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Abstract

Architectures are rapidly evolving, and exascale machines are expected to
offer billion-way concurrency. We need to rethink algorithms, languages and
programming models among other components in order to migrate large scale
applications and explore parallelism on these machines. Although directive-
based programming models allow programmers to worry less about program-
ming and more about science, expressing complex parallel patterns in these
models can be a daunting task especially when the goal is to match the
performance that the hardware platforms can offer. One such pattern is
wavefront. This paper extensively studies a wavefront-based miniapplication
for Denovo, a production code for nuclear reactor modeling. We parallelize
the Koch-Baker-Alcouffe (KBA) parallel-wavefront sweep algorithm in the
main kernel of Minisweep (the miniapplication) using CUDA 9.0, OpenMP
4.0 (SIMD) and OpenACC 2.6. Our OpenACC implementation running on
NVIDIA’s next-generation Volta GPU boasts an 85.06x speedup over serial
code, which is larger than CUDA’s 83.72x speedup over the same serial im-
plementation. We also explore the scalability of our solution using MPI to
decompose our simulation domain, allowing us to run on many nodes and ac-
celerators present in state-of-the-art HPC systems. Our parallelization effort
across platforms also motivated us to define an abstract parallelism model
that is architecture independent, with a goal of creating software abstractions
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that can be used by applications employing the wavefront sweep motif.
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Nature of problem(approx. 50-250 words):
The Minisweep proxy application [1] is part of the Profugus radiation transport
miniapp project [2] that reproduces the computational pattern of the sweep kernel
of the Denovo Sn radiation transport code [3]. The sweep kernel is responsible
for most of the computational expense (80-99%) of Denovo. Denovo, a production
code for nuclear reactor neutronics modeling, is in use by a current DOE INCITE
project to model the International Thermonuclear Experimental Reactor (ITER)
fusion reactor [4]. The many runs of this code required to perform reactor simu-
lations at high node counts makes it an important target for efficient mapping to
accelerated architectures.

Solution method(approx. 50-250 words):
This work proposes an abstract parallelism model for efficiently mapping wavefront
application to modern HPC architectures. Minisweep is used as a case study for
evaluating this technique. Our evaluation is performed using OpenACC to target
many architectures.

Additional comments including Restrictions and Unusual features (approx. 50-

250 words):

1. Introduction

Hardware architectures are rapidly evolving. High performance computing
nodes are becoming increasingly heterogeneous. The current and anticipated
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exascale accelerated node architectures are heterogeneous [5]. They are ex-
pected to contain a mix of throughput and latency optimized cores [6]. Such
a balanced mixture of cores is expected to manage different types of paral-
lelism available in an algorithm. Memory has advanced as well. 3-D memory
stacking with memory moving on-socket provides increased bandwidth and
faster communication.

Such diverse architectures require their own code optimization strategies,
while the application developers prefer a “write-once” code development
strategy in which a single code will execute efficiently on all targeted archi-
tectures. In addition to considering the underlying hardware, a programming
model is also expected to address requirements of applications and their al-
gorithms. The programming language that implements the model should
provide the right abstractions to improve the productivity of scientific devel-
opers. Programmers often resort to a trade-off between achieving portability
and high performance. Why? The issue is two-fold. Adequate application
parallelism will not be exposed to the hardware architecture if the algorithm
is structured in a way that limits the level of concurrency that a program-
ming model can benefit from. Secondly, such a single code representation is
possible only if the programming abstractions are carefully crafted for the
programming models to provide informative hints to the compilers to gener-
ate optimized code across platforms.

Directives allow us to abstract the rich feature set of hardware architec-
tures and incrementally improve, port, and maintain the codebase across
platforms. However, there still remains a gap in the way that they do not
adequately expose and parallelize some of the complex algorithms often found
in applications. One such case is a wavefront-based algorithm that is of crit-
ical importance to solving scientific problems in multiple science domains.
Wavefront algorithms are useful for problems for which the computed re-
sult values have dependencies, requiring that results be computed in stages
(wavefronts) for which each stage’s results depends on results computed in
previous stages.

In this paper, our objective is to study this type of algorithm and identify
challenges in exposing parallelism using high-level abstractions that can be
lowered to de facto parallel programming languages. We study the Minisweep
proxy application [1], that is illustrative of the complexities in a wavefront-
based algorithm. Parallelizing Minisweep using current directive-based APIs
revealed the gaps in their expressivity and features. We address this issue by
designing and envisioning an abstract parallelism model that highlights these
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gaps with a combination of notations [7]. Having these proposed notations in
a programming language are key to exposing and mapping wavefront-based
parallelism to multiple architectures.

We enhance our original work, described in [7], in a couple of ways. First,
we utilize asynchronous parallel regions in OpenACC to modify our Ope-
nACC implementation of Minisweep to sweep in eight directions in parallel.
This is the intended behavior of the original code, but due to the difficulty of
implementation, our original work simply used 8 sweeps in a single direction
to model the performance of the code. Extending this to support the proper
behavior of kernel launches in Minisweep allowed us to explore an addi-
tional layer of parallelism in OpenACC that is not widely used. Secondly, we
also utilize MPI to decompose our simulation’s spatial domain across devices
in an effort to examine the scalability of our proposed abstract parallelism
model. State-of-the-art HPC systems (such as ORNL’s Summit machine)
are comprised of many nodes equipped with many accelerators, so a single-
node/single-accelerator approach is not representative of how an application
like this would be used in practice. To that end, we felt it necessary to
explore the scalability of parallelization across many GPUs.

1.1. Application Under Study

The Minisweep proxy application [1] is part of the Profugus radiation trans-
port miniapp project [2] that reproduces the computational pattern of the
sweep kernel of the Denovo Sn radiation transport code [3]. The sweep ker-
nel is responsible for most of the computational expense (80-99%) of Denovo.
Denovo, a production code for nuclear reactor neutronics modeling, is in use
by a current DOE INCITE project to model the International Thermonu-
clear Experimental Reactor (ITER) fusion reactor [4]. The many runs of this
code required to perform reactor simulations at high node counts makes it
an important target for efficient mapping to accelerated architectures.

This study involves Sn radiation transport algorithms for solving the linear
Boltzmann equation [8]. Here, a continuum model is used to simulate the
density of particles of a given energy and direction of motion within a 3-D
volume. The approach yields a six dimensional problem (3-D in space, 2-D
in angular particle direction and 1-D in particle energy) that is appropriately
discretized in each dimension. Minisweep includes neutronics calculations for
nuclear reactor [9] and fusion reactor [4] design, radiation shielding, nuclear
forensics and radiation detection. The large number of problem dimensions
available in the Sn transport algorithm affords significant opportunities for
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parallelism on manycore parallel systems. However, the recursive nature of
the wavefront calculation in the spatial dimensions is a challenge to efficient
parallelization.

