Similar Matrices.

Definitions:

1. Two $n \times n$ matrices A, B over a field \mathbb{F} are similar if there exists a nonsingular matrix $S \in \mathbb{F}$ such that $A=S B S^{-1}$. In that case we write $A \sim B$.
2. A monic polynomial $f(x)=\sum_{i=0}^{d} f_{i} x^{i}$ is a generator of a matrix sequence $A_{0}, A_{1}, \ldots, A_{i}, \ldots$ if $0=\sum_{i=0}^{d} f_{i} A_{i+k}$, for all integer $k \geq 0$. Note that the sequence is completely determined by $f_{0}, f_{1}, \ldots, f_{d}=1$ and $A_{0}, A_{1}, \ldots, A_{d-1}$, since $A_{d+k}=-\sum_{i=0}^{d-1} f_{i} A_{i+k}$.
3. The minimal polynomial - minpoly for short - of square matrix A is the monic polynomial $m_{A}(x)=\sum_{i=0}^{d} m_{i} x^{i}$ of minimal degree d such that $0=m_{A}(A)=\sum_{i=0}^{d} m_{i} A^{i}$. Note that the minimal polynomial of A is the minimal degree generator of the matrix power sequence $A^{i}, i=0,1,2, \ldots$.
4. The characteristic polynomial - charpoly for short - of a square matrix A is the determinant of $x I-A$.
5. Let $f(x) \in F[x]$ be a monic polynomial of degree d. The companion matrix, C_{f}, of f is the matrix in $\mathbb{F}^{d \times d}$ with 1 's on the first subdiagonal and $-f_{i}$ in the last column of row i (zero based indexing). For example, for $f(x)=x^{3}+2 x^{2}-3 x+1$,

$$
C_{f}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
1 & 0 & 3 \\
0 & 1 & -2
\end{array}\right)
$$

6. A field is perfect if every irreducible polynomial over the field has distinct roots. All fields discussed in this course are perfect: subfields of the complex numbers and finite fields.

Facts (theorems we take for granted, or have easy proof):

1. For a polynomial $f(x)$, if A satisfies $f(x)$, i.e. $f(A)=0$, then minpoly (A) divides f.
2. A matrix satisfies its charpoly, which is to say, minpoly (A) divides charpoly(A).
3. Let $m_{A}(x)$ denote the minpoly of $A \in \mathbb{F}^{n \times n}$ and of the matrix sequence I, A, A^{2}, \ldots Let $m_{A, v}(x)$ and $m_{u, A, v}(x)$, for u, v column vectors in \mathbb{F}^{n}, denote the minpolys of the matrix sequences $v, A v, A^{2} v, \ldots$ and $u^{T} v, u^{T} A v, u^{T} A^{2} v, \ldots$ respectively. The shapes of these sequences are $n \times 1$ and 1×1. Finally let $c_{A}(x)$ denote the charpoly of A. We have:

$$
m_{u, A, v}\left|m_{A, v}\right| m_{A} \mid c_{A}
$$

4. For any monic polynomial $f(x)$ and its companion matrix C_{f}, we have $f=\operatorname{minpoly}\left(C_{f}\right)=\operatorname{charpoly}\left(C_{f}\right)$.
5. λ (possibly in an extension field of the coefficient field) is a root of minpoly (A) if and only if λ is an eigenvalue of A.
6. Similar matrices have the same eigenvalues, the same minpoly, the same charpoly.
7. Call $\hat{f}=f_{1}(x), f_{2}(x), f_{3}(x), \ldots$ a factor list if $f_{i} \mid f_{i-1}$ for $i>0$ and each f_{i} is monic. If some $f_{k}=1$ (and thus all succeeding terms are 1 as well), the factor list is said to be effectively finite. We are interested only in effectively finite factor lists and are using formally infinite lists only for notational simplicity.
8. Each square matrix A has a unique associated factor list $\hat{f}(A)=f_{1}(x), f_{2}(x), \ldots$. The nontrivial (not 1) f_{i} are the invariant factors of A. The minimal polynomial of A is f_{1} and the characteristic polynomial of A is $\prod_{i} f_{i}$.
9. Two matrices are similar if and only if they have the same invariant factor list.
10. Each similarity class contains a matrix in Frobenius Normal Form (also called Rational Canonical Form), which is a matrix of diagonal blocks, each being the companion matrix of an invariant factor: $\bigoplus_{i} C_{f_{i}}$.
11. If $f(x)=g(x) h(x)$ with $\operatorname{gcd}(g, h)=1$, then $C_{f} \sim C_{g} \bigoplus C_{h}$.
12. $C_{f^{2}} \nsim C_{f} \bigoplus C_{f}$.
13. Each similarity class contains a matrix in Generalized Jordan Normal Form (also called Primary Canonical Form), which is a matrix of diagonal blocks, each being the companion matrix of a power of an irreducible polynomial: $\bigoplus_{i, j} C_{g_{i}}^{e_{i, j}}$. Specifically, let $f_{1}, f_{2}, \ldots, f_{k}$ be the irreducible factors of a given matrix A. The $g_{i}, g_{2}, \ldots, g_{l}$ are the irreducible factors of f_{1}, the minimal polynomial of A. The exponent $e_{i, j}$ is the exponent of g_{i} as a factor of f_{j}. Note that for each i the exponent list $e_{i, 1}, e_{i, 2}, \ldots, e_{i, k}$ is nonincreasing and may end in zeroes.

	f_{1}	f_{2}	f_{3}	f_{4}
g_{1}	$e_{1,1}$	$e_{1,2}$	$e_{1,3}$	$e_{1,4}$
g_{2}	$e_{2,1}$	$e_{2,2}$	$e_{2,3}$	$e_{2,4}$
g_{3}	$e_{3,1}$	$e_{3,2}$	$e_{3,3}$	$e_{3,4}$
g_{4}	$e_{4,1}$	$e_{4,2}$	$e_{4,3}$	$e_{4,4}$

For example, if the invariant factors are

$$
\begin{aligned}
& f_{1}=(x-1)^{3}(x+1)^{2}(x-2)^{4}\left(x^{2}+x+1\right) \\
& f_{2}=(x-1)^{2}(x+1)^{2}(x-2)^{1}\left(x^{2}+x+1\right) \\
& f_{3}=(x-1)(x-2) \\
& f_{4}=1
\end{aligned}
$$

Then the exponent table is

	$f_{1}=m_{A}$	f_{2}	f_{3}	$c_{A}=\prod_{i} f_{i}$
$x-1$	3	2	1	6
$x+1$	2	2	0	4
$x-2$	4	1	1	6
$x^{2}+x+1$	1	1	0	2

Note that the order of the rows is arbitrary, but the order of the columns is not.
The matrix A is similar to

$\begin{array}{\|lll\|} \hline 1 & & \\ 1 & 1 & \\ & 1 & 1 \end{array}$									
	$\begin{array}{ll} \hline 1 & \\ 1 & 1 \end{array}$								
		1							
			$\begin{array}{cc}-1 & \\ 1 & -1\end{array}$						
				$\begin{array}{cc}-1 & \\ 1 & -1\end{array}$					
					$\begin{array}{\|llll} \hline 2 & & & \\ 1 & 2 & & \\ & 1 & 2 & \\ & & 1 & 2 \end{array}$				
						2			
							2		
								年 $\begin{aligned} & -1 \\ & 1\end{aligned}$	
									-1 1 -1

