
Robert Searles, Sunita Chandrasekaran
(rsearles, schandra)@udel.edu

Wayne Joubert, Oscar Hernandez
(joubert,oscar)@ornl.gov

Abstractions and Directives for
Adapting Wavefront Algorithms to

Future Architectures

PASC 2018 June 3, 2018

Motivation

• Parallel programming is software’s future
– Acceleration

• State-of-the-art abstractions handle simple
parallel patterns well

• Complex patterns are hard!

1

Our Contributions

• An abstract representation for wavefront
algorithms

• A performance portable proof-of-concept of
this abstraction using directives: OpenACC
– Evaluation on multiple state-of-the-art platforms

• A description of the limitations of existing
high-level programming models

2

Several ways to accelerate

Directives
Programming

LanguagesLibraries

Applications

Drop in
acceleration

Maximum
Flexibility

Used for easier
acceleration

3

Directive-Based Programming Models

• OpenMP (current version 4.5)
–Multi-platform shared multiprocessing API
– Since 2013, supporting device offloading

• OpenACC (current version 2.6)
– Directive-based model for heterogeneous

computing

4

Serial Example

for	(int i =	0;	i <	N;	i++)	{
c[i]	=	a[i]	+	b[i];

}

5

OpenACC Example

#pragma	acc parallel	loop	independent
for	(int i =	0;	i <	N;	i++)	{

c[i]	=	a[i]	+	b[i];
}

6

Host Code
cudaError_t cudaStatus;

//	Choose	which	GPU	to	run	on,	change	this	on	a	multi-GPU	system.

cudaStatus =	cudaSetDevice(0);

//	Allocate	GPU	buffers	for	three	vectors	(two	input,	one	output)
cudaStatus =	cudaMalloc((void**)&dev_c,	N* sizeof(int));

cudaStatus =	cudaMalloc((void**)&dev_a,	N* sizeof(int));

cudaStatus =	cudaMalloc((void**)&dev_b,	N* sizeof(int));

//	Copy	input	vectors	from	host	memory	to	GPU	buffers.

cudaStatus =	cudaMemcpy(dev_a,	a,	N* sizeof(int),	cudaMemcpyHostToDevice);
cudaStatus =	cudaMemcpy(dev_b,	b,	N* sizeof(int),	cudaMemcpyHostToDevice);

//	Launch	a	kernel	on	the	GPU	with	one	thread	for	each	element.
addKernel<<<N/BLOCK_SIZE,	BLOCK_SIZE>>>(dev_c,	dev_a,	dev_b);

//	cudaThreadSynchronize waits	for	the	kernel	to	finish,	and	returns

//	any	errors	encountered	during	the	launch.

cudaStatus =	cudaThreadSynchronize();

//	Copy	output	vector	from	GPU	buffer	to	host	memory.

cudaStatus =	cudaMemcpy(c,	dev_c,	N* sizeof(int),	cudaMemcpyDeviceToHost);

cudaFree(dev_c);

cudaFree(dev_a);
cudaFree(dev_b);

return cudaStatus;

7

Kernel
__global__ void addKernel(int *c, const int *a, const int *b)
{
int i =	threadIdx.x +	blockIdx.x *	blockDim.x;
c[i]	=	a[i]	+	b[i];

}

CUDA Example

Pattern-Based Approach in Parallel
Computing

• Several parallel patterns
– Existing high-level languages provide abstractions for many

simple patterns
• However there are complex patterns often found in

scientific applications that are a challenge to be
represented with software abstractions
– Require manual code rewrite

• Need additional features/extensions!
– How do we approach this? (Our paper’s contribution)

8

Application Motivation:
Minisweep

• A miniapp modeling wavefront sweep component of
Denovo Radiation transport code from ORNL
– Minisweep, a miniapp, represents 80-90% of Denovo

• Denovo - part of DOE INCITE project, is used to model
fusion reactor – CASL, ITER