Denovo was one of six applications selected for early application readi-
ness on ORNL’s Titan system under the Center for Accelerated Applica-
tion Readiness (CAAR) project [10] and is part of the Exnihilo code suite
which received an R&D 100 award for modeling the Westinghouse AP1000
reactor [11]. Minisweep can be considered a successor to the well-known
Sweep3D benchmark [12] and is similar to other Sn wavefront codes includ-
ing Kripke [13], SN (Discrete Ordinates) Application Proxy (SNAP) [14] and
PARTISN [15].

Minisweep is used as a vehicle to examine parallelization of wavefront algo-
rithms in general. However, it has multiple computational motifs (dense and
sparse linear algebra, structured grids) and parallelism requirements (halo
communications, hierarchical synchronizations, atomic updates) which make
the study of this algorithm relevant to a much broader spectrum of codes.

For Minisweep, we use OpenACC 2.6 and OpenMP 4.0 (SIMD) along with
CUDA 9.0. OpenACC, since its inception in 2012, is being widely used to
port large scale applications spanning several domains such as ANSYS [16],
GAUSSIAN [17], and Icosahedral non-hydrostatic (ICON) [18] to massively
parallel architectures. Similarly, OpenMP 4.5 is being deployed to applica-
tions such as Pseudo-Spectral Direct Numerical Simulation-Combined Com-
pact Difference (PSDNS-CCD3D) [19] and a CFD code for turbulent flow
simulation, Quicksilver [20], a Monte Carlo Transport code.

1.2. Contributions

Our work presents the following contributions:
• An abstract representation elucidating architectural, memory and thread-

ing challenges to programming models for such complex wavefront al-
gorithms as used in Minisweep that can be broadly applicable to appli-
cations with a similar computational motif. More details in Section 1.1
and Section 8.
• Parallelizing the sweep across eight directions using OpenACC, a chal-

lenge in transport algorithms.
• A description of the challenges in existing programming models, and

extensions that will allow programmers to overcome the obstacle of
recursivity in the spatial dimensions of wavefront algorithms without
requiring large modifications to the code base.
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• A performance-portable implementation of these abstractions using
OpenACC to offload portions of an application to a variety of parallel
architectures.
• An exploration of the scalability of our solution using MPI to decom-

pose our simulation domain, allowing us to run on many nodes and
accelerators present in state-of-the-art HPC systems.

2. Overview of Sweep Algorithm

The Sn transport sweep algorithm possesses features common to wave-
front algorithms in general yet has structure specific to the requirements of
Sn transport. It can be considered in two parts: first, a wavefront algo-
rithm relating the computations between gridcells of a 3-D grid, and second
the computations performed on a single gridcell within this wavefront sweep
across a grid.

2.1. Grid-level computations

We consider here a 3-D structured grid, with locally connected gridcells;
see Figure 1. Importantly, the result computed at a gridcell is dependent
on the results computed at the three neighbor gridcells in the upstream x, y
and z directions; thus the computation is described by a four-point stencil.
This dependency puts a restriction on the order in which results can be
computed. One possible ordering is a series of wavefronts described by a
sequence of planes of gridcells starting at a corner of the grid and sweeping
through the whole grid (Figure 1). Other orderings are allowed as well, as
long as the dependencies are satisfied.

Modeling the physical problem requires modeling particle flux in all direc-
tions. To accomplish this, an execution instance of the algorithm performs
a total of eight sweeps, one starting at each corner of the domain. These
directions are referred to as “octants.” The results of all eight octant sweeps
are added together form the final result.

2.2. Gridcell-level computations

To further describe the algorithm, we define array vs with dimensions
vs(nx, ny, nz, nu, ne, na, no). The nx, ny, nz dimensions refer to the spatial
grid size. The dimension no = 8 is the octants axis, across which results
are summed for the final result. The value na is a set of angular directions,
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Figure 1: Wavefront computational pattern

and ne is the number of energy groups, each representing a decoupled in-
stance of the problem. Finally, nu represents a set of unknowns for each
gridcell based on the spatial discretization, e.g., finite element coefficients for
a gridcell. Though vs is relevant to key computations of the algorithm, the
arrays that actually hold the input and output of the algorithm have the form
v(nx, ny, nz, nu, ne, nm). Here vs and v are related by the fact that the na, no

axes are compressed into nm moments to form v from vs. The computation
at a gridcell then is composed of the following steps:

1. Moments-to-angles conversion. For a given octant and energy group the
input vin(ix, iy, iz, ∗, ie, ∗) is transformed into array vin,s(ix, iy, iz, ∗, ie, ∗, io)
by a small matrix-vector product that relates the nm moments to the
na angles. The matrix depends on the octant but is independent of
spatial location, energy group and unknown.

2. Face contribution. The upstream components from the sweep are added
to vin,s(ix, iy, iz, ∗, ie, ∗, io).

3. Solve. An operation is performed on the array values
vin,s(ix, iy, iz, ∗, ie, ∗, io) which is coupled between the nu unknowns but
decoupled in all other dimensions. The result is vout,s(ix, iy, iz, ∗, ie, ∗, io).

4. Face update. The values of vout,s(ix, iy, iz, ∗, ie, ∗, io) are stored for use
downstream by the sweep.
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5. Angles-to-moments conversion. Array
vout,s(ix, iy, iz, ∗, ie, ∗, io) is transformed and added to
vout(ix, iy, iz, ∗, ie, ∗) with another matrix-vector product depending on
octant only.

The computation can be represented mathematically as follows. To sim-
plify we assume a single octant direction (+x,+y,+z) and a single energy
group. Given matrix MAM ∈ Rna×nm we have

(vin,s;ix,iy ,iz)u = MAM · (vin;ix,iy ,iz)u,

where ix, iy, iz is the gridcell spatial coordinate and (·)u denotes the restriction
of the vector to gridcell unknown u. Then

(vout,s;ix,iy ,iz)a = S((vin,s;ix,iy ,iz − vout,s;ix−1,iy ,iz

− vout,s;ix,iy−1,iz − vout,s;ix,iy ,iz−1)a)

where (·)a is the restriction of the vector to angle a. Notice this represents
the wavefront recursion proper. Here the function S : Rnu → Rnu is a solve
process which for actual transport solvers is related to the spatial discretiza-
tion used but for Minisweep is a synthetic function chosen to give a known
analytic solution for correctness checking; in either case, the computational
cost is minor, thus the actual choice is not material to algorithm performance.
Finally, for matrix MMA ∈ Rnm×na ,

(vout;ix,iy ,iz)u = MMA · (vout,s;ix,iy ,iz)u.

2.3. Summary of problem axes

The problem dimensions and their respective couplings are thus summa-
rized as follows:
• Space: in the x, y and z dimensions, each gridcell depends on results

from three upstream cells, based on octant direction, resulting in a
wavefront problem.
• Octant: results for different octants can be calculated independently,

the only dependency being that results from different octants at the
same entry of v′out are added together and thus are a race hazard, de-
pending on how the computation is done.
• Energy: computations for different energy groups have no coupling

and can be considered separate problem instances, enabling flexible
parallelization.
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• Moment, angle: for fixed energy, octant and spatial location, the mo-
ments and angles are interrelated by small (dense) matrix-vector prod-
ucts.
• Unknown: when the problem is represented as angles, a computation is

performed which may couple (only) the unknowns within the gridcell;
for all other parts of the computation, elements on this axis are fully
independent.

