## Similar Matrices.

Definitions:

- 1. Two  $n \times n$  matrices A, B over a field  $\mathbb{F}$  are similar if there exists a nonsingular matrix  $S \in \mathbb{F}$  such that  $A = SBS^{-1}$ . In that case we write  $A \sim B$ .
- 2. A monic polynomial  $f(x) = \sum_{i=0}^{d} f_i x^i$  is a generator of a matrix sequence  $A_0, A_1, \ldots, A_i, \ldots$  if  $0 = \sum_{i=0}^{d} f_i A_{i+k}$ , for all integer  $k \ge 0$ . Note that the sequence is completely determined by  $f_0, f_1, \ldots, f_d = 1$  and  $A_0, A_1, \ldots, A_{d-1}$ , since  $A_{d+k} = -\sum_{i=0}^{d-1} f_i A_{i+k}$ .
- 3. The minimal polynomial minpoly for short of square matrix A is the monic polynomial  $m_A(x) = \sum_{i=0}^d m_i x^i$  of minimal degree d such that  $0 = m_A(A) = \sum_{i=0}^d m_i A^i$ . Note that the minimal polynomial of A is the minimal degree generator of the matrix power sequence  $A^i, i = 0, 1, 2, ...$
- 4. The characteristic polynomial charpoly for short of a square matrix A is the determinant of xI A.
- 5. Let  $f(x) \in F[x]$  be a monic polynomial of degree d. The companion matrix,  $C_f$ , of f is the matrix in  $\mathbb{F}^{d \times d}$  with 1's on the first subdiagonal and  $-f_i$  in the last column of row i (zero based indexing). For example, for  $f(x) = x^3 + 2x^2 3x + 1$ ,

$$C_f = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 3 \\ 0 & 1 & -2 \end{pmatrix}.$$

6. A field is *perfect* if every irreducible polynomial over the field has distinct roots. All fields discussed in this course are perfect: subfields of the complex numbers and finite fields.

Facts (theorems we take for granted, or have easy proof):

- 1. For a polynomial f(x), if A satisfies f(x), i.e. f(A) = 0, then minpoly(A) divides f.
- 2. A matrix satisfies its charpoly, which is to say, minpoly(A) divides charpoly(A).
- 3. Let  $m_A(x)$  denote the minpoly of  $A \in \mathbb{F}^{n \times n}$  and of the matrix sequence  $I, A, A^2, \ldots$  Let  $m_{A,v}(x)$  and  $m_{u,A,v}(x)$ , for u, v column vectors in  $\mathbb{F}^n$ , denote the minpolys of the matrix sequences  $v, Av, A^2v, \ldots$  and  $u^Tv, u^TAv, u^TA^2v, \ldots$  respectively. The shapes of these sequences are  $n \times 1$  and  $1 \times 1$ . Finally let  $c_A(x)$  denote the charpoly of A. We have:

$$m_{u,A,v} \mid m_{A,v} \mid m_A \mid c_A.$$

- 4. For any monic polynomial f(x) and its companion matrix  $C_f$ , we have  $f = \text{minpoly}(C_f) = \text{charpoly}(C_f)$ .
- 5.  $\lambda$  (possibly in an extension field of the coefficient field) is a root of minpoly(A) if and only if  $\lambda$  is an eigenvalue of A.
- 6. Similar matrices have the same eigenvalues, the same minpoly, the same charpoly.
- 7. Call  $\hat{f} = f_1(x), f_2(x), f_3(x), \ldots$  a factor list if  $f_i|f_{i-1}$  for i > 0 and each  $f_i$  is monic. If some  $f_k = 1$  (and thus all succeeding terms are 1 as well), the factor list is said to be *effectively finite*. We are interested only in effectively finite factor lists and are using formally infinite lists only for notational simplicity.
- 8. Each square matrix A has a unique associated factor list  $\hat{f}(A) = f_1(x), f_2(x), \ldots$ The nontrivial (not 1)  $f_i$  are the *invariant factors* of A. The minimal polynomial of A is  $f_1$  and the characteristic polynomial of A is  $\prod_i f_i$ .
- 9. Two matrices are similar if and only if they have the same invariant factor list.
- 10. Each similarity class contains a matrix in *Frobenius Normal Form* (also called Rational Canonical Form), which is a matrix of diagonal blocks, each being the companion matrix of an invariant factor:  $\bigoplus_i C_{f_i}$ .
- 11. If f(x) = g(x)h(x) with gcd(g,h) = 1, then  $C_f \sim C_g \bigoplus C_h$ .
- 12.  $C_{f^2} \not\sim C_f \bigoplus C_f$ .
- 13. Each similarity class contains a matrix in *Generalized Jordan Normal* Form (also called Primary Canonical Form), which is a matrix of diagonal blocks, each being the companion matrix of a power of an irreducible polynomial:  $\bigoplus_{i,j} C_{g_i^{e_{i,j}}}$ . Specifically, let  $f_1, f_2, \ldots, f_k$  be the irreducible factors of a given matrix A. The  $g_i, g_2, \ldots, g_l$  are the irreducible factors of  $f_1$ , the minimal polynomial of A. The exponent  $e_{i,j}$  is the exponent of  $g_i$  as a factor of  $f_j$ . Note that for each i the exponent list  $e_{i,1}, e_{i,2}, \ldots, e_{i,k}$ is nonincreasing and may end in zeroes.

