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Abstract—As the HPC and Big Data communities continue to
converge, heterogeneous and distributed systems are becoming
commonplace. In order to take advantage of the immense
computing power of these systems, distributing data efficiently
and leveraging specialized hardware (e.g. accelerators) is critical.
MapReduce is a popular paradigm that provides automatic data
distribution to the programmer. CUDA and OpenCL are some
of the most popular frameworks for leveraging accelerators
(specifically GPUs) on heterogeneous systems.

In this paper, we develop a portable, high-level framework
using a popular MapReduce framework, Apache Spark, in
conjunction with CUDA and OpenCL in order to simultaneously
take advantage of automatic data distribution and specialized
hardware present on each node of our HPC systems. Using our
framework, we accelerate two real-world, compute and data
intensive, graph analytics applications: a function call graph
similarity application and a triangle enumeration subroutine.
We demonstrate linear scalability on the call graph similarity
application as well as an exploration of the triangle enumeration
parameter space. We show that our method yields a portable
solution that can be used to leverage almost any legacy, current,
or next-generation HPC or cloud-based system.

I. INTRODUCTION

The use of high performance computing (HPC) resources
and cloud-based systems is widespread and steadily increasing.
Today’s HPC systems are comprised of many nodes, each
containing heterogeneous computing resources. In order to
effectively tap into the power of such machines, programmers
need to structure their applications so that they can distribute
tasks across these nodes, while also optimizing for single-
node performance in order to get every last ounce of perfor-
mance that each node has to offer. This paper aims to tackle
these challenges by bridging the gap between Big Data and
HPC technologies. Our high-level framework uses Big Data’s
MapReduce framework, Apache Spark [1], to distribute tasks
across nodes in our cluster. We combine this with two high-
level HPC frameworks, CUDA and OpenCL [2], [3], to make
use of the accelerators present on each machine in our cluster
in order to achieve optimal performance. This combination
of technologies allows our applications to scale to distributed,
heterogeneous systems of any size. In addition, our framework
enables applications to be both backwards compatible and
forwards compatible (i.e., they can efficiently run on any
legacy, current, or next-generation hardware).

Our approach is fundamentally different from the widely
used MPI+X techniques used to program HPC systems (e.g.,
MPI+CUDA and MPI+OpenACC). MPI allows the program-
mer to explicitly move data, which in some cases results in
higher efficiency, but in many cases it can be cumbersome,
since all data movement and memory management is handled
manually [4]. Additionally, MPI code is not natively fault-
tolerant. The decision to use Apache Spark allows us to
automatically distribute data across nodes in our system, pro-
viding us with a portable, fault-tolerant solution that requires
much less development overhead. This allows the programmer
to focus the majority of their efforts on parallelization and
optimization of their algorithms. To that end, we combine
Spark with the popular GPU computing frameworks CUDA
and OpenCL. Spark exclusively handles the distribution of
data across nodes, and it performs the computation directly
when no GPU is present. When a GPU is present, node-local
computations are performed using CUDA or OpenCL kernels.
We demonstrate this technique on two real-world applications:
the Fast Subtree Kernel (FSK) and triangle enumeration [5].

FSK is a modified graph kernel that takes directed trees
(graphs with no cycles) as input and returns a normalized
measure of their overall similarity. This compute-bound kernel
can be used in a variety of applications, but for the purposes
of this paper, it will be used for program characterization. In
this paper, we use FSK to examine the pairwise similarities of
call graphs generated from decompiled binary applications.
The resulting kernel matrix can be used as an input to a
Support Vector Machine (SVM) to generate a model that will
detect malicious behavior in applications (malware), as well as
classify detected malware by type [6]. We call these varying
types of malicious programs ”malware families”.

Triangle enumeration is a data-bound graph operation that
counts the number of triangles (i.e., a cycle on three vertices)
in a graph. Although by itself triangle enumeration is a simple
operation, it is used as a subroutine in many larger graph
analyses such as spam detection, community detection, and
web link recommendation. Accelerating triangle enumeration
leads to a speed up in these larger graph analyses, much like
accelerating BLAS operations speeds up traditional scientific
applications. In this paper, we enumerate the triangles in
Erdős-Rényi (ER) random graphs [7].
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• We propose a high-level framework for combining
MapReduce and accelerators to run applications portably
and scalably on heterogeneous HPC and cloud-based
systems.

