Problem definitions:

- Det: Given $A \in \mathbb{F}^{n \times n}$, compute determinant of A.
- Rank: Given $A \in \mathbb{F}^{n \times m}$, compute rank of A.
- LinSol: Given $A \in \mathbb{F}^{n \times m}, b \in \mathbb{F}^{n}$, find $x \in \mathbb{F}^{m}$ such that $A x=b$.
- RNull: Given $A \in \mathbb{F}^{n \times m}$, find $x \in \mathbb{F}^{m}$ such that $A x=0$, a uniformly random sample of the right nullspace of A..
- Minp: Given $A \in \mathbb{F}^{n \times n}$, compute minimal polynomial of A.
- Charp: Given $A \in \mathbb{F}^{n \times n}$, compute characteristic polynomial of A.
- Frob: Given $A \in \mathbb{F}^{n \times n}$, compute the invariant factors of of A.
- s-Frob: Given $A \in \mathbb{F}^{n \times n}$, compute the first s invariant factors of of A.

A similarity class is characterized by a table of elementary divisors, $g_{i}^{e_{i, j}}$, where $g_{1}, \ldots g_{k}$ is an enumeration of the occurring irreducible factors and $e_{i, j}$ is the exponent of g_{i} in the j-th invariant factor, $f_{j}=\prod_{i} g_{i}^{e_{i, j}}$.

An s invariant factor matrix is a matrix that has at most s non constnt invariant factors. An s, d-elementary divisor matrix is a matrix in which f_{s} is square free with at most d irreducible factors occurring. The idea behind this definition is that we will have good algorithms for problem Frob when d and s are not too large.

For this discussion suppose that A is a sparse or structured matrix such that the cost of matrix vector product is soft- $\mathrm{O}(n)$. In other words $m v_{A}(x)=n^{\alpha}$, where $\alpha=1+o(1)$. For instance, A may be sparse with 7 nonzeroes per row or A may be Toeplitz with matrix vector cost $\mathrm{O}(n \log (n))$. Also let A be over any finite field. In other words we propose to conquer the small field problem without the painful-in-practice $\mathrm{O}(\log (n))$ cost of using an extension field.

An algorithm is Monte Carlo if it is randomized and a wrong result is possible. ϵ is an upper bound on the the probability of error. For instance if $\lg (1 / \epsilon)=20$, there is at most a one in 2^{20} (about 1 in a million) chance of error.

An algorith is Las Vegas if it is randomized but will never return a wrong result, but bad luck may lead to a longer run time. In this case the given run time is the expected run time.

Observations:

1. Wiedemann's algorithm solves Minp $=1$-Frob at $\operatorname{cost} \mathrm{O}\left(n^{2} \log (1 / \epsilon)\right.$, Monte Carlo. (Las Vegas if minimum polynomial equals characteristic polynomial.)
2. Block wiedemann (to be presented next time) with blocksize $\mathrm{O}(s)$ solves s-Frob at cost $\mathrm{O}\left(n^{2}\right)$, if s is constant, Monte Carlo.
3. Frob implies Det, Rank, Minp, Charp in the same run time
4. For matrices A which are s invariant factor matrices, Block Wiedemann with blocksize $\mathrm{O}(s)$ solves Frob, Las Vegas. at cost $\mathrm{O}\left(n^{2}\right)$. (most matrices)
5. For matrices A which are s, 1-elementary divisor matrices, Block Wiedemann with blocksize $\mathrm{O}(s)$ solves Frob at cost $\mathrm{O}\left(n^{2}\right)$, Monte Carlo. (more matrices, particularly many of low rank)
6. For matrices A which are $s, 2$-elementary divisor matrices, Block Wiedemann with blocksize $\mathrm{O}(s)$ with a trace trick solves Frob at cost $\mathrm{O}\left(n^{2}\right)$, Monte Carlo. (a few more matrices)
7. For matrices A which are s, d-elementary divisor matrices, small d, Block Wiedemann with blocksize $\mathrm{O}(s)$ with a few more tricks (and more cost) solves Frob at cost $\mathrm{O}\left(n^{2}\right)$, Monte Carlo. (still more matrices)
8. For matrices A which are not s, d-elementary divisor matrices, small d, Block Wiedemann with blocksize $\mathrm{O}(s)$ with a discrete log trick (and more cost) solves Charp, Monte Carlo.
9. LinSol \leftrightarrow RNull.
10. For matrices A such that $x^{2} \not \backslash f_{1}$, Wiedemann or Block Wiedemann solves LinSol and RNull at cost $\mathrm{O}\left(n^{2}\right)$.
11. For matrices A such that $x^{2} \backslash f_{s}$ and ..., Block Wiedemann with blocksize $\mathrm{O}(s)$ solves LinSol and RNull at cost $\mathrm{O}\left(n^{2}\right)$.

Proof sketches

$5 f_{s}=f_{s+1}=f_{s+2}=\ldots$ until the degrees add up to n.
6 We have $f_{s}=g h$, a product of two irreducibles. The characteristic polynomial is $g^{k} h^{l} \prod_{i=1 . . s} f_{i}$ for some nonnegative k, l. Two linear relations on k, l are easily obtained. One considers the degree; the second considers the trace.
degree: $n=k \operatorname{deg}(g)+l \operatorname{deg}(h)+\sum_{i=1 . . s} \operatorname{deg}\left(f_{i}\right)$.
trace: $\operatorname{tr}(A)=k \operatorname{tr}(g)+l \operatorname{tr}(h)+\sum_{i=1 . . s} \operatorname{tr}\left(f_{i}\right)$.
If these are independent they determine k and l. If the conditions are dependent there may still be a unique solution in which k, l are nonnegative integers.

7 Log/Det discussion...
8 Same as item above, but we don't have that the last known invariant factor is square free. We get the algebraic multiplicity of the irreducibles but not the geometric multiplicity.

9 LinSol \leftrightarrow RNull.
RNull by way of LinSol: Let $r \in \mathbb{F}^{m}$ be random. Solve $A x=A r$. Return $x-r$. LinSol by way of RNull: Apply RNull to (A, b) obtaining vector $v \in \mathbb{F}^{n+1}$ and scalar $v_{b} \in \mathbb{F}$ such that $(A, b)\left(v, v_{b}\right)^{T}=0$. If the system is consisitent the probability that $v_{b}=0$ is $1 / q$ for field size q. For $v_{b} \neq 0$ the solution is $A\left(-1 / v_{b}\right) v=b$.

10 The minpoly has the form $f_{1}(x)=f(x) x$, where $f(0) \neq 0$. The image and kernel of A are complementary. Choose random vector r. Then $f(A) r$ is a random sample of the right nullspace of A.

11 The minpoly has the form $f_{1}(x)=f(x) x^{k_{1}}$, where $f(0) \neq 0$. The image and kernel of A not complementary. Reduce the problem to the nilpotent part. Consider that nilpotent part of A is similar to a block diagonal of the form $\oplus J\left(x, k_{i}\right)$, where there are not too many k_{i} and they are not too large. Push through the details.

0									
1	0								
	1	0							
		0							
		1	0						
			0						
				0					
			0						
				0					
					0				
						0			