3. Parallelizing the Sweep Algorithm

To map the sweep algorithm to a parallel system, it is of paramount im-
portance to minimize data motion as well as maximize parallelism, these
being increasingly critical for high performance on exascale systems. As a
result, the general guiding principle is that spatial dimensions must be the
outermost loops, due to their sparse coupling, whereas moment, angle and
unknown loops must be innermost due to the strong all-to-all couplings. The
specific approach to parallelizing each axis is as follows:
Space: Spatial parallelism is based on the Koch-Baker-Alcouffe (KBA)

algorithm [21]. Here the 3-D structured grid is decomposed to processors
with a 2-D tiling in x and y (Figure 2). Each processor’s part of the grid is
decomposed into blocks along the z axis. Then a block wavefront process is
applied starting at the corner block of the domain. Processors proceed in a
series of parallel steps, with one block wavefront computed at each step and
block face information communicated between consecutive steps. For a GPU
or other accelerated processor, the KBA block described above is further
decomposed into subblocks, and the computation is arranged into a series of
subblock wavefronts, which are then mapped to parallel threads.
Octant: Minisweep assigns compute threads to the eight wavefronts cor-

responding to the eight octant directions. The wavefronts are independent;
however there is a potential race condition when two or more threads are
updating the same KBA block on the same KBA block wavefront step. The
solution used in Minisweep is a grid coloring approach. The KBA block
is split in half along each dimension resulting in eight ”semiblocks.” Eight
semiblock steps are taken, and for each step every one of the (up to) eight
active wavefronts is assigned to a different semiblock. This is arranged so
that the wavefront dependencies are satisfied. A synchronization and thread
fence are required between consecutive semiblock steps.
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Figure 2: KBA parallel wavefront algorithm

Energy: Since the algorithm is embarrassingly parallel along the energy
axis, this problem axis can be decomposed in any way: across nodes, across
threads in a node, in a core or vector unit, or any combination.
Moment, Angle: The moment and angle axes are coupled to each other

in an all-to-all fashion via two small matrix-vector products. The moment,
angle, and unknown dimensions of the relevant arrays are ordered to be most
rapidly varying, enabling efficient stride-1 memory access. When possible,
the matrix-vector products are arranged to fit entirely within a vector unit.
If na or nm exceed the vector unit size, a blocking strategy is used with the
computation fitting within the vector unit. Importantly, the moments-to-
angles transform is threaded in angle and the angles-to-moments transform
is threaded in moment (otherwise a reduction across threads and/or vector
lanes is required). Because threads must be reassigned between moment and
angle threads, a synchronization and memory fence is required between these
operations.
Unknown: No couplings exist along the unknowns axis when the small

matrix-vector products are performed, therefore this axis permits some op-
portunity for threading here. However, for the inner solve computation in
angle, each unknown may require different kinds of computations. To prevent
poor use of vector units, these computations are kept serial.

4. Abstract Parallelism Model

Minisweep defines and implements a set of high level abstractions to de-
scribe the parallelism of its algorithm such that these abstractions can be used
by any similar application implementing the sweep motif. The goal of these
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abstractions is to achieve productivity and performance portability across
different architectures (GPUs, Xeon Phi, CPUs, etc). These abstractions
can be instantiated using general purpose parallel programming languages
like CUDA, OpenMP, and OpenACC. The need for these abstractions is also
suggestive of possible shortcomings in parallel programming languages and
suggests the need for extensions to support applications of this type.

The large number of problem dimensions inherent in Sn transport solves
makes the need for managing thread parallelism axes and hierarchical mem-
ories via use of abstraction layers acute. However, the techniques described
here are applicable to many other problems requiring multidimensional paral-
lelism, for example, batched dense linear algebra, block sparse linear solvers,
and others.
Abstract machine model: Modern compute node hardware has an exe-

cution hierarchy. For example, a compute node may be composed of multiple
GPUs, each with multiple cores possessing hardware threads and employing
vector units composed of vector lanes. Some of these have co-located mem-
ories, for example node main memory, GPU high bandwidth memory or
GPU shared memory associated with a streaming multiprocessor (SM) core.
Execution threads are also associated with each level: for NVIDIA GPUs, in-
warp threads execute in lock-step within a warp, in-threadblock threads are
associated with an SM, and the thread grid is associated with the GPU. One
can thus view a node as a hierarchy of execution units, with local memory and
compute threads, and in particular hardware threads can be thought of as
indexed as a tuple depending on the location in the hierarchy. Threads also
have characteristics based on location, e.g., thread synchronization across
different cores of a node may be impossible or much slower compared to
on-core synchronization. Likewise memories at different levels have different
speeds, and thread access to memories may have NUMA effects depending
on the level. Note that these concepts readily apply to heterogeneous node
as well as homogeneous systems.

To abstract the characteristics of heterogeneous / homogeneous architec-
tures, we use the concept of “place,” borrowing ideas from X10 and Chapel
(“locales”). A place is an abstract location (in our case, a node of a com-
puter) where work can execute using local executions units with local mem-
ories where threads can possibly synchronize with each other (e.g., barriers,
memory fences) and access its memory. What we want to explore is how to
generalize a flat model of places (e.g., that originally X10 and Chapel used
to abstract an entire system) to more local hierarchical abstractions with
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concepts such as Hierarchical Tree Places [22] or Chapel (Sub-locales) [23]
to abstract the new trends of complex memory hierarchies and accelerators.
An architecture can be described as a set of “hierarchical places,” where at
the higher level places communicate with each other via message passing or
remote puts/gets. In the node, places can be nested in order to abstract the
memory hierarchy of an architecture and its local execution units. In our
abstract machine model, a nested place can access the memory of its parent
place, but sometimes cannot synchronize with sibling places. This restriction
is due to the way a child place can be mapped to GPU SMs, across which it
is not possible to synchronize.