• We adapt a compute-bound HPC application, FSK, and
demonstrate linear scalability with our solution.

• We adapt a data-bound Big Data application, triangle
enumeration, and demonstrate performance optimization
through parameter tuning.

The rest of the paper is organized as follows: Section
II provides a high-level overview of the applications we
will use to demonstrate the effectiveness of our solution on
both compute-bound and data-bound applications. Section III
describes the methodology used to adapt these applications
to run on HPC and cloud-based systems using our proposed
solution. Section IV presents our results. We discuss related
work in Section V, and we conclude in Section VI.

II. APPLICATION DESCRIPTIONS

Typically, the HPC and Big Data communities each have
their own types of applications: compute-bound applications
and data-bound applications, respectively. As these two com-
munities continue to converge, we see a growing number of
applications containing elements of both. While some frame-
work are designed with one particular application category
in mind, our framework was designed to support applications
in either category as well as applications that share elements
from both. To demonstrate the robustness of our high-level
framework, we selected one compute-bound HPC application
and one data-bound Big Data application. We demonstrate
the different techniques and parameters used to adapt and
tune both types of applications on heterogeneous systems
effectively. The following section describes the two real-world
applications used in this paper.

A. Fast Subtree Kernel

Many real-world systems and problems can be modeled
as graphs, and these graphs can be used for a variety of
applications, such as complex network analysis, data mining,
and even cybersecurity. For our compute-bound HPC applica-
tion, we examine an existing graph kernel, the Fast Subtree
Kernel (FSK). FSK is a specialized graph kernel that takes
directed trees (graphs with no cycles) as input and tells us how
similar they are. We will use FSK to characterize potentially
malicious binary applications by representing applications as
graphs, pruning those graphs into trees by removing any cycles
found within them, and constructing a matrix that represents
the pairwise similarity of all the binary applications in our
dataset. This resulting similarity matrix can be used as input to
an SVM, which will generate a classification model from our
matrix. This model can then be used to classify applications
as malicious (belonging to one or more categories of malware)
or benign.

FSK takes encoded trees as input. An encoded tree is simply
a tree that explicitly represents all possible subtrees in addition
to single nodes. In our case, we are starting with function

call graphs generated from a tool called Radare2 [8], which
decompiles binaries and returns a call graph representing the
function call hierarchy of the application in question. In these
graphs, nodes represent functions and edges represent function
calls. For example, if function A calls function B, there
will be an edge going from A to B. In addition to these
relationships, we represent nodes as feature vectors used to
count the types of instructions present in a given function.
Each entry in the feature vector represents a type of instruction,
and the value at each entry is simply a count of the number of
times that instruction is used within the given function. This
information allows us to examine individual functions in an
application, while preserving the structural characteristics of
that application. However, FSK examines subtrees in addition
to single nodes, so we must first encode these trees by
constructing representations of all the subtrees found in them.
In order to do this, we simply combine the feature vectors of
the nodes that make up a particular subtree by performing an
element-wise sum on the feature vectors. Our graphs are then
represented as a list of these feature vectors. Once this has
been done, we can start using FSK to construct our similarity
matrix.

The creation of the similarity matrix has two main com-
ponents, both of which are embarrassingly parallel. The first
component is the pairwise comparisons of all the graphs in
a dataset. Since these comparisons are independent of each
other, they can be done in parallel. In addition to this coarse-
grained component, the examination of a given pair of graphs
(A and B respectively) can be performed in parallel as well.
All feature vectors of graph A must be compared with all
feature vectors of graph B, and vice-versa. The comparisons in
this fine-grained portion of FSK measure the distance between
feature vectors and considers them similar if their distance is
below a predetermined threshold, delta. Distance between two
feature vectors (m and n) of length L is calculated as follows:

distance =

∑L−1
i=0 |mi − ni|

max(max(m,n), 1)
(1)

This calculated distance is then divided by the feature vector
length in order to normalize its value to lie between 0 and 1
as shown below.

normalized distance =
distance

L
(2)

We keep a count of the total number of similar feature
vectors (sim count) in a given pair of graphs (A and B),
and we calculate their overall similarity using the following
formula:

sim count

len(A) + len(B)
(3)

The resulting similarity values are then stored in the sim-
ilarity matrix we construct, which can be analyzed as-is
or fed to an SVM to generate a classification model. In
Subsection III-A, we describe how we implement FSK using
our high-level framework.