• Run many times with different parameters
• The faster it runs, the more configurations we can explore
• Poses a six dimensional problem
• 3D in space, 2D in angular particle direction and 1D in

particle energy

9

Minisweep code status

• Github: https://github.com/wdj/minisweep

• Early application readiness on ORNL Titan

• Being used for #1 TOP500 -> Summit
acceptance testing

• Has been ported to Beacon and Titan (ORNL
machines) using OpenMP and CUDA

10

https://github.com/wdj/minisweep

Minisweep: The Basics

11

Parallelizing Sweep Algorithm

12

Complex Parallel Pattern Identified:
Wavefront

13

1 2 3 4

2

3

4

3 4 5

4 5 6

5 6 7

Complex Parallel Pattern Identified:
Wavefront

14

1 2 3 4

2

3

4

3 4 5

4 5 6

5 6 7

1 2 3 4

2

3

4

3 4 5

4 5 6

5 6 7

Overview of Sweep Algorithm

• 5 nested loops
– X, Y, Z dimensions, Energy Groups, Angles
– OpenACC/PGI only offers 2 levels of parallelism:

gang and vector (worker clause not working
properly)

– Upstream data dependency

15

16

17

Parallelizing Sweep Algorithm: KBA

• Koch-Baker-Alcouffe (KBA)

• Algorithm developed in 1992 at
Los Alamos

• Parallel sweep algorithm that
overcomes some of the
dependencies using a wavefront.

18

To remedy this, the Krylov solver framework in Denovo that
is currently used in the inner one-group space-angle solves
has been expanded to include energy. Including energy in the
Krylov vectors enables the following benefits:

• The energy variable is decoupled allowing groups to be
solved independently.

• Krylov subspace iteration is more efficient and robust
than Gauss-Seidel iteration.

• Preconditioning a Krylov iteration is generally more ro-
bust and stable than accelerating Gauss-Seidel iterations.

Furthermore, including energy in the Krylov vector does not
invalidate any of the existing sweep mechanics that are already
implemented in Denovo, though it does make more parallelism
potentially available to the sweep algorithm.

For multigroup fixed-source problems in the form of Eq. (5),
application of a Krylov method requires the following two
steps:

1) A full energy-space-angle sweep of the right-hand side
source,

q = Tq̂ , (12)

where q̂ is an effective source that could be an external
source (qe), in the case of true fixed-source problems,
or it could be a fission source iterate when nested inside
power iteration.

2) A full energy-space-angle sweep each Krylov iteration to
calculate the action of the operator on the latest iterate,

yℓ = (I − TMS)vℓ , (13)

where vℓ is the Krylov vector in iteration ℓ. We note
that this vector is dimensioned vℓ ≡ {vℓ

g,c,n,l,m} where
g is the energy group, c is the cell index, n is the spatial
unknown index in the cell, and (l, m) are the spherical
harmonic moment indices.

For eigenvalue problems, we have implemented an Arnoldi
Krylov subspace solver using the Trilinos [7] Anasazi package
that can (1) take full advantage of the energy parallelism and
(2) be more efficient than power iteration. Arnoldi iteration
requires the eigenproblem to be written in standard form,

Ax = λx . (14)

Arnoldi iteration can implemented with either an energy-
dependent eigenvector,

Aφ = kφ , A = (I − TMS)−1TMF , (15)

or energy-independent eigenvector

AΓ = kΓ , A = fT (I − TMS)−1TMχ . (16)

In either case, the implementation of Arnoldi iteration requires
a matrix-vector multiply at each Krylov iteration of the form

yℓ = Avℓ . (17)

For the energy-dependent case, we have

zℓ = TMFvℓ , (mat-vec and sweep) (18)
(I − TMS)yℓ = zℓ . (fixed-source solve) (19)

Similarly, for the energy-independent eigenvector the steps are

zℓ = TMχvℓ , (mat-vec multiply and sweep) (20)
(I − TMS)yℓ = zℓ , (fixed-source solve) (21)

yℓ ← fT yℓ . (dot-product) (22)

Both methods require a fixed-source solve each iteration.
We consider both the energy-dependent and independent ap-
proaches because we are uncertain a priori which method will
be optimal for a given problem. The energy-dependent ap-
proach allows parallelization of the eigenvalue solve across en-
ergy at the expense of a much larger eigenvector. The energy-
independent approach allows energy-domain parallelization
over only the fixed-source solve, and the eigenvalue solve is
parallel only over space-angle. However, this decomposition
may be more efficient because the eigenvector is smaller,
especially when work is dominated by the inner multigroup
fixed-source solve.