We use the term “place threads” to refer to execution threads associated
with each of the specific places. In Minisweep, place threads are created
during execution via an adaptor function which instantiates or destroys the
threads for the requested places in the underlying architecture; in practice,
this is implemented for example by launching a CUDA kernel or entering an
OpenMP parallel region, depending on programming language implementa-
tion on the given architecture.
Abstract arrays: In Minisweep, an “abstract (multidimensional) array”

is defined as an object that consists of a list of dimensions and a base pointer
associated with a memory place in the hierarchy. Array elements are accessed
using a multi-index through an indexing function. In this way the memory
layout is controlled by an abstraction layer that can be easily modified based
on the architecture. An abstract array thus has a local view within the place
(and its children) at which it is allocated.
Abstract threads: Each independent variable of the science problem is

assigned an abstract “threading axis” of abstract thread indices assigned to
the corresponding problem axis. For example, the axis of ne energy group
values is assigned a set of (ne or fewer) abstract compute thread indices used
to compute those values. The collection of these abstract thread indices
(which can be used to describe threads applied to the problem dimensions
of energy, octant, y location, z location, etc.) form a tuple or thread multi-
index, which will be later bound to a place thread.
Instantiation of the abstract threaded region: A fundamental oper-

ation for multi-threaded or accelerated codes is entry into a fork-join parallel
region. In Minisweep this is abstracted as a multi-threaded region that in-
stantiates the abstract threads. These regions can be nested and mapped to
the same or different places.
Binding of abstract threads to places: A mapping of the abstract
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thread multi-index to a place thread multi-index is made based on the type
of parallelism required. For example, since spatial wavefronts of the sweep
algorithm require barriers between wavefronts, the spatial y and z dimensions
must necessarily be mapped to threads within a place (e.g., threadblock on
a GPU) that allows synchronization. By comparison, energy groups are
fully decoupled, thus no restrictions are placed on where the abstract energy
thread axis is mapped.
Parallel worksharing construct: This construct schedules work along

problem axes to a set of abstract threads and executes the work in paral-
lel. The array index values for a given problem axis are distributed to the
abstract thread indices via a block decomposition. For example, the full set
of ne energy groups is partitioned into blocks which are in turn assigned to
abstract energy threads. Table 1 describes the mapping of problem axes and
associated abstract threads to the place thread hierarchy for the algorithm
discussed in Section 2. It is evident that the ability to synchronize a subset
of threads, akin to a barrier within an MPI sub-communicator, would be of
benefit, since synchronization does not scale well to large thread counts.

problem dependency GPU Intel Phi
dimension type threading threading

energy (none) grid OpenMP thread
octant coloring threadblock CPU thread

spatial y wavefront threadblock CPU thread
spatial z wavefront threadblock CPU thread
moment all-to-all warp, serial vector, serial

angle all-to-all warp, serial vector, serial
unknown all-to-all warp, serial vector, serial

Table 1: Problem dimensions mapping to thread hierarchy.

Figure 3 is a simplified version of Sn sweep parallelization using the ab-
stract parallelism model. The pseudocode shows the allocation of the re-
quired arrays and definition of the hierarchical thread regions, followed by
nested parallel loop over energy groups, serial loop over wavefronts, parallel
loop over gridcells in the wavefront, and then the three threaded operations
of moment-to-angles, solve and angles-to-moments.
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// Abstract Arrays A l l o ca t i on
AbstractArrayAl locat ion ( vin (nx , ny , nz , ne ,nm, nu ) : p lace main )
AbstractArrayAl locat ion ( vout (nx , ny , nz , ne ,nm, nu ) : p lace main )
AbstractArrayAl locat ion ( ne ighbors ( num neighbors , ne , na , nu ) : p lace main )
// Mult ithreaded Regions f o r Abstract Threads
AbstractMult ithreadedRegion ( ab s t r a c t t h r e ad s e : p lace main ) {
AbstractMult ithreadedRegion ( ab s t r a c t th r ead s a ,

ab s t r a c t s th r ead xy : p l a c e l o c a l ) {
// Do All P a r a l l e l Worksharing
Do All ( e in range (0 , ne ) ; ab s t r a c t t h r e ad e ) {
AbstractArrayAl locat ion ( vs (na , nu ) : p l a c e l o c a l )
do (w in range (0 ,w max ) ) {
// Do All P a r a l l e l Worksharing
Do All ( ( x , y ) in wavefront (w) ; ab s t r a c t th r ead xy ) {
z = z coord (x , y ,w)
//Do All P a r a l l e l Worksharing Matrix−Vector Product
Do All ( a in range (0 , na ) ; ab s t r a c t th r e ad a ) {
do (u in range (0 , nu ) ) {
vs (a , u) = 0
do (m in range (0 ,nm)) {
vs (a , u) += a from m (a ,m) ∗ vin (x , y , z , e ,m, u)
}}

} // End o f Do All ( a )
// Do All P a r a l l e l Worksharing
Do All ( a in range (0 , na ) ; ab s t r a c t th r e ad a ) {
// Apply upstream wavefront dependenc ies
do ( i ne ighbor o f (x , y , z ) in wavefront (w−1)) {
do (u in range (0 , nu ) ) {
vs (a , u) −= neighbors ( i , e , a , u)
}}

// Computation based on unknowns
so l v e ( vs , a )
// Save downstream wavefront dependenc ies
do ( i ne ighbor o f (x , y , z ) in wavefront (w+1)) {
do (u in range (0 , nu ) ) {
ne ighbors ( i , e , a , u) = vs (a , u)
}}

} // End o f Do All ( a )
//Do All P a r a l l e l Worksharing Matrix−Vector Product
Do All (m in range (0 ,nm) ; abst ract thread m ) {

do (u in range (0 , nu ) ) {
vout (x , y , z , e ,m, u) = 0
do ( a in range (0 , na ) ) {
vout (x , y , z , e ,m, u) += m from a (a ,m) ∗ vs (a , u)
}}}

} // End o f wavefront loop w
AbstractArrayFree ( vs )
} // End o f Do All ( e )
}} // End o f AbstractMult i threadedRegions
AbstractArrayFree ( vin , vout , ne ighbors )

Figure 3: Abstract representation of wavefront algorithm

5. Translation of Abstract Parallelism Model

This section shows flavors of how different models, CUDA, OpenMP and
OpenACC parallelize Minisweep. The narrative also discusses what we need
(referring to Section 4) and what the models lack discussed in Section 6.

5.1. CUDA

The main sweep function, Sweeper sweep(), of Minisweep has a KBA
pipeline loop to support the KBA block sweep calculations and related asyn-
chronous face communication between nodes using MPI. For the CUDA
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case, faces and KBA blocks are also transferred to and from the GPU asyn-
chronously; for systems not requiring offload, these calls do nothing. A mir-
rored array datatype, resembling the underlying mechanisms of OpenACC,
maintains copies of an array on CPU and GPU and manages transfers; an
accessor function returns the CPU or GPU pointer depending on where the
computation takes place. For details, see [24]. The key kernel operation of
Minisweep is the block sweep operation, in function Sweeper sweep block().
This is launched as a CUDA kernel or alternatively is initiated as a parallel
region in OpenMP, as described above in the abstract model. Since energy
groups are independent, the energy thread axis is mapped off-threadblock
into the GPU thread grid; all other axes are mapped in-threadblock due to
coupling requirements as described earlier. As discussed in Section 2, an
execution instance of the algorithm performs a total of eight sweeps and the
CUDA port of minisweep performs these sweeps.