B. Triangle Enumeration

For our data-bound Big Data application, we examine
an existing graph operation, triangle enumeration. Triangle
enumeration is the process of counting the number of triangles
in a graph. For this paper, we consider only undirected graphs,
but the techniques we describe are easily extensible to support
directed graphs. A triangle is a set of three vertices where each
pair of vertices share an edge (i.e., a complete subgraph on
3 vertices or a cycle on 3 vertices). Figure 1 shows a graph
containing 2 triangles (which are highlighted).
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Fig. 1: This graph contains 2 triangles (highlighted in red).

Triangle enumeration is used in many ways. It is used in
calculating the cluster coefficient and transitivity ratio of a
graph; both of which are a measure of how clustered together
nodes in a graph are. It is also used as a subroutine in graph
algorithms for spam detection, community detection, and web
link recommendation. Its prevalence in so many metrics and
algorithms demonstrates its relevance and usefulness in our
study. Accelerating triangle enumeration is of key importance
to accelerating these larger graph algorithms, much like accel-
erating BLAS operations is important to accelerating scientific
simulations.

There are two existing parallel triangle enumeration meth-
ods. The first method involves computing A3, where A is
the adjacency matrix of the graph, as described in [9]. Each
cell (i, j) within A3 represents the number of possible walks
of length three from node i to node j. Thus, summing the
values along the diagonal (i.e., the trace of the matrix) gives
the number of triangles in the graph (after we divide by
six to eliminate the overcounting caused by the symmetry of
the triangles). This method is parallelized by performing the
computation of A3 in parallel, typically with the use of either
a CPU or GPU BLAS library. For most graphs, this methods
performs well, but for small or sparse graphs, the overhead of
transferring to and from the GPU outweighs the benefits of
parallelism. In addition, this method is limited by the amount
of memory on a single node or GPU.

The second method involves uses the edge list of the graph
to generate a list of “angles” (i.e., a triangle minus one edge).
The angle list is then joined with the graph edge list to form
a list of triangles. This method, as described by Jonathan
Cohen [5], fits naturally into the MapReduce paradigm and
has traditionally been implemented with Hadoop. The Hadoop
framework allows this algorithm to span multiple compute
nodes easily, but it suffers from a high data movement over-
head. In total, the algorithm requires several iterations of maps
and reduces. For each map and reduce, Hadoop must not only

shuffle key-value pairs across the network, but it must also
write to disk the output of each map and reduce operation.

We adapt triangle enumeration for heterogeneous hardware
by combining these two existing parallel triangle enumeration
methods to create a new hybrid method. The new method
consists of breaking the graph down into multiple subgraphs,
as demonstrated in Figure 2. The triangles in each subgraph
are then computed using the first method, and the triangles
that span the subgraphs are counted with the second method.
This hybrid combination of the existing methods avoids their
downsides and maximizes their benefits. The first method,
computing A3, only runs on subgraphs, which means that it
will not overflow the memory of the GPUs on the cluster. This
allows the GPUs to be utilized on graphs that are larger than
can fit on a single node. The second method, joining of the
angle and edge lists, no longer has to detect every triangle in
the entire graph, but instead only has to detect the triangles
that span subgraphs. This reduces the data movement overhead
by reducing the number of edges and angles that are emitted
and shuffled across the network by the MapReduce framework.
In Subsection III-B, we describe how we implement this new
hybrid method.

Fig. 2: An example graph that is broken down into subgraphs
by our hybrid triangle enumeration method. The triangles in
the subgraphs are counted on the CPU or GPU with a BLAS
library while the triangles that span the subgraphs are counted
with a MapReduce framework.

III. METHODOLOGY

In this section, we describe the general strategy behind
our portable, high-level graph analytics framework, which
enables both applications to run on heterogeneous HPC and
cloud-based systems. Generally speaking, our framework uses
Apache Spark [10] for automatic data/task distribution and
CUDA/OpenCL (“X”) for local task computation. Figure 3
shows a high-level depiction of this framework.