|       | $f_1$     | $f_2$     | $f_3$     | $f_4$     |
|-------|-----------|-----------|-----------|-----------|
| $g_1$ | $e_{1,1}$ | $e_{1,2}$ | $e_{1,3}$ | $e_{1,4}$ |
| $g_2$ | $e_{2,1}$ | $e_{2,2}$ | $e_{2,3}$ | $e_{2,4}$ |
| $g_3$ | $e_{3,1}$ | $e_{3,2}$ | $e_{3,3}$ | $e_{3,4}$ |
| $g_4$ | $e_{4,1}$ | $e_{4,2}$ | $e_{4,3}$ | $e_{4,4}$ |

For example, if the invariant factors are

$$\begin{array}{rcl} f_1 &=& (x-1)^3(x+1)^2(x-2)^4(x^2+x+1)\\ f_2 &=& (x-1)^2(x+1)^2(x-2)^1(x^2+x+1)\\ f_3 &=& (x-1)(x-2)\\ f_4 &=& 1, \end{array}$$

Then the exponent table is

|               | $f_1 = m_A$ | $f_2$ | $f_3$ | $c_A = \prod_i f_i$ |
|---------------|-------------|-------|-------|---------------------|
| x-1           | 3           | 2     | 1     | 6                   |
| x+1           | 2           | 2     | 0     | 4                   |
| x-2           | 4           | 1     | 1     | 6                   |
| $x^2 + x + 1$ | 1           | 1     | 0     | 2                   |

Note that the order of the rows is arbitrary, but the order of the columns is not.

|   |    |   |   |   |   |    |    |    |    | ······ |   |   |   |   |   |   |         |   |         |
|---|----|---|---|---|---|----|----|----|----|--------|---|---|---|---|---|---|---------|---|---------|
| 1 |    |   |   |   |   |    |    |    |    |        |   |   |   |   |   |   |         |   |         |
|   | -1 |   |   |   |   |    |    |    |    |        |   |   |   |   |   |   |         |   |         |
| 1 | T  |   |   |   |   |    |    |    |    |        |   |   |   |   |   |   |         |   |         |
|   | 1  | 1 |   |   |   |    |    |    |    |        |   |   |   |   |   |   |         |   |         |
|   | 1  | - |   |   |   |    |    |    |    |        |   |   |   |   |   |   |         |   |         |
|   |    |   | 1 |   |   |    |    |    |    |        |   |   |   |   |   |   |         |   |         |
|   |    |   | 1 | 1 |   |    |    |    |    |        |   |   |   |   |   |   |         |   |         |
|   |    |   | 1 | 1 |   |    |    |    |    |        |   |   |   |   |   |   |         |   |         |
|   |    |   |   |   | 1 |    |    |    |    |        |   |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   | -1 |    |    |    |        |   |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   | -  | -  |    |    |        |   |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   | 1  | -1 |    |    |        |   |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    | -1 |    |        |   |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    | 1  | 1  |        |   |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    | 1  | -1 |        |   |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    | 2      |   |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    | -      | ~ |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    | 1      | 2 |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    |        | 1 | 2 |   |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    |        | 1 | - | ~ |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    |        |   | 1 | 2 |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    |        |   |   |   | 2 |   |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    |        |   |   |   |   | 2 |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    |        |   |   |   |   | 2 |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    |        |   |   |   |   |   |   | -1      |   |         |
|   |    |   |   |   |   |    |    |    |    |        |   |   |   |   |   | 1 | -       |   |         |
|   |    |   |   |   |   |    |    |    |    |        |   |   |   |   |   | 1 | $^{-1}$ |   |         |
|   |    |   |   |   |   |    |    |    |    |        |   |   |   |   |   |   |         |   |         |
|   |    |   |   |   |   |    |    |    |    |        |   |   |   |   |   |   |         |   | $^{-1}$ |
|   |    |   |   |   |   |    |    |    |    |        |   |   |   |   |   |   |         | 1 | -1      |

The matrix A is similar to



| 0 |   |   |   |   |   |   |   |   |   | * |   |   |   |   |   |   |   |          |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----------|---|
|   | 0 |   |   |   |   |   |   |   |   | Ŧ |   |   |   |   |   |   |   |          |   |
|   | 0 |   |   |   |   |   |   |   |   | * |   |   |   |   |   |   |   |          |   |
|   | 1 | 0 |   |   |   |   |   |   |   | * |   |   |   |   |   |   |   |          |   |
|   |   | 1 | 0 |   |   |   |   |   |   | * |   |   |   |   |   |   |   |          |   |
|   |   |   | 1 | 0 |   |   |   |   |   | * |   |   |   |   |   |   |   |          |   |
|   |   |   |   | 1 | 0 |   |   |   |   | * |   |   |   |   |   |   |   |          |   |
|   |   |   |   |   | 1 | 0 |   |   |   | * |   |   |   |   |   |   |   |          |   |
|   |   |   |   |   |   | 1 | 0 |   |   | * |   |   |   |   |   |   |   |          |   |
|   |   |   |   |   |   | _ | 1 | Ο |   | 4 |   |   |   |   |   |   |   |          |   |
|   |   |   |   |   |   |   | T | 1 | ~ | Ť |   |   |   |   |   |   |   |          |   |
|   |   |   |   |   |   |   |   | 1 | 0 | * |   |   |   |   |   |   |   |          |   |
|   |   |   |   |   |   |   |   |   | 1 | * |   |   |   |   |   |   |   |          |   |
|   |   |   |   |   |   |   |   |   |   |   | 0 |   |   |   |   |   | * |          |   |
|   |   |   |   |   |   |   |   |   |   |   | 1 | 0 |   |   |   |   | * |          |   |
|   |   |   |   |   |   |   |   |   |   |   |   | 1 | 0 |   |   |   | * |          |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   | 1 | 0 |   |   | * |          |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   | 1 | 0 |   | * |          |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 1 | 0 | * |          |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 1 | * |          |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 0        | * |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 1        | * |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | <u> </u> |   |