5.2. OpenMP

OpenMP is used to run Minisweep natively on a multicore or manycore
processor with OpenMP 3.1 parallel directives and the OpenMP 4.0 simd

directive. The model also implements KBA. OpenMP runs with a single
thread of execution until the block sweep function is encountered, at which
point threads are spawned in energy, octant and the y and z spatial dimen-
sions. The temporary arrays placed in GPU shared memory for the CUDA
case are now CPU arrays, with one part of the array reserved for each com-
pute thread. Since the OpenMP model uses a SIMD loop rather than thread
numbers to access vector lanes, loops are placed in the code for the angle,
moment and unknown dimensions, and each of these dimensions is assigned
only a single thread; for the CUDA case, however, these axes receive multiple
threads and the SIMD for loop is removed. The OpenMP port models the
particle flux in all directions, i.e. performs a total of eight sweeps using the
tasks concept. Note: We have not ported the code to OpenMP4.5 as part
of this work. We believe that OpenMP4.5 could be an alternate solution to
explore minisweep on GPUs.

5.3. OpenACC

Our OpenACC proof-of-concept for our abstract parallelism model consists
of two parts: parallelizing the initialization of faces at the beginning of the
sweep and parallelizing the sweep itself. The sweep itself consists of three
parts: 8 octant directions originating from each corner of the 3-dimensional
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space being examined, a sweep across the 3-dimensional space for the octant
in question, and the in-gridcell computations that happen inside of each
gridcell of the space.

Parallelization of the face initializations involves five nested loops (spa-
tial decomposition of gridcells, unknowns within gridcell, energy groups and
angles). However, it is worth noting that PGI’s OpenACC compiler only
provides us with two levels of parallelism currently: gang (block) and vector
(thread). The compiler is yet to thoroughly exploit the worker level of par-
allelism. So, in order to map a loop nest of five loops onto the accelerator
to achieve full parallelization, we utilized OpenACC’s collapse clause to
collapse a specified number of nested loops into one large loop, which we can
then map at either the gang or vector level. For Minisweep’s face initializa-
tions, we collapse the outer three loops (corresponding to the unknowns and
two spatial dimensions of the gridcells) and execute at the gang level. We
also collapse the inner two loops (corresponding to the energy groups and
angles) and execute at the vector level.

Parallelization of the main sweep component in Minisweep is not as trivial,
as there are data dependencies between gridcells, as mentioned in Section 2.1.
To that end, we utilize the KBA parallel sweep algorithm (discussed in Sec-
tion 3) in order to exploit gang-level parallelism across the x, y, and z gridcell
loops. Since there is currently no existing high-level language that provides
functionality for implementing this type of parallel sweep, the programmer
must modify the loop nest manually in order to achieve the desired behavior.
This involves creating an outer wavefront loop that iterates over the wave-
front decomposition, as discussed in Section 2.1 and shown in Figure 1. The
computations within these wavefronts can be parallelized, albeit not triv-
ially. First we must parallelize across the inner two dimensions: y and x.
This spawns a number of threads on the GPU. Within each of these threads,
we calculate our z value based off of the thread’s y and x values and the wave-
front iteration number. Then, we can perform a bounds check to determine
whether that z value is within the bounds of the wavefront being examined
(denoted by the current wavefront iteration number). This allows us to ex-
ploit parallelism across gridcells, while still accounting for data-dependencies
between wavefront iterations.

The embarrassingly parallel in-gridcell computations are performed for
each energy group within each gridcell. We mark these computations for
execution at the vector level. A representation of the result is shown in Fig-
ure 4. Note that this code snippet is also the serial code if one were to simply
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remove all the directives.
Transport algorithm sweeps are particularly challenging. After paralleliz-

ing this sweep kernel using only two levels of parallelism, we faced an addi-
tional obstacle. Minisweep doesn’t run just a single sweep each timestep; it
runs eight. Each of these sweeps represents a different octant, which refers to
the direction the sweep iterates through the 3-dimensional simulation space.
Each octant starts at a different corner of the space and iterates diagonally
to the opposing corner. This complicates our calculation of the z dimension
value, since we have to consider the direction that a given sweep is mov-
ing in along each axis, as well as the bounds check to make sure that the
calculated z value lies along the current wavefront. If that isn’t already a
daunting enough task, these octant sweeps are also parallelizable, but Ope-
nACC doesn’t provide us another explicit layer of parallelism. Our solution
to this predicament is to use asynchronous parallel regions within our octant
loop. This effectively will launch kernels on the GPU asynchronously, which
allows us to overlap computation across octants. This asynchronous behavior
provides us with a third level of parallelism that we can use to saturate the
GPU for a longer period of time, yielding optimal performance.

5.4. MPI Domain Decomposition

The goal of the domain scientists who use Minisweep is to explore the
largest 3-dimensional space possible. This poses a challenge because we are
limited by the amount of memory present on a single node or device. We can
overcome this limitation by decomposing our simulation’s spatial component
across nodes and/or devices using MPI. Details about the data synchroniza-
tion required to resolve dependencies between spatial blocks are presented in
Section 5.1. In short, we decompose Minisweep’s simulation domain across
spatial dimensions (corresponding to gridcell-level computation). A sub-
component of the problem space is allocated on each device, which is bound
to a single MPI rank. This includes the collection of gridcells that a given
MPI rank is responsible for computing, as well as the few neighbors that
it may need to read data from (despite not computing). After each wave-
front iteration, a synchronization is used to update the neighbors that lie
along the edge of the rank’s portion of the simulation space. This incurs a
small amount of overhead that is outweighed by the computational benefit
of utilizing many accelerators.

Minisweep allows the user to control the behavior of this decomposition by
providing two command line flags: nproc x and nproc y. The product of the
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/∗−−− Loop over wavefronts −−−∗/
f o r ( wavefront = 0 ; wavefront < num wavefronts ; wavefront+=1) {

/∗−−−KBA threading−−−∗/
#pragma acc loop independent gang , c o l l a p s e (2 )

f o r ( iy =0; iy<dim y ; ++iy )
f o r ( ix =0; ix<dim x ; ++ix ) {

i n t i z = wavefront − ( ix + iy ) ;
i f ( i z >= 0 && i z <= wavefront && i z < dim z ) {

/∗−−−moments to angles−−−∗/
#pragma acc loop independent vector , c o l l a p s e (3 )

f o r ( i e =0; ie<dim ne ; ++i e )
f o r ( iu=0; iu<NU; ++iu )
f o r ( i a =0; ia<dim na ; ++ia ) {

P r e s u l t = (P) 0 ;
#pragma acc loop seq

f o r ( im=0; im < dim nm ; ++im )
{ /∗−−−moments to ang l e s convers ion−−−∗/ }

}

/∗−−−so lve−−−∗/
#pragma acc loop independent vector , c o l l a p s e (2)
f o r ( i e =0; ie<dim ne ; ++i e )

f o r ( i a =0; ia<dim na ; ++ia )
{ /∗−−−s o l v e c a l cu l a t i on−−−∗/ }

/∗−−−ang l e s to moments−−−∗/
#pragma acc loop independent vector , c o l l a p s e (3 )

f o r ( i e =0; ie<dim ne ; ++i e )
f o r ( iu=0; iu<NU; ++iu )
f o r ( im=0; im<dim nm ; ++im ) {