More specifically, we use Apache Spark for all inter-node
operations (i.e. data movement, task distribution, and global
computation). Such operations include Spark’s built-in func-
tions for broadcasting, reducing, joining, streaming, etc. For



intra-node operations, our framework utilizes computational
libraries (e.g. ScikitCUDA, PyOpenCL, SciPy, and NumPy)
in conjunction with user-written functions.
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Fig. 3: A high-level depiction of our proposed framework,
which uses Spark for data/task distribution in conjunction with
a local computational framework (X) on each node.

Figure 4 shows our two applications (FSK and Trian-
gle Enumeration) written using our framework. The orange
text represents inter-node communication and computation
performed using Spark. The blue text represents the intra-
node computation performed by user-written functions that
utilize PyOpenCL and ScikitCUDA. Note that each application
requires 10 or fewer lines of additional code in order to utilize
Spark and run on distributed systems. This small amount of
programmer overhead allows for massive gains in parallelism
by distributing tasks/data across all the nodes in a distributed
system. Once this distribution is complete, our framework
can utilize any available accelerators local to each node, via
CUDA/OpenCL, to add a level of fine-grained parallelism to
our framework, in addition to the coarse-grained parallelism
provided by Spark.

Unlike most traditional HPC applications, we decided to
forego the use of MPI and instead use Spark for two reasons.

• First, Spark automatically distributes the data/tasks with
a single function call (i.e., sc.parallelize). MPI requires
manual distribution by the programmer.

• Second, Spark is natively fault-tolerant. If a particular
distributed operation fails, Spark automatically detects the
failure and recovers. Fault-tolerance for MPI is not na-
tively supported. While it is possible via extensions to the
library, these extensions induce additional programmer
overhead [11], [12].

Unlike many traditional Big Data applications, we chose to
distribute our data/tasks with Spark rather than Hadoop for
three reasons.

• First, Spark is a memory-based MapReduce framework.
Unlike Hadoop, it is not required to write each interme-
diate state out to disk.

• Second, in addition to map and reduce, Spark sup-
ports a wide-range of high-level functions such as
join, union, intersection, and cartesian.
This greatly reduces the programming overhead for many
common distributed operations.

• Third, Spark supports applications written in Python.
Python has excellent support for calling out to C/C++
libraries. This greatly simplifies the use of BLAS and
GPU libraries for our local task computations.

The following subsections elaborate on the specific imple-
mentation details of both applications.

A. Fast Subtree Kernel - Task Distribution on a Compute-
Bound Application

As mentioned in Subsection II-A, the Fast Subtree Kernel
(FSK) has two major components: the pairwise comparison
of all graphs in a given dataset (coarse-grained parallelism)
and the comparison of all feature vectors within a given pair
of graphs (fine-grained parallelism). As stated in Section III,
Spark is our chosen solution for automatic task distribution.
To this end, we utilize Spark to distribute the pairwise graph
comparison tasks. Once these tasks have been delegated to
nodes, we can run FSK locally on each node and compare
the encoded subtrees of each pair of graphs delegated to
that particular node. Note that graphs are not loaded from
the disk into memory until they are ready to be analyzed.
In most real applications, the dataset would be too large for
all the graphs to fit in memory. For example, applications in
the fields of climate change (sea level rise, carbon footprint),
cancer illness, national nuclear security (real–time evaluation
of urban nuclear detonation), Nuclear Physics (dark matter),
life sciences (biofuels), medical modeling, and design of future
drugs for rapidly changing and evolving viruses all deal with
massive amounts of data. As the data sets examined by these
types of applications grow exponentially, computers today
do not offer enough resources to gather, calculate, analyze,
compute and process them by themselves. Instead, it becomes
necessary to utilize multiple machines simultaneously in order
to process such massive amounts of data.

Much like these applications, FSK faces the challenge of
performing operations across massive datasets. More specifi-
cally, FSK has to perform a pairwise similarity calculation of
every pair of graphs in the dataset it is given. Because of this,
we simply create a list of comparison tasks to be performed,
and we use Spark to distribute these tasks across our nodes.
When a node receives a set of tasks, it loads the appropriate
graphs for each task from disk, executes FSK on the given pair,
and stores the output in a list that is collected by the master
Spark process and used to construct the resulting similarity
matrix.

