Invariant factors and Elementary Divisors

Problem definitions:
e Det: Given A € F"*™ compute determinant of A.
e Rank: Given A € F™*™ compute rank of A.
e LinSol: Given A € F™"*™ b € F”, find « € F™ such that Ax = b.

e RNull: Given A € F"*™_ find x € F™ such that Az = 0, a uniformly
random sample of the right nullspace of A..

e Minp: Given A € F"*", compute minimal polynomial of A.

e Charp: Given A € F™"*™ compute characteristic polynomial of A.

e Frob: Given A € F"*" compute the invariant factors of of A.

e s-Frob: Given A € F"*™ compute the first s invariant factors of of A.

A similarity class is characterized by a table of elementary divisors, gf o
where g1, ... gx is an enumeration of the occurring irreducible factors and e; ; is
the exponent of g; in the j-th invariant factor, f; =[], ;"

An s invariant factor matriz is a matrix that has at most s non constnt
invariant factors. An s, d-elementary divisor matriz is a matrix in which f, is
square free with at most d irreducible factors occurring. The idea behind this
definition is that we will have good algorithms for problem Frob when d and s
are not too large.

For this discussion suppose that A is a sparse or structured matrix such that
the cost of matrix vector product is soft-O(n). In other words muva(x) = n®,
where @ = 1 4 o(1). For instance, A may be sparse with 7 nonzeroes per row
or A may be Toeplitz with matrix vector cost O(nlog(n)). Also let A be over
any finite field. In other words we propose to conquer the small field problem
without the painful-in-practice O(log(n)) cost of using an extension field.

An algorithm is Monte Carlo if it is randomized and a wrong result is pos-
sible. € is an upper bound on the the probability of error. For instance if
lg(1/€) = 20, there is at most a one in 220 (about 1 in a million) chance of error.

An algorith is Las Vegas if it is randomized but will never return a wrong
result, but bad luck may lead to a longer run time. In this case the given run
time is the expected run time.

Observations:

1. Wiedemann’s algorithm solves Minp = 1-Frob at cost O(n? log(1/¢), Monte
Carlo. (Las Vegas if minimum polynomial equals characteristic polyno-
mial.)

2. Block wiedemann (to be presented next time) with blocksize O(s) solves
s-Frob at cost O(n?), if s is constant, Monte Carlo.
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Frob implies Det, Rank, Minp, Charp in the same run time

For matrices A which are s invariant factor matrices, Block Wiedemann
with blocksize O(s) solves Frob, Las Vegas. at cost O(n?). (most matrices)

For matrices A which are s, 1-elementary divisor matrices, Block Wiede-
mann with blocksize O(s) solves Frob at cost O(n?), Monte Carlo. (more
matrices, particularly many of low rank)

For matrices A which are s, 2-elementary divisor matrices, Block Wiede-
mann with blocksize O(s) with a trace trick solves Frob at cost O(n?),
Monte Carlo. (a few more matrices)

For matrices A which are s, d-elementary divisor matrices, small d, Block
Wiedemann with blocksize O(s) with a few more tricks (and more cost)
solves Frob at cost O(n?), Monte Carlo. (still more matrices)

For matrices A which are not s, d-elementary divisor matrices, small d,
Block Wiedemann with blocksize O(s) with a discrete log trick (and more
cost) solves Charp, Monte Carlo.

LinSol <+ RNull.

For matrices A such that z? [f;, Wiedemann or Block Wiedemann solves
LinSol and RNull at cost O(n?).

For matrices A such that 22 Jf, and ..., Block Wiedemann with blocksize
O(s) solves LinSol and RNull at cost O(n?).

Proof sketches

5 fs = fs+1 = fst2 = ... until the degrees add up to n.

6 We have f; = gh, a product of two irreducibles. The characteristic poly-

nomial is ¢gFh! [L,—, . fi for some nonnegative k,l. Two linear relations
on k, I are easily obtained. One considers the degree; the second considers
the trace.

degree: n = kdeg(g) + ldeg(h) +3,_, ,deg(f).

trace: tr(A) = ktr(g) + itr(h) + >, ,tr(fi).

If these are independent they determine k£ and [. If the conditions are de-
pendent there may still be a unique solution in which k,[ are nonnegative
integers.

Log/Det discussion...

Same as item above, but we don’t have that the last known invariant
factor is square free. We get the algebraic multiplicity of the irreducibles
but not the geometric multiplicity.
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LinSol <+ RNull.

RNull by way of LinSol: Let r € F™ be random. Solve Az = Ar. Return
x — r. LinSol by way of RNull: Apply RNull to (A,b) obtaining vector
v € F"™! and scalar v, € F such that (4,b)(v,v,)T = 0. If the system is
consisitent the probability that v, = 0 is 1/q for field size q. For v, # 0
the solution is A(—1/vp)v = b.

The minpoly has the form fi(x) = f(z)x, where f(0) # 0. The image and
kernel of A are complementary. Choose random vector r. Then f(A)r is
a random sample of the right nullspace of A.

The minpoly has the