#pragma acc loop seq
P r e s u l t = (P) 0 ;
f o r ( i a =0; ia<dim na ; ++ia )
{ /∗−−−ang l e s to moments convers ion−−−∗/ }

}
}

}
}

Figure 4: Sweep loop nest with OpenACC annotations

values passed using these flags should equal the number of MPI ranks used.
By using these additional arguments, we are able to decompose our problem
across two spatial axes instead of one, and the user is given the ability to
control to what extent the simulation is decomposed along each axis. For
example, if we use 4 MPI ranks, we have the option to decompose either
the x or y axis across 4 ranks, or we can set both nproc x and nproc y to
2, which decomposes the simulation across both axes simultaneously. When
using larger simulation configurations and a larger number of MPI ranks, we
can play with the nproc x and nproc y values to decompose the simulation
in other ways and observe the impact on Minisweep’s performance. An ex-
ample of this would be using 16 MPI ranks and setting nproc x to 8 and
nproc y to 2, or vice-versa. For the purposes of this work, we stick to an
even decomposition across both axes in our experimental setup.

-
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6. Programming Model Limitations

6.1. General

In all cases, inadequacies of current compilers required that some code be
rewritten in an unnecessarily low-level fashion to obtain correctness and/or
performance. This seems to be a systemic challenge, insofar as it is dif-
ficult for compiler teams to develop mature and performant compilers for
frequently changing complex processor hardware. Programming models sup-
port vectorization in different ways, leading to portability challenges. CUDA
treats vector lanes as threads, whereas OpenMP uses SIMD loops and Ope-
nACC has a vector clause for parallel loops. Such differences can lead to
increased use of undesirable ifdefs if it is required to support these multiple
programming models. Developers would prefer a single highly performant
programming model with a high level of abstraction targeting all architec-
tures rather than the need to use multiple programming models within a
code.

The Minisweep code requires in several places a thread synchronization or
barrier over only a subset of threads. A barrier across fewer threads could
potentially run much faster in current hardware. This feature is not currently
supplied by any of the programming models, though in principle a barrier
across a subset of OpenMP threads could be written, and the new CUDA 9
Cooperative Groups feature may be useful here.

The Minisweep design makes it easy to change the mapping of machine
threads to abstract problem threads and problem dimensions. A more chal-
lenging goal is to allow easy modification of the execution hierarchy. Such a
design would allow easy loop order permutation and other loop restructuring
operations, loop blocking to optimize cache use or reduce loop overheads, and
on-demand reassignment of loop axes either to parallel threads or alterna-
tively serial execution. Such changes generally require motion of significant
portions of code, e.g., to optimize for loop invariant quantities. Presently
this must be done by hand, and is not directly supported by programming
models or imperative programming languages as currently conceived. Like-
wise, the use of accessor functions in Minisweep permits easy modification
of memory locale and layout for an array. One must still however schedule
memory transfers across the memory hierarchy manually for peak perfor-
mance. Automatic transfers via paging/caching such as the CUDA Unified
Memory feature and similar functionality for Intel Phi on-package memory
will simplify programming for this, however past experience has shown that
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manual prefetching of data across the hierarchy is sometimes necessary to
attain high performance. As memory layers proliferate, e.g., with inclusion
of NVRAM, managing this will become more challenging.

6.2. CUDA

CUDA by nature provides a lower level programming model compared
to directives-based methods. Though the CUDA runtime API provides a
slightly higher abstraction level than the CUDA driver API, both cases re-
quire ifdefs to make a code portable between CUDA for GPUs and standard
C/C++ for conventional architectures. CUDA has the advantage that vector
lanes are addressed explicitly as threads, resulting in reliable vectorization.
However, certain coding constructs can lead to losses in performance in un-
expected ways. For example, in the course of developing the Denovo sweeper
and Minisweep, it was observed that when loop bounds were passed into a
CUDA kernel within a struct, performance was noticeably degraded com-
pared to when passed in as scalars. Furthermore, in some cases a for loop
that was provably one-trip at compile time ran slower than when the loop was
altogether removed, necessitating use of an ifdef to make a single CUDA
/ OpenMP-SIMD code. CUDA additionally has limitations with repect to
deep copy of structs and classes—since pointers in a host struct are invalid
on the device—though this is improving with the support of GPU Unified
Memory. In short, limitations of this nature can make it challenging to raise
the abstraction level in CUDA codes and maintain performance portability
with other platforms.

6.3. OpenMP

Intel Phi performance typically depends on the effective vectorization of
loops, using the native simd directive or alternatively the OpenMP simd

directive. In the process of porting Minisweep to the Intel Phi using the
Intel compiler, challenges to loop vectorization were encountered. In one case
an array accessor function needed to be flattened by removing its use of a
struct in order to enable the loop to vectorize. In another case the compiler
failed to remove a provably loop invariant quantity from a loop, inhibiting
vectorization. Also, the compiler would not vectorize the outermost loop of
a deep loop nest, though CUDA had no problem threading this loop. The
differing treatment of vector lanes as threads by CUDA and by SIMD loops
in OpenMP required the undesirable use of special case code to handle the
differences. Also, CUDA generally favors larger kernels to minimize kernel
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launch overhead and maximize data reuse, whereas with the Intel compiler it
is difficult or impossible to vectorize large, complex loops in one piece. These
differences made it challenging to support the different platforms without
special case programming. Overall, the difficulty of predicting a priori when
a complex loop would vectorize and the need at times to rewrite code at a
lower abstraction level was detrimental to writing maintainable, performance
portable code. We also explored converting current the OpenMP 3.1 code
to 4.5 (only within the scope of the proposed ideas and not with respect to
porting the full code to 4.5 to use GPUs). Adapting doacross for this type of
wavefront problem would have been a potential direction to take. However
doacross assumes a flat memory hierarchy (shared memory) but what we
need for our type of case study is to map data objects to a memory hierarchy
(e.g. place and child place) that would allow the wavefront computations to
be more data-centric and be scheduled where the data is.

6.4. OpenACC

Similarly to OpenMP, we faced a number of challenges when implement-
ing our parallelization strategy discussed in Section 5.3 in OpenACC. Our
parallelization efforts also identified compiler bugs that we reported to the
PGI team. The first issue was handling array accesses in the original Min-
isweep implementation. Accessor functions are used to calculate the ad-
dress of the flattened 5-dimensional array accesses that occur throughout the
Sweeper sweep function, as described in Section 4. These functions returned
the address of the array access in question, which was then dereferenced by
the Sweeper sweep function in order to perform the manipulation on the
array element. OpenACC requires that we use the routine directive to con-
vert these function calls to routines. However, the compiler was unable to
properly generate routine code for functions utilizing external variables like
these array accesses do. We had to eliminate the use of these functions and
inline the calculation of the array address into the array accesses within the
given loops, resulting in a more traditional array access. Unfortunately this
is detrimental to efforts to raise the abstraction level of the code.