It is worth noting that not all tasks in this system are compu-
tationally comparable. Executing a set of pairwise comparison
tasks involving many large graphs is much more expensive



con f = SparkConf()
sc = SparkContext(conf=conf)
comp rdd = sc . parallelize ( g raph compar i sons , numSl i ce s =1024)
b r o a d c a s t g r a p h l i s t = sc . broadcast ( e n c o d e d g r a p h l i s t )
comp sim = comp rdd . map ( MapGraphSimilarity )
c o l l e c t e d s i m = comp sim . collect()

(a) FSK Spark code

con f = SparkConf()
sc = SparkContext(conf=conf)
G spark = sc . parallelize (G, numSl i ce s = a r g s . n u m p a r t i t i o n s )
g l o b a l a n g l e s = G spark . mapPartitions ( count triangles )
G zero = G spark . flatMap ( MakeUpperEdgeLis tSpark )
g l o b a l t r i s = g l o b a l a n g l e s . union ( G zero )
g l o b a l t r i s = g l o b a l t r i s . combineByKey ( Combiner , MergeValue , MergeCombiners )
g l o b a l t r i s = g l o b a l t r i s . flatMap ( E m i t T r i a n g l e s S p a r k )
g l o b a l c o u n t = g l o b a l t r i s . count ( )

(b) Triangle Enumeration Spark code

Fig. 4: Spark code snippets from both applications. Function calls highlighted in orange are Spark function calls. Functions
highlighted in blue are user-written functions that are accelerated on the GPU.

than executing a set of tasks involving predominantly small
graphs. Fortunately, Spark provides functionality to overcome
this obstacle as well. The parallelize function used to
split our list of comparison tasks, as shown in Figure 4, also
has an optional second argument which allows the programmer
to specify how many partitions to split the data into. In this
case, we are simply partitioning a list of comparison tasks that
need to be performed. By increasing the number of partitions,
we decrease the number of tasks sent to a node in a given
partition. Spark distributes these partitions out to workers one
at a time, and it sends additional tasks out to workers as they
complete the tasks they have already been assigned. In the
case of FSK, this creates a load-balancing dynamic. Since
the graphs that workers have to examine vary in size, some
comparison tasks will take longer to execute than others. New
partitions of the task list are sent to workers as they complete
their assigned tasks, so nodes with less demanding tasks are
not left idling while other nodes with more computationally
intensive tasks are finishing up their comparisons. In the
case of a cluster with multi-generational hardware, this load-
balancing functionality allows older hardware to contribute to
the computation without creating a bottleneck. Overall, this
helps to ensure that we get the most out of every node on our
HPC system.

1) Interoperating Python and OpenCL: Once the task list
has been partitioned and workers have received their tasks,
FSK can be run one of two ways: using the CPU or using
an accelerator. Another major benefit of Spark is that we
can specify how many executors to spawn on each node.
This enables our framework to provide parallel execution
of tasks on the CPU with no programmer overhead. This

is accomplished by spawning one Spark executor per core.
However, we also wanted to explore whether the GPU is
better suited to handle these pairwise comparisons. Since our
Spark code is written using the python interface of Spark
(i.e. PySpark) and our GPU code is written in OpenCL, we
needed a way to launch OpenCL kernels from Python source
code. PyOpenCL provides exactly the interface needed to do
this, and it does it in a way that is very intuitive, while
requiring very minimal effort on the programmer’s end [13].
When PyOpenCL is enabled, our framework spawns one
Spark executor per GPU. With the combination of Spark
and PyOpenCL, our framework is able to achieve a massive
amount of parallelism in both the coarse-grained and fine-
grained components of FSK, respectively.

B. Triangle Enumeration - Data Distribution on a Data-
Bound Application

As mentioned in Subsection II-B, the hybrid triangle enu-
meration consists of three steps. First, we use Spark to partition
the graph and distribute the subgraphs across the cluster.
Second, we use either CPU or GPU BLAS libraries, SciPy [14]
and ScikitCUDA [15] respectively, to calculate A3 in order to
count the number of triangles in each subgraph. Third and
finally, we again use Spark to count the number of triangles
that span subgraphs and sum up the triangles found in each
subgraph.