IV. ACHIEVING PARALLEL SCALABILITY

A. The KBA Sweep Algorithm
The application of the operator T = DL−1 to a vector is a

highly sequential computation; for a regular (x, y, z) grid, the
resulting value along a given angular direction depends on the
results computed for the immediately previous values in the
x, y and z directions. The computational pattern is identical
to that of the well-known Gauss-Seidel and SOR linear solver
methods applied to certain structured grid problems and is
well-known to be difficult to parallelize [21].

Fig. 1. KBA Algorithm Block-Wavefront.

An effective method for parallelizing this computation is the
Koch-Baker-Alcouffe (KBA) algorithm [8]. For this algorithm,
the 3D grid is decomposed into blocks, which are in turn
arranged into block-wavefronts (see Fig. 1) numbered in
sequence from the corner of the grid. Blocks are assigned to
processors by assigning all blocks in the same vertical z stack
to the same processor. Processors can then independently pro-
cess each wavefront one at a time, with face communications
after each wavefront is complete.

This technique effectively parallelizes the computation;
however, parallel performance is stressed by two competing
factors. The early and late parts of the computation perform
at suboptimal efficiency, since these wavefronts have small

Image credit: High Performance
Radiation Transport Simulations:
Preparing for TITAN
C. Baker, G. Davidson, T. M. Evans,
S. Hamilton, J. Jarrell and W.
Joubert, ORNL, USA

Expressing Wavefront via Software
Abstractions – A Challenge

• Existing solutions involve manual rewrites, or
compiler-based loop transformations
– Michael Wolfe. 1986. Loop skewing: the wavefront method

revisited. Int. J. Parallel Program. 15, 4 (October 1986),
279-293. DOI=http://dx.doi.org/10.1007/BF01407876

– Polyhedral frameworks, only support affine loops, ChiLL
and Pluto

• No solution in high-level languages like
OpenMP/OpenACC; no software abstractions

19

Our Contribution:
Create Software Abstractions for

Wavefront pattern

• Analyzing flow of data and computation in
wavefront codes

• Memory and threading challenges
• Wavefront loop transformation algorithm

20

Abstract Parallelism Model

for(iz=izbeg; iz!=izend; iz+=izinc)
for(iy=iybeg; iy!=iyend; iy+=iyinc)
for(ix=ixbeg; ix!=ixend; ix+=ixinc) { // space

for(ie=0; ie<dim_ne; ie++) { // energy
for(ia=0; ia<dim_na; ia++) { // angles

// in-gridcell computation
}

}
}

21

Abstract Parallelism Model

• Spatial decomposition = outer layer (KBA)
– No existing abstraction for this

• In-gridcell computations = inner layer
– Application specific

• Upstream data dependencies
– Slight variation between wavefront applications

22

Data Model

• Storing all previous wavefronts is unnecessary
– How many neighbors and prior wavefronts are

accessed?
• Face arrays make indexing easy
– Smaller data footprint

• Limiting memory to the size of the largest
wavefront is optimal, but not practical

23

Parallelizing Sweep Algorithm: KBA

24

Programming Model Limitations

• No abstraction for wavefront loop
transformation
–Manual loop restructuring

• Limited layers of parallelism
– 2 isn’t enough (worker is broken)
– Asynchronous execution?

25

Experimental Setup
• NVIDIA PSG Cluster

– CPU: Intel Xeon E5-2698 v3 (16-core) and Xeon E5-2690 v2 (10-core)
– GPU: NVIDIA Tesla P100, Tesla V100, and Tesla K40 (4 GPUs per node)

• ORNL Titan
– CPU: AMD Opteron 6274 (16-core)
– GPU: NVIDIA Tesla K20x

• ORNL SummitDev
– CPU: IBM Power8 (10-core)
– GPU: NVIDIA Tesla P100

• PGI OpenACC Compiler 17.10
• OpenMP – GCC 6.2.0

– Issues running OpenMP minisweep code on Titan but works OK on PSG.

26

Input Parameters

• Scientifically
– X/Y/Z dimensions = 64
– # Energy Groups = 64
– # Angles = 32

• Goal is to explore larger spatial dimensions

27

28

Contributions

• An abstract representation of wavefront
algorithms

• A performance portable proof-of-concept of
this abstraction using OpenACC
– Evaluation on multiple state-of-the-art platforms

• A description of the limitations of existing
high-level programming models

29

Next Steps

• Asynchronous execution
• MPI - multi-node/multi-GPU
• Develop a generalization/extension to existing

high-level programming models
– Prototype

30

Preliminary Results/Ongoing Work

• MPI + OpenACC
– 1 node x 1 P100 GPU = 66.79x speedup
– 4 nodes x 4 P100 GPUs/node = 565.81x speedup
– 4 nodes x 4 V100 GPUs/node = 624.88x speedup

• Distributing the workload lets us examine larger
spatial dimensions
– Future: Use blocking to allow for this on a single GPU

31

Takeaway(s)
• Using directives is not magical! Compilers are already doing a lot for

us! J
• Code benefits from incremental improvement – so let’s not give up! J
• *Profiling and Re-profiling is highly critical*
• Look for any serial code refactoring, if need be

– Make the code parallel and accelerator-friendly
• Watch out for compiler bugs and *report them*

– The programmer is not ‘always’ wrong
• Watch out for *novel language extensions and propose to the

committee* - User feedback
– Did you completely change the loop structure? Did you notice a

parallel pattern for which we don’t have a high-level directive yet?

32

Contributions

• An abstract representation of wavefront algorithms
• A performance portable proof-of-concept of this

abstraction using directives, OpenACC
– Evaluation on multiple state-of-the-art platforms

• A description of the limitations of existing high-level
programming models

• Contact: rsearles@udel.edu
• Github: https://github.com/rsearles35/minisweep

33

mailto:rsearles@udel.edu

Additional Material

34

Additional Material

35

36

silica IFPEN, RMM-DIIS on P100

OPENACC GROWING MOMENTUM

Wide Adoption Across Key HPC Codes

3 of Top 5 HPC Applications Use
OpenACC

ANSYS Fluent, Gaussian, VASP

40 core Broadwell 1 P100 2 P100 4 P100
0

1

2

3

4

5

Sp
ee

d-
up

vasp_std (5.4.4)

V A S P , s il ic a IF P E N , R M M - D I IS o n P 1 0 0

* O penA C C port covers m ore V A S P routines than C U D A , O penA C C port p lanned top
dow n, w ith com plete analysis of the call tree, O penA C C port leverages im provem ents in

latest V A S P Fortran source base

silica IFPEN, RMM-DIIS on

P100

CAAR Codes Use
OpenACC

GTC
XGC

ACME

FLASH
LSDalton

OpenACC Dominates in
Climate & Weather

Key Codes Globally

COSMO, IFS(ESCAPE),
NICAM, ICON, MPAS

Gordon Bell Finalist

CAM-SE on Sunway
Taihulight

37

NUCLEAR REACTOR
MODELING PROXY CODE :
MINISWEEP

§Minisweep, a miniapp, represents 80-90% of
Denovo Sn code

§Denovo Sn (discrete ordinate), part of DOE
INCITE project, is used to model fusion reactor
– CASL, ITER

§ Impact: By running Minisweep faster,
experiments with more configurations can be
performed directly impacting the determination
of accuracy of radiation shielding

§Poses a six dimensional problem

§3D in space, 2D in angular particle direction and
1D in particle energy

37