Another issue was related to loop bounds. In Minisweep, input parameters
are stored in a globally defined struct. Since these values are representing the
sizes of each dimension of the application, they are used later as loop bounds.
However, while parallelizing, OpenACC does not assume that no aliasing is
being done since this struct is defined globally (out of scope). There are
two simple solutions to this issue. First, the compiler flag -Msafeptr can be
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used to specify that there is no aliasing. However, this would not be the best
option for this application as there is some sort of pointer aliasing present
elsewhere. Instead, we simply extract the value of the dimension being used
for a given loop bound and store it in an integer variable prior to the start
of the accelerated loop.

The final issue we faced was identified as a compiler bug in PGI OpenACC
17.10. OpenACC can use kernels or parallel to generate code from an
accelerated region. With kernels, the onus is on the compiler to check for
dependencies and generate code, whereas with parallel, the onus is on the
programmer; failure to do so will result in inaccurate results. In our case,
we observed that even though we used the parallel directive, the compiler
still performed dependency checks as if we had used kernels directive. We
confirmed this behavior by parallelizing a loop with a known dependency.
The compiler generated parallel code but showed incorrect results. We then
added a collapse clause to the end of this loop directive, and we specified that
it should be collapsed with the next loop in the loop nest, which contained
no such dependencies. The result here was that the compiler reported that
it parallelized this collapsed loop nest, but the results of the computation
were accurate. Due to the increased runtime, we were able to conclude
that the inner loop was indeed executing in parallel, but the outer loop was
executing in serial despite what the compiler had reported. All of these issues
were easily overcome in practice, but identifying them presented significant
challenges along the way.

7. Evaluation & Results

Machine CPU GPU
NVIDIA PSG (V100) 2x Intel Xeon E5-2698 v3 (16 cores) 4x NVIDIA Tesla V100 (16GB HBM2)
NVIDIA PSG (P100) 2x Intel Xeon E5-2698 v3 (16 cores) 4x NVIDIA Tesla P100 (16GB HBM2)
NVIDIA PSG (K40) 2x Intel Xeon E5-2690 v2 (10 cores) NVIDIA Tesla K40 (12GB GDDR5)

ORNL Titan AMD Opteron 6274 (16 cores) NVIDIA Tesla K20X (6GB GDDR5)
ORNL Summitdev 2x IBM POWER8 (10 cores) 4x NVIDIA Tesla P100 (16GB HBM2)
ORNL Summit 2x IBM POWER9 (21 cores) 6x NVIDIA Tesla V100 (16GB HBM2)
ORNL Percival Intel KNL 7230 (64 cores) N/A

Table 2: Specifications of the nodes in the systems we used to test different configurations
of Minisweep.

As a validation of portability, Table 3 shows Minisweep results for one
GPU of the Titan Cray XK7 system (CUDA), one GPU of the Summitdev
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IBM Minsky system (CUDA) and one node of the Percival Cray XC40 KNL
system (self-hosted OpenMP 4.0). The problem solved has ne = 64, na = 32,
and nu = 4, with nx, ny, nz = 32 The codes are not fully optimized, in par-
ticular one of the inner loops for the OpenMP-KNL case did not vectorize.
However, all cases across different hardware and software environments at-
tained a similar 4-5% of peak flop rate, a typical figure for this algorithm
which has significant memory accesses, register usage and integer index cal-
culations. This result suggests that the code is in fact performance portable,
since reasonable performance is reached for all systems.

System Cores GF/s GF/s % peak
(SMs) peak GF/s

Titan(K20X) 14 1311 55.9 4.26
Summitdev(P100) 56 5312 244.8 4.61
Percival(Phi7230) 64 2662 124.9 4.69

Table 3: Comparative performance on several platforms.

We evaluate the effectiveness of our abstract wavefront parallelism model
by comparing the runtimes of our parallel implementations of Minisweep
(described in Section 5) to the runtime of a serial version of the code on
multiple HPC systems. Table 2 describes the hardware available on nodes
of each system. Note that the NVIDIA Professional Service Group (PSG)
machines and the ORNL Titan machine are existing state-of-the-art HPC
systems, while ORNL Summitdev is a development cluster representative of
the hardware that is now present on nodes in ORNL’s next-gen supercom-
puter Summit [25]. We also utilized the PSG cluster’s V100 nodes, which
house NVIDIA’s next-generation GPU that are present on nodes in Summit.
We used PGI’s 18.4 compiler to compile our OpenACC and OpenMP. We
have also used GCC 6.3.0 and ICC 17.0 for OpenMP codes. Compiling the
code using Intel’s OpenMP compiler was not successful and required code
restructuring to take advantage of SIMD in minisweep.

Our experimental configuration is a representative example of what a real
run of Minisweep within the Denovo radiation transport code looks like. Our
problem dimensions on a single node are designed to be as large as we can
fit on a single GPU: ne = 64, na = 32, and nu = 4, with nx, ny, nz = 32, on
K20x/K40 and nx, ny, nz = 64 on P100/V100. For MPI runs, we ran across
4 nodes on NVIDIA’s PSG cluster, which are each equipped with 4 GPUs.
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To that end, our in-gridcell sizes for ne, na, and nu remain unchanged, but
we explore a larger 3-dimensional space using nx, ny, nz = 128 on NVIDIA’s
PSG system.

Figure 5 presents the results when running different implementations of
Minisweep using our single node configuration in the form of speedups over
the baseline serial implementation on existing HPC systems. Note that the
speedup results presented were obtained by calculating the average of a series
of runs for each implementation. There are a few notable results. First, our
multicore CPU GCC’s OpenMP (3.1) and OpenACC implementations yield
favorable speedups. Note that GCC’s OpenMP performed better than PGI’s
OpenMP. As mentioned in Section 5.3, we have currently parallelized the
in-gridcell computations, as well as the spatial decomposition utilizing the
KBA parallel sweep algorithm to resolve data dependencies, as discussed in
Section 2.1. This implementation boasts a larger speedup than our OpenMP
GCC version, as well as our CUDA configuration when parallelized over the
same problem dimensions. Our OpenACC KBA configurations yield an ad-
dition layer of parallelism across spatial dimensions and show a much larger
speedup compared to configurations which only execute in-gridcell computa-
tions in parallel. This leads us to conclude that there is additional perfor-
mance to be gained, albeit not trivial to implement. It is also worth noting
that our OpenACC implementation running on NVIDIA’s next-generation
Volta GPU boasts an 85.06x speedup over serial code, which is larger than
the 83.72x speedup over the same serial implementation achieved by CUDA.
This supports our claim that our proposed extension to existing high-level
programming models is worthwhile, both from a performance standpoint, as
well as a programming productivity standpoint. Currently, without major
code modification, this challenge cannot be overcome.