Specifically, the partitioning and distribution of the sub-
graphs in done automatically using Spark’s parallelize
function. This function provides an option for manually spec-
ifying the number of partitions, a parameter we explore further
in Subsection IV-C. The local task computations (i.e., calcu-



lating A3) are performed using either SciPy, a python module
that supports sparse matrix multiplication on the CPU, or
ScikitCUDA, a python module that wraps the CUBLAS GPU
library. For both of these BLAS libraries, we calculate A3 by
performing two consecutive symmetric matrix multiplications
(SYMM). One SYMM is used to perform A ∗ A = A2 and
another SYMM is used to perform A2∗A = A3). Determining
where to perform the local computation, either on the CPU or
GPU, is another parameter that is explored in Subsection IV-C.
As shown in Figure 4, the counting of the subgraph-spanning
triangles is done using a combination of Spark’s flatMap,
union, and count methods.

1) Optimizing the Graph Partitioning: It is also important
to note that while we consider changing the number of
partitions that Spark creates when we call parallelize, we
do not attempt to control the content of the partitions for two
reasons. First, the random ER graphs lends themselves well to
uniform, random partitioning. Specifically, when partitioning
an ER graph, the only attribute that affects the characteristics
of the subgraphs is the size of the subgraphs. Spark’s default
partitioning behavior is to make each partition the same size,
which results in the subgraphs all being approximately the
same. This behavior of ER graphs leaves little room for opti-
mization of the content’s partitions since the cost of optimizing
the partitioning would outweigh the benefits. Second, a real-
world use-case of Triangle Enumeration will most likely use
it as a subroutine, meaning that the data will already be
partitioned based on the requirements of the higher-level use-
case. Thus, Triangle Enumeration should avoid reshuffling the
already distributed graph. For these two reasons, we avoid
the use of expensive partitioning algorithms (which we expect
will not improve performance) and allow Spark to partition
the graph into equally-sized subgraphs.

IV. EVALUATION & RESULTS

This section presents our results for both applications (FSK
and triangle enumeration) using our portable, high-level frame-
work described in Section III.

A. Experimental Infrastructure

Both applications were run on a cluster consisting of four
nodes, with a total of 40 CPU cores, connected over a
commodity gigabit ethernet network. The specifications of
each node are detailed in Table I. The nodes in our cluster
were specifically chosen in order to demonstrate the portability
and generality of our framework. The cluster’s hardware spans
both multiple vendors and also multiple architectural genera-
tions. We utilize 3 different generations of NVIDIA GPUs
as well as the latest AMD GPU, which includes the latest
memory technology, High-Bandwidth Memory (HBM), in-
stead of the GDDR5 memory technology used in the NVIDIA
GPUs [16]. The fact that we used the latest GPU architecture
equipped with next-generation memory technology in conjunc-
tion with older hardware proves that our framework is both
forward and backward compatible.

B. Fast Subtree Kernel

The runtime of FSK is examined in two stages. First, we
examine the scalability and portability of running FSK across
multiple nodes in a distributed system. Second, we run FSK on
a single machine in order to examine its runtime on different
components of heterogeneous systems.

1) Multi-Node Scalability: As shown in Figure 5, we
achieve linear scalability for any dataset containing 100 graphs
or more. Note that since runtimes were normalized against the
slowest node, the speedups appear to be super-linear on the
datasets of 100 and 1000 graphs. This is due to the variety
of hardware we used, as shown in Table I. The small amount
of overhead in distributing tasks across nodes is noticeable
in the case of a very small dataset (10 graphs) because the
computation is so trivial. A real-world application examines
thousands (if not millions) of graphs, leading us to conclude
that these results are very promising. Additional nodes can
be added for larger datasets in order to process very large
datasets in short amounts of time. It is worth noting that our
initial experiments on multiple nodes were sub-optimal due
to Spark using a small number of partitions. As mentioned
in Section III, increasing the number of partitions used to
distribute tasks creates an automatic load-balancing system
between Spark’s executor processes. Since we achieved linear
multi-node scalability, we maintain that this technique can be
used to efficiently distribute tasks on any HPC or cloud-based
system.

2) Single-Node Parallelization: The machine used for these
tests is machine 4 in Table I. In addition to achieving the best
runtimes on the GPU, as shown in Figure 6, we demonstrate
the portability of our framework. Since FSK’s compute kernel
is written in OpenCL, it can run on a variety of multi-
core hardware, including both NVIDIA and AMD GPUs. In
conjunction with linear multi-node scalability, this proves that
our framework is suitable for any type of HPC or cloud-
based system, no matter what type(s) of accelerators they are
equipped with.

C. Triangle Enumeration

Previous work has shown that triangle enumeration is a data-
bound application that is sensitive to the data it is operating
on [9]. Dense graphs, like the community subgraphs found
in social networks, are well suited for the GPU while sparse
graphs, like computer network graphs, are well suited for
the CPU. Therefore, the performance of triangle enumeration
is evaluated and optimized in two stages in order to take
advantage of this prior knowledge. First, we analyze the impact
of changing the number of partitions on the performance of
triangle enumeration in an attempt to minimize the overhead
incurred by moving data. Second, we analyze the scenarios
where it is optimal to execute the local computation on the
GPU vs execute the local computation on the CPU. Since our
hybrid triangle enumeration method is implemented with Scik-
itCUDA, these tests are performed using only the machines in
the cluster with NVIDIA GPUs (i.e., machines 1-3 in Table I).



Machine # CPU GPU
1 Intel Xeon E5520 (Dual socket, 4 cores each) NVIDIA K20 (5GB GDDR5)
2 Intel Core i7-5930K (6 cores) NVIDIA GTX 970 (4GB GDDR5)
3 Intel Core i7-950 (4 cores) NVIDIA GTX 470 (1.2GB GDDR5)
4 Intel Core i7-4771 (4 cores) AMD Fury X (4GB HBM)

TABLE I: Specifications of the machines in the cluster used for testing. Note that the cluster consists of both server and
desktop hardware from different vendors, spanning multiple architectural generations, with differing amounts of memory as
well as differing types of memory technology.
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1) Optimizing the Data Movement: Figure 7 shows the
runtime of triangle enumeration when running with 36, 72,
and 144 partitions (which are all multiples of the number of
cores on the cluster) for graphs of a fixed size (i.e., 5000
nodes) with two different edge densities (i.e., .001 and .05).
For a graph density of .001, as shown in Figure 7a, the
fewer the number of partitions, the faster the runtime. In this
case of a sparse graph, the local computation will only find
triangles if the partitions are large enough. If the partitions are
too small, the local computations will find no triangles, and
the entirety of the counting will be performed by the Spark
computation at the end of the application. This will result
in a high amount of inter-node data movement. For a graph
density of .05, as shown in Figure 7c, the greater the number
of partitions, the faster the runtime. In this case of a dense
graph, each individual partition contains a significant number
of triangles and a 4 to 1 mapping of tasks to GPUs means
that multiple kernels can be queued to run on the same GPU.
This allows data transfers to and from the GPU to overlap
with computation on the GPU which reduces the intra-node
data movement costs.

2) Optimizing the Local Computation: Figure 8 shows the
runtime of the local computation of triangle enumeration on
the CPU and on the GPU w.r.t the properties of the graph
(i.e., graph size and density). Figure 8a shows the runtime
of the local computation when running on the CPU using
the sparse matrix multiplication methods provided by SciPy.

In this figure, runtimes above 4 seconds are clipped to 4
seconds. As expected with sparse matrix multiplication, this
method only performs well when the graph is sparse (i.e.,
density ¡ .005). Figure 8b shows the runtime of the local
computation when running on the GPU using dense matrix
multiplication provided by ScikitCUDA, which ultimately uses
NVIDIA’s CUBLAS library. As expected with dense matrix
multiplication, the performance of this method is not affected
by the density of the graph and is only affected by the graph
size. Also expected is that the runtime increases polynomially
w.r.t the graph size, since the size of the adjacency matrix
is N2 where N is the size of the graph. It is important
to note that for very sparse graphs (density ¡ .003), the
CPU implementation actually performs better than the GPU
implementation. For these sparse graphs, especially large ones,
it is not worth the cost of transferring the adjacency matrix to
the GPU.

D. Reproducibility

For anyone interested in reproducing our work, our frame-
work and the two applications are open-source and can
be found at https://github.com/rsearles35/WACCPD-2016. In-
structions for setting up a Spark cluster, running the code, and
ultimately reproducing our results can also be found in the
GitHub repository.

https://github.com/rsearles35/WACCPD-2016
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V. RELATED WORK

Many applications take advantage of heterogeneous hard-
ware using an approach known as MPI+X that lever-
ages MPI for communication and an accelerator language
(e.g., CUDA and OpenCL) or directive-based language
(e.g., OpenMP and OpenACC) for computation. Codes that
utilize MPI+OpenACC include: the electromagnetics code
NekCEM [17], the Community Atmosphere Model - Spectral
Element (CAM-SE) [18], and the combustion code S3D [19].
Codes that utilize MPI+OpenMP include computational fluid
dynamics MFIX [20], Second- order Mller-Plesset perturba-
tion theory (MP2) [21], and Molecular Dynamics [22].

Several prototype MapReduce frameworks have been
specifically designed to take advantage of multi-core CPUs
and GPUs: Mars [23], MapCG [24], and MATE-CG [25].
Unfortunately, they all have limitations which reduce their
portability and incur a much higher programming overhead
than our solution. All three prototypes are restricted to a
single node or GPU, which greatly limits the size of problems
that they can handle. In addition, all three prototypes use
CUDA as their backend GPU language, which limits the
supported hardware to only NVIDIA GPUs. Mars stores all
of the intermediate results in GPU memory, which requires
the user to specify beforehand how much data will be emitted
during the Map phase. This step requires additional effort from
the programmer and is highly error-prone. MapCG uses a C-
like language for its Map and Reduce functions which is
then converted to OpenMP and CUDA code for parallelism.
This restricts the capabilities of the application to their C-like
language, which doesn’t support many of the advanced feature
of CUDA. MATE-CG does not support a Map operation and
limits the user to using only Reduce and Combine opera-
tions, which makes porting existing MapReduce applications
much harder.

Shirahata et al. [26] present a method for scheduling Map
tasks on either the CPU or GPU depending on a dynamic
profile of the task. Chen et al. [27] create a MapReduce
framework that is optimized specifically for AMD’s Fusion
APUs. With the Fusion APU, the GPU shares the same
memory space as the CPU, which enables their framework to
do both pipelining and scheduling of MapReduce tasks across
the CPU and GPU.

VI. CONCLUSION & FUTURE WORK

This paper presents a portable, high-level framework for
combining the MapReduce paradigm with accelerators in order
to run on heterogeneous HPC and cloud-based systems. We
show linear scalability for a compute-bound HPC application,
and we demonstrate effective techniques for optimizing a data-
bound Big Data application. We also demonstrate the portabil-
ity of this solution by collecting results on cluster composed
of multiple generations of differing hardware, including multi-
core Intel CPUs, NVIDIA GPUs, and AMD GPUs.

In the future, we plan to further optimize both applications’
local performance by building a runtime scheduler that would
determine whether to run a given task on the CPU or GPU
based on that task’s characteristics. We will also further exam-
ine the scalability of our solution by running both applications
on larger distributed systems with much larger datasets.
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[7] P. Erdős and A. Rényi, “On random graphs, i,” Publicationes Mathe-

maticae (Debrecen), pp. 290 – 297, 1959.
[8] “Radare2,” Retrieved Sept 7, 2016 from http://rada.re/r/.
[9] T. Johnston, S. Herbein, and M. Taufer, “Exploring scalable implemen-

tations of triangle enumeration in graphs of diverse densities: Apache-
spark vs. gpu,” 2016, gPU Technology Conference (GTC).

[10] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing,”
in Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). San Jose, CA:
USENIX, 2012, pp. 15–28. [Online]. Available: https://www.usenix.
org/conference/nsdi12/technical-sessions/presentation/zaharia

[11] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and
J. J. Dongarra, Recent Advances in the Message Passing Interface:
19th European MPI Users’ Group Meeting, EuroMPI 2012, Vienna,
Austria, September 23-26, 2012. Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, ch. An Evaluation of User-Level
Failure Mitigation Support in MPI, pp. 193–203. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33518-1 24

[12] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar,
“Exploring automatic, online failure recovery for scientific applications
at extreme scales,” in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 895–906.
[Online]. Available: http://dx.doi.org/10.1109/SC.2014.78

[13] A. Klckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“Pycuda and pyopencl: A scripting-based approach to {GPU} run-time
code generation,” Parallel Computing, vol. 38, no. 3, pp. 157 – 174,
2012. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167819111001281

[14] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–, retrieved May 24, 2016 from http://www.scipy.
org/.

[15] L. E. Givon, T. Unterthiner, N. B. Erichson, D. W. Chiang, E. Larson,
L. Pfister, S. Dieleman, G. R. Lee, S. van der Walt, T. M. Moldovan,
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