Problem 5: Whither leads 3n+1?

Background:

The (semi) famous 3n+1 problem concerns the function f(n) whose value is 3n+1 if n is odd and n/2 if n is even. Thus f(3) is 10 and f(10) is 5. When one repeatedly applies f, computing f(x), f(f(x)), f(f(f(x))), etc., the result invariably gets to 1, whereafter it is a continual loop:
1 -> 4 -> 2 -> 1 -> ...
However, mathematicians have not been able to prove that this always occurs. Professor Al Gorthm wants to study this matter and its (he/she/it's from pluto) first question is how many steps are necessary to get to 1 for various numbers. For instance, for 1, zero steps, for 2, one step, and for 3, 7 steps because 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1.

Input:

The input will consist numbers, one per line, ending with a 0 indicating end of input. The numbers will have no more than 40 digits.

Output:

For each number (other than the terminating 0), write the number followed by the number of steps for that number on a line. If any step leads to a number of more than 40 digits, output the number followed by "terms get too big".

Sample Input:

4
13
1
3333333333333333333333333333333333333333
0

Sample Output:

4 2
13 9
1 0
3333333333333333333333333333333333333333 terms get too big