Absolute runtimes for GPU configurations utilizing the KBA parallel sweep
algorithm are presented in Figure 6. As shown, our OpenACC GPU imple-
mentation performs well compared to its CUDA counterpart in all cases. In
addition to its excellent GPU performance, it is worth noting that this same
OpenACC implementation was used to obtain results on our multicore CPU
platforms by simply recompiling and specifying a different target. No ad-
ditional code modifications were necessary to achieve this demonstration of
portability. We contend that this provides additional evidence for the im-
portance of an extension that would allow us to parallelize the outer spatial
dimensions, yielding additional parallelism across gridcells without requiring
a major coding effort on the part of the programmer. As stated in Section 4,

24



Figure 5: Minisweep’s speedups over serial using different runtime configurations on a
single node. The CUDA version is parallelized along the same dimensions as the OpenACC
GPU configuration. The corresponding KBA configurations utilize the KBA blocking
method for additional parallelism across spatial dimensions.

this type of abstraction will benefit any wavefront-type code that performs
some type of spatial dimension sweep. Our OpenACC proof-of-concept of
such an abstraction demonstrates this on a real-world wavefront-type appli-
cation used at a major national laboratory. Since these types of codes are
very common in computational scientific applications, we contend that this
contribution has far-reaching implications for modern-day HPC applications.

Figure 7 takes our work a step further by introducing the additional layer
of MPI communication into the KBA sweep component of the code. Using
MPI, we can decompose the spatial domain across nodes, and in the case
where a GPU architecture is targeted, across devices within a node. Here,
we observe similar behavior to the results shown in Figure 5, as it relates
to runtimes of our different configurations. It is worth noting that since
we changed over from a single-directional sweep to Minisweep’s true multi-
directional octant sweeping method using asynchronous parallel regions, we
lose a bit of performance when compiling for a multicore CPU target. This
is due to the fact that PGI’s OpenACC compiler will parallelize gang loops
by default when compiled with a multicore target. The optimal configu-
ration for Minisweep would be to actually parallelize our in-gridcell loops
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Figure 6: Absolute runtimes (sec) of OpenACC & CUDA experiments on all GPUs used.
Note that the V100/P100 problem size is an order of magnitude > K40/K20x configura-
tion, as mentioned earlier.

(currently annotated as vector parallel) because we have enough parallelism
inside our gridcells to fully saturate most CPUs. Since we are unable to do
this currently, we see OpenMP outperforming our OpenACC configuration.
However, our GPU configurations yield very fruitful results when run across
all 16 GPUs across 4 PSG nodes using 16 MPI ranks. Each rank is bound to
a different GPU using the acc set device num function. Here, we see Ope-
nACC continuing to outperform CUDA, which serves as evidence that our
OpenACC configuration will scale very well on larger, modern HPC systems.

We ran our GPU configurations of Minisweep on Summit itself. Con-
straints in accessing the system have limited the ability to collect complete
results, hence we have not added our preliminary findings.

Scientifically, neutron flow simulation can take a considerable amount of
computing time. If not for speeding up these simulation runs using acceler-
ators, scientists will have to resort to simulating a model that is potentially
less accurate leading to questionable results. This can be quite a risky task
to rely on for scientists working in nuclear reactor facilities.
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Figure 7: Minisweep’s runtimes when running on 4 nodes (each with 4 GPUs) using 16
MPI ranks (1 rank per GPU). Lower is better. Note that the runtimes of OpenACC and
CUDA are comparable even when run on multiple nodes. This reinforces our conclusions
drawn from Figure 5.

8. Related Work

Considered as far back as 1974 by Lamport [26], wavefront computations
are found in linear equation solvers [27, 28], gene sequence alignment [29]
and radiation transport [21, 30], iterative solution methods [31], particle
physics simulations [32], and parallel solution of triangular systems of lin-
ear equations [33]. Smith Waterman, a local sequence alignment algorithm,
has mapped wavefront algorithm to GPUs [34], on Cell BE [35] and on FP-
GAs [36, 37]. ASCI Sweep3D wavefront application undergoes rapid succes-
sion of wavefront and solves a 1-group neutron transport problem on IBM
Blue Gene/P machine [38] by using blocking techniques. Preliminary stud-
ies to use TBB, Cilk, CnC, and OpenMP 3.0 for wavefront in [39] indicate
that a higher-level template is required for less experienced users. AWE Chi-
maera [40], NAS-LU [41] use a variation called ’hyperplane’ algorithm [42]
and [43] discusses acceleration of generalized pipeline wavefront applica-
tions.. Proxy apps such as Kripke [13], SNAP [14] (mimicking communica-
tion patterns of PARTISN [15] transport code) are wavefront codes investi-
gating different data layout patterns and parallelism. Coarray Fortran-based
Sweep3D’s comparable performance to that of the MPI is discussed in [44].
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Approaches using loop skewing [45] to derive the wavefront method of execu-
tion of nested loops is discussed in CHiLL [46], a polyhedral compiler trans-
formation framework. Other related work include [47, 48]. Other approaches
are High Productive Computing System (HPCS) languages: Chapel [23],
X10 [49] and Fortress [50] but do not offer enough abstractions or vocabu-
lary for heterogeneous platforms. HTP [22] proposed a hierarchical tree place
to map to an architecture and schedules task to different different nodes in
the tree.

However most of the above discussed strategies are solutions to specific
problem types, or incurs steep learning curve thus making them not quite
so favorable to easily adapt for large scale applications. Taking this up as a
challenge, our work proposes solution using directives and demonstrate the
parallelization of a multi-dimensional Minisweep using OpenACC on differ-
ent platforms. The parallelization process revealed shortcomings in current
directive-based model that we address by proposing an abstract model for
expressing wavefront parallelism in programming models.

9. Conclusion & Future Work

This paper examines the challenges faced when porting a wavefront ap-
plication to state-of-the-art HPC systems using directives using Minisweep
as the case study. We present a performance-portable OpenACC implemen-
tation of Minisweep, as well as an analysis of this implementation’s perfor-
mance compared to optimized multicore CPU and GPU implementations
of the same code using OpenMP and CUDA, respectively. Results demon-
strate that utilizing high-level parallel programming abstractions, such as
OpenACC, can achieve comparable performance to low-level, optimized par-
allel implementations. Our results also demonstrate the scalability of our so-
lution by using MPI to compare the performance of our configurations when
run across multiple nodes, and in the case of GPU configurations, acceler-
ators within those nodes. Combining MPI for domain decomposition with
OpenACC for device offloading yields favorable speedups when compared to
MPI+CUDA configurations on state-of-the-art HPC systems. All of these
designs and implementations are reflections of an abstract parallelism model
that we propose for wavefront algorithms. This model motivates enhanc-
ing programming models with software abstractions to parallelize wavefront
problems on multiple platforms, while minimizing programmer overhead.

As part of our ongoing work, we plan on applying our findings outlined
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by this work on additional applications to further demonstrate the efficacy
of our abstract parallelism model, formulating and automating the process
of transforming loop nests into the KBA method discussed in Section 3, and
investigating additional techniques for performing wavefront sweeps across
multiple GPUs and/or nodes in HPC systems. As near future work, we will
analyze results out of Summit and port the code to OpenMP 4.5.
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