
scribed in Section 2.1 is used as a basis to generate the
directive-based parallel implementations, as HMPP Work-
bench does not currently support high-level C+4. Both
OpenCL and CUDA can be used as target architectures for
OpenACC and HMPP.

3. FINANCIAL APPLICATIONS

The experiments described in this section use the finan-
cial applications described in Table 1 and are run on an
NVIDIA Fermi-based C2050 compute GPU card composed
of 448 cores [19] and a Kepler-based K20 composed of 2,496
cores [21]. The CPU used in all collective experiments is
a set of two Quad-Core Intel Xeon X5530 CPUs clocked at
2.40GHz. The results for each algorithm show the speedup
using hand-written CUDA and OpenCL as well as Ope-
nACC and HMPP targeting CUDA and OpenCL, with a
multi-core CPU implementation using OpenMP is included
for additional reference. The hand-written GPU codes are
relatively naive and straightforward parallel implementa-
tions that do not take advantage of more advanced GPU
features such as shared memory. Complete source code for
each QuantLib application described in this work is available
at http://sourceforge.net/projects/quantlib-gpu/.

Some OpenMP codes show speedups over the sequential
CPU implementation of more than 8 times when run on
applications using double-precision floating-point numbers.
This speedup is possible due to the compile flags used for
compilation. Specifically, GCC 4.7.0 is used to compile the
OpenMP code with the flags set to "-03 -march=native
—-fopenmp". The sequential CPU codes are compiled with
GCC 4.7.0 and the flags set to "-02". Analyzing the OpenMP
code shows generated vector instructions with the more ag-
gressive compiler flag options.

Application| Description

Black- Option pricing
Scholes Merton Process

using Black-Scholes-

Monte-Carlo | Pricing of a single option using QMB
(Sobol) Monte-Carlo method

Bonds Bond pricing using a fixed-rate bond with

a flat forward curve

Repo Repurchase agreement pricing of securi-
ties which are sold and bought back later

Table 1: Description of each financial application

3.1 Black-Scholes

The first QuantLib application that is accelerated using
the GPU is the Black-Scholes-Merton process with the An-
alytic European Option engine. This application is from
the European Option test in the QuantLib test suite. The
GPU implementation is structured such that each option
pricing is run in parallel in a separate thread on the GPU.
Single-precision 32-bit floating-point numbers are used for
the Black-Scholes implementation.

Figure 2 shows the speedup graph when using multi-core
CPU and GPU acceleration on the C2050 using the single-
core CPU time as the baseline. Figure 2a shows the speedup
using a CUDA target and Figure 2b shows the speedup using
an OpenCL target on the NVIDIA C2050. The speedup for
all GPU implementations is over 100 times over the sequen-
tial CPU implementation and over 10 times over the multi-
core OpenMP implementation when running over 20,000
options. The directive-based acceleration implementations
when targeting CUDA performs around 50% slower on aver-
age compared to the hand-written CUDA implementation.
When targeting OpenCL, HMPP and OpenACC perform
about the same, with the hand-written OpenCL implemen-
tation being nearly twice as fast. The manual OpenCL
implementation is over 40% faster than the hand-written
CUDA implementation. This difference in speedup could be
because of differences in how the code in each environment
is compiled.

Figure 5 shows the speedup graph when using multi-core
CPU and GPU acceleration on the K20 using the single-core



CPU time as the baseline. Figure 5a shows the speedup us-
ing a CUDA target and Figure 5b shows the speedup using
an OpenCL target on the K20. The speedup for all GPU im-
plementations on the K20 is over 300 times over the sequen-
tial implementation and over 35 times over the OpenMP im-
plementation when running more than 10,000 options, with
the hand-written CUDA and OpenCL implementations per-
forming a little better than the directive-based implementa-
tions.

3.2 Monte-Carlo

GPU acceleration is next used to accelerate Monte-Carlo
for financial computation. The code path from the Equity-
Option example in QuantLib, which prices a single option
using the QMC (Sobol) Monte-Carlo method, is modified to
run in parallel on the GPU. The experiments are run us-
ing single-precision 32-bit floating-point numbers, 250 time-
steps, and a varying number of samples. Each sample is
generated and run in parallel on the GPU.

To generate random numbers on the GPU, the cuRAND
library [1] is used in the hand-written CUDA implemen-
tation, while the Mersenne Twister algorithm code from
Nishimura and Matsumoto [16] is adapted to generate ran-
dom numbers in the directive-based and OpenCL imple-
mentations. In addition, the Thrust library [4] is used in
the hand-written CUDA implementation to sum the output
data on the GPU and retrieve the average output of all sam-
ples. This summation is performed on the CPU in the other
implementations.

Figures 3a and 3b show the speedup graph when using
multi-core CPU and GPU acceleration on this application
when targeting the C2050 with CUDA and OpenCL code
targets, respectively; the single-core CPU time is used as
the baseline. This speedup corresponds to the computation
of the output value for each sample and does not include
the summation and averaging of the outputs. All GPU re-
sults using over 5,000 samples show a speedup of at least 75
times over the single-core CPU implementation and at least
10 times over the multi-core CPU implementation. HMPP
and OpenACC implementations give a speedup of around 80
times compared to sequential CPU when targeting CUDA
and a speedup of around 95 times when targeting OpenCL.
Directive-based acceleration targeting OpenCL performed
better than manual OpenCL for problem sizes greater than
5,000 by 17% on average. Hand-written CUDA outper-
formed HMPP and OpenACC in most experimental runs,
often by a large factor. A possible explanation is the use of
the cuRAND library for random number generation in the
hand-written CUDA implementation.

Figures 6a and 6b show the speedup graph when using
multi-core CPU and GPU acceleration for Monte-Carlo on
the K20 with CUDA and OpenCL code targets, respectively,
with the single-core CPU time used as the baseline. All
K20-accelerated results using at least 2,000 samples show a
speedup of at least 145 times over the single-core CPU im-
plementation and at least 18 times over the multi-core CPU
implementation. Notably, there is a speedup of over 1,000
times compared to the sequential implementation when run-
ning the hand-written CUDA implementation with 50,000
samples.

The only time when the hand-written CUDA implementa-
tion does not perform as well as the OpenACC and HMPP
implementations is when the number of samples is set to

500,000; there is a sudden drop-off in the performance of the
implementation at this problem size. The CUDA profiler [2]
is used to analyze kernel execution details, and the output
indicates that cache misses during the random number gen-
eration component of the application caused the decrease in
speedup with a greater number of samples.

An extension of this implementation allows the parallel
pricing of multiple options. This is particularly useful when
there are not enough samples in each option to fully take
advantage of the massive parallelism available on the GPU.

3.3 Bonds

Bonds is the next QuantLib application for GPU accel-
eration. A bond is a form of loan between an issuer and
a holder. The bond issuer is obligated to pay the holder
interest (called the coupon) at particular intervals and/or
pay back the principle at the maturity date in the future. A
bond’s yield curve refers to the relation between the bond
yield and maturity date. The QuantLib library contains a
number of bond-related computations including zero-coupon,
fixed-rate, and floating-rate bonds as well as flat, depo-bond,
and depo-swap curves. A greater precision is needed for
computations involving small decimal values in the applica-
tion. The necessity for greater precision requires the use of
double-precision 64-bit floating-point numbers.

The following experiments show the acceleration of a fixed-
rate bond with a flat forward curve using the GPU. The
issue date, maturity date, and coupon rate for the bond
are varied across experiments, therefore allowing a num-
ber of bond configurations to be computed simultaneously.
This implementation could also be used to compute the ac-
crued interest at multiple dates. The results using manual
CUDA as well as HMPP and OpenACC using a CUDA tar-
get on the C2050 and K20 GPU are shown in Figures 4a
and Ta, respectively. These results show a speedup of over
40 times compared to the sequential CPU implementation
on the C2050 and a speedup of over 80 times on the K20, as
well as a speedup over the OpenMP implementation. This
speedup is significant but less than the speedups for Black-
Scholes and Monte-Carlo. Profiling this application using
the NVIDIA Visual Profiler shows that the computation
kernel has a lot of divergent branches during computation
and a large number of loads from and stores to slower local
memory. These characteristics can significantly increase the
run-time of a GPU kernel and are likely explanations for the
lesser speedup.

Unfortunately, the directive-based codes did not run as ex-
pected using an OpenCL target, returning a ‘build program
failure’ error when using HMPP Workbench 3.2.1 while the
same input code with a CUDA target worked correctly.

3.4 Repo

The last financial application for GPU acceleration is the
Repo example in the QuantLib library. A repo is a repur-
chase agreement, specifically the sale of securities with an
agreement that the seller will later buy the securities back
at a greater price. The difference between the repurchase
price and the sale price represents interest and is called the
repo rate. The experiments look at the results of varying the
repo purchase date, repo sale date, the repo rate, underlying
fixed-rate bond rate, and underlying fixed-rate bond date.
These variables affect whether or not the buyer and/or seller
gains or loses money as a result of the agreement. Similarly
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Figure 3: Graphs showing Monte-Carlo Speedup on NVIDIA C2050 with Intel Xeon X5530 (8 core OpenMP) for comparison.
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Figure 5: Graphs showing Black-Scholes Speedup on NVIDIA K20 with Intel Xeon X5530 (8 core OpenMP) for comparison.
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Figure 6: Graphs showing Monte-Carlo Speedup on NVIDIA K20 with Intel Xeon X5530 (8 core OpenMP) for comparison.
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Figure 7: Graphs showing Bonds and Repo Speedup on NVIDIA K20 using CUDA target with Intel Xeon X5530 (8 core
OpenMP) for comparison.
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to Bonds, Repo requires the use of double-precision 64-bit
floating-point numbers because of the need for precise com-
putations using decimal values near zero.

The speedup results using the C2050 and K20 GPUs with
the CUDA target compared to the sequential CPU imple-
mentation are in Figures 4b and 7b alongside multi-core
CPU results. The graphs show that both the hand-written
and directive-based GPU implementations are over 50 and
80 times faster than the single-core CPU results on the
C2050 and K20 GPUs, respectively, when running at least
50,000 repos in parallel. The GPU target codes are also
faster than the multi-core CPU results when running over
1000 repo computations. We were not able to generate
OpenCL results due to the same error during compilation as
Bonds (described in previous section) when compiling/run-
ning the directive-based codes.

4. RESULTS ON OTHER ARCHITECTURES

To compare performance across GPU architectures, the
HMPP implementation of each financial application using
the CUDA target and a particular input size is run on mul-
tiple NVIDIA GPUs. Specifically, each application is run
on the Fermi-based C2050 [19], which has 448 cores; the
Tesla-based C1060 [18], which has 240 cores; the GK104
Kepler-based GTX 670 [20], which has 1,344 cores; and the
GK110 Kepler-based K20 [21], which has 2,496 cores. The
financial applications are run on each GPU using 5,000,000
options for Black-Scholes, 400,000 samples for Monte-Carlo,
1,000,000 bonds for Bonds, and 1,000,000 repos for Repo.
The experiments for the C1060, C2050, and GTX 670 are
compiled and run using CUDA 4.2, while the K20 experi-
ments use CUDA 5.0 because the architecture does not sup-
port previous CUDA releases.

The results are shown in Figure 8 in terms of speedup/s-
lowdown using the C2050 results as a baseline. The K20 has
the best results for each application, with the performance
increase over the C2050 ranging from 1.54 times on Repo to
2.78 times on Black-Scholes. Surprisingly, the older C2050
with less cores than the GTX 670 outperforms the GTX
670 on Black-Scholes, Bonds, and Repo, while the GTX 670
performs better than the C2050 on Monte-Carlo. One possi-
ble explanation is that the GTX 670 is not as optimized for
GPGPU computing as the C2050, as the K20 is the proces-
sor in the Kepler family that is most intended for GPGPU
computing.

Pragma Experimental Parameter Values in

Codes

blocksize Thread block dimensions 32x2, 32x4 (de-
fault), 32x6, 32x8, 32x12, 32x16, 16x16

unroll Unroll factors 1 through 8, 16, 32 using
‘contiguous’ and ‘split’ options.

tile Tiling factors 1 through 8, 16, 32.

remainder /
guarded

Used each option with loop unrolling. ‘Re-
mainder’ option allows generation of re-
mainder loop. The ‘guarded’ option avoids
this via guards in unrolled loop.

Table 2: Transformations applied to each input kernel for
optimization.

S. HMPP AUTO-TUNING

Next, experiments are performed on each application us-
ing auto-tuning with HMPP on CUDA, first on the C2050
and then on alternate architectures. In particular, block
size and unrolling/tiling optimizations provided in HMPP
are applied to each HMPP run with a CUDA target. These
experiments focus on adjusting the thread block shape, as
well as unrolling and tiling transformations on loop(s) in the
application code. The set of transformations and the exper-
iment parameters for the experiments described in this work
are shown in Table 2 and the best results for each applica-
tion is shown in Table 3. The auto-tuning framework here
is similar to the framework described by Grauer-Gray et al.
in [11].

With Black-Scholes using 5,000,000 options, the loop opti-
mizations are performed on the ‘main’ parallelized loop. The
best results on the C2050 show that we are able to speed up
the performance by 1.01 times when using thread block di-
mensions of 32x6 rather than the HMPP default of 32x4 with
no tiling or unrolling on the main loop. A likely reason for
this speedup is that the change to 32x6 thread block dimen-
sions increased the multiprocessor occupancy of the compu-
tation kernel from 0.667 to 0.875. While the speedup is not
too significant on this application with the given parameters
on this GPU, this general framework provides flexibility to
optimize on any HMPP-supported architecture with a num-
ber of input parameters. Some configurations are likely to
give a greater speedup.

In the Monte-Carlo application, auto-tuning is performed
using 400,000 samples and optimizations are performed on
two loops: the ‘main’ loop as well as the loop of the 250-step
‘path’ of the Monte-Carlo computation. The best results on
the C2050 give a speedup of 1.72 times over the default
HMPP configuration for Monte-Carlo. This optimal result
occurs when using thread block dimensions of 32x2 and tiling
the main (parallelized) loop with a factor of 8. Inspection of
the optimized output code shows that tiling the main loop
changes the parallel computation space from a 1-D row to a
2-D grid, which seems to contribute to a significant speedup
in this application. Specifically, output from performance
counters via the CUDA profiler reveals that the hit rate of
the L2 cache for read requests from L1 cache is 65.7 per-
cent in the optimized configuration and 6.17 percent for the
default configuration, resulting in more accesses to slower
DRAM in the default configuration.

For the Bonds application, the loop optimizations are per-
formed on the ‘main’ parallelized loop and the results on



Best Auto-Tuned Configuration

App Size GPU Thread Loop Tiling/Unroll Parameters Speedup
Block Dim. over default
C1060 16x16 Unroll ‘main’ loop w/ factor 6 using ‘contigu- | 1.24
. ous’ and ‘guarded’ options
Black-Scholes | 5,000,000 options | —o57 37%6 No tiling/loop unrolling T.01

GTX 670 32x2

Unroll ‘main’ Ioop w/ factor 6 using ‘contigu- | 1.17
ous’ and ‘remainder’ options

K20 32x4 No tiling/Toop unrolling 1.00
C1060 32x4 Unroll ‘main’ loop w/ factor 5 using ‘split’ and | 1.02
‘remainder’ options
Monte-Carlo | 400,000 samples C2050 32x2 Tile ‘main’ loop w/ factor 8 1.72

GTX 670 32x2

Unroll ‘main’ loop w/ factor 3 and ‘path’ | 1.14
loop w/ factor 4, both with ‘contiguous’ and
‘guarded’ options

K20 32x2 Tile ‘main’ loop w/ factor 8 and ‘path’ loop | 1.74
w/ factor 2
C1060 16x16 No tiling/loop unrolling 1.02
C2050 32x2 No tiling/loop unrolling 1.03
Bonds 1,000,000 bonds T 550 No tiling /Toop unrolling T0T
K20 32x2 No tiling/loop unrolling 1.03
C1060 16x16 Tile inner ‘cash flows’ loop w/ factor 2 1.07
Repo 1,000,000 repos C2050 32x2 No tiling/Toop unrolling 1.02

GTX 670 32x2

Unroll inner ‘cash flows’ loop w/ factor 2 using | 1.01
‘contiguous’ and ‘remainder’ options

K20 32x2

Unroll inner ‘cash flows’ loop w/ factor 2 using | 1.07
‘split’ and ‘guarded’ options

Table 3: CUDA results using auto-tuning on HMPP on NVIDIA C1060 (Tesla), C2050 (Fermi), GTX 670 (GK104 Kepler),

and K20 (GK110 Kepler) architectures.

the C2050 show a speedup of 1.03 times over the default
HMPP configuration when running 1,000,000 bonds. The
best speedup occurs when using a thread block size of 32x2
without any tiling or loop unrolling.

Finally, auto-tuning experiments are performed on the
Repo application with input size 1,000,000 using loop opti-
mizations on the ‘main’ parallelized loop as well as an inner
kernel loop that sets the cash flows associated with the cur-
rent repo. The results show a speedup of 1.02 times over the
default on the C2050 when using thread block dimensions
of 32x2.

5.1 Auto-Tuning Alternate Architectures

The next experiments involved auto-tuning each financial
application on alternate NVIDIA GPUs in addition to the
C2050, specifically the Tesla-based C1060, GK104 Kepler-
based GTX 670, and GK110 Kepler-based K20. The best
configuration and speedup of each alternate architecture is
shown alongside the C2050 results in Table 3.

Notably, the results show that the speedup using auto-
tuning on Black-Scholes is over 1.15 times on the GTX 670
and C1060, which is much higher than the 1.01 speedup fac-
tor on the C2050 in the initial results. The speedup when
auto-tuning Monte-Carlo is over 1.70 times on the C2050
and K20 and over 1.10 times on the GTX 670, but the
speedup on the same application is only 1.02 times on the
C1060. The speedup for Bonds is the highest on the C2050
and K20. Finally, the best found speedup for Repo on the
C1060 and K20 is 1.07 times, higher than the best auto-
tuning speedup for the application on the C2050 and GTX
670. These results show that the effects of auto-tuning can
differ across varying architectures from the same vendor.

The speedup of the best C2050 optimizations when used
on the other architectures are shown alongside the best auto-
tuned speedup on the architectures in Figures 9a, 9b, and 9c,

and the best K20 optimizations when used on the other ar-
chitectures are shown alongside the best auto-tuned speedup
on the architectures in Figures 10a, 10b, and 10c. The re-
sults show that the best optimization configuration on a
particular architecture may not result in the best possible
speedup on another architecture. For example, using the
best C2050 or K20 configuration for Monte-Carlo on the
C1060 results in a significant slowdown compared to the de-
fault while the best auto-tuned C1060 configuration results
in a small speedup, using best C2050 configuration for Repo
on the K20 results in a small speedup of less than 2 per-
cent while the best auto-tuned configuration gives a larger
speedup of around 7 percent, and using the best K20 con-
figuration for repo on the C2050 gives a slowdown of almost
10 percent while the best auto-tuned configuration gives a
small speedup. The best auto-tuned configuration is likely
to vary across architectures, i.e., it is likely to be specific to
a particular architecture.

6. CODE ANALYSIS

The process of porting the original QuantLib code to dif-
ferent architectures produces many different versions of the
same application. In total, six versions of code are created
for each application: CPU, CUDA, OpenCL, HMPP, Ope-
nACC, and OpenMP. Table 4 shows the code size in terms of
line count for each application and target. The count corre-
sponds to the number of lines for application execution and
any data transfer that occurs between the device and host.
Input data generation and output printing are not included.

Targets employing pragma-based directives have the low-
est line counts compared to the CPU target. Applications
with the CUDA target have more lines due to data transfer
between the host and device. Applications with the OpenCL
target have a significant increase in line count due to the
initialization of OpenCL, initialization of the kernels, and
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Figure 9: Speedup of best C2050 (Fermi) auto-tuned configuration for each application run on C1060 (Tesla), GTX 670
(GK104 Kepler), and K20 (GK110 Kepler) compared to best auto-tuned configuration for each architecture.
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Figure 10: Speedups of best K20 (GK110 Kepler) auto-tuned configuration for each application run on C1060 (Tesla), C2050
(Fermi), and GTX 670 (GK104 Kepler) compared to best auto-tuned configuration for each architecture.

| Type Black-Scholes Monte-Carlo Bonds  Repo |
CPU 208 152 1243 949
CUDA 219 172 1289 1009
OpenCL 313 291 1344 1150
HMPP 216 163 1251 1001
OpenACC 213 156 1249 995
OpenMP 212 156 1246 952

Table 4: Code size, measured as number of lines, for targeted
architectures and financial applications

transferring data between the host and device.

6.1 Serial CPU and OpenMP Implementations

Because QuantLib is highly object-oriented, a debugger
is used to step through the code paths of each application
and see what lines of QuantLib code are executed for each
application. Code flattening is manually applied to convert
the QuantLib code path corresponding to each application
to lower-level C code. Results from QuantLib are compared
to the lower-level code to confirm the same results within a
minimal epsilon value.

The other target codes are created from this serial CPU
implementation. For the OpenMP implementation, a paral-
lel region specifying the number of threads is added as well
as a parallel for directive.

6.2 CUDA Implementation

The CUDA code is created from the C-based CPU imple-
mentation. Additional lines of code are needed for device
memory allocation, freeing of memory, device/host memory

transfer, and synchronization. In particular, code must be
added for each array allocated on the GPU due to device
memory allocation, device memory deallocation, and pos-
sible host-to-device/device-to-host transfer. In addition, a
CUDA thread synchronization call is often necessary after a
kernel call.

6.3 OpenCL Implementation

The OpenCL code is created from the C-based CPU im-
plementation using the developed CUDA code as a point-of-
reference. OpenCL requires additional setup work to config-
ure the OpenCL target, load the OpenCL source file, com-
pile the source file, and report any compilation errors. On
top of the mandatory code for each application, the number
of additional lines required is dependent on the number of
memory objects used for arrays on the GPU and the number
of arguments required for the computation kernel(s).

6.4 HMPP and OpenACC Implementations

The directive-based GPU acceleration codes require a min-
imal addition of code. The C-based CPU code is left nearly
identical for both the HMPP and OpenACC targets. HMPP
requires that the codelet (the portion of the code that is
parallelized and runs on the GPU) be in its own function
while OpenACC does not have that limitation. Directives
are used to specify the region of the code that is to be run
on the GPU, define times to transfer data from the host to
the accelerator (and vice versa), and state how to parallelize
the data-independent loop(s) in the code.

A limitation of HMPP and OpenACC is that a structure
of arrays may not be passed as an argument. The Repo



and Bonds applications are implemented using an array of
structures in the original code, but the codelets had to be
adjusted to take the input arrays as individual arguments.

7. RELATED WORK

There is a body of related work of GPU acceleration of
computational finance. Zhang and Oosterlee [29], Podlozh-
nyuk [24], Abbas-Turki and Lapeyre [5], Egloff [9], Joshi [12],
and Dang et al. [7] look at Black-Scholes pricing on the GPU,
while Podlozhnyuk and Harris [25], Tian et al. [28], Rees and
Walkenhorst [26], Dixon et al. [8], Pages and Wil-bertz [23],
Bernemann et al. [6], and Murakowski et al. [15] look at GPU
acceleration of Monte-Carlo for financial computation. Ad-
ditional related work by Thomas [27] describes acceleration
of Monte-Carlo using FPGAs.

This work differs from the related work by using directive-
based pragmas to drive GPU acceleration in addition to
hand-written CUDA and OpenCL code while most of the
previous GPU work focuses on CUDA. In addition, the fo-
cus of this work is on accelerating multiple code paths in the
QuantLib library while much of the previous work focuses
on a single application. These aspects make this work more
general as it can be easily modified to run on alternate paral-
lel architectures with the same directives and also expanded
to include the acceleration of additional codes in QuantLib.

There is also related work in using directive-based prag-
mas. Both Lee and Vetter [13] and Grauer-Gray et. al. [11]
show results of benchmarks using pragmas with available
optimizations to drive parallelization. This work differs be-
cause of the focus on financial applications rather than more
general benchmarks.

8. CONCLUSIONS

This work looks at GPU acceleration of code paths in
the popular, open-source QuantLib library used in com-
putational finance. Manually written CUDA and OpenCL
code as well as directive-based HMPP and OpenACC lan-
guages are used to drive GPU acceleration for code paths in
QuantLib.

The results show acceleration of Black-Scholes, Monte-
Carlo, Bonds, and Repo codes from QuantLib. Results in-
dicate significant speedups using the GPU with each ex-
perimental method. Subsequent experiments look at the
speed-ups across different NVIDIA GPU architectures and
investigate auto-tuning on HMPP-generated code. Particu-
lar configurations from auto-tuning show increased speedup
as compared to the default configuration. We plan to con-
tinue this work by accelerating additional QuantLib codes
using the GPU and other parallel architectures that support
directive-driven GPU acceleration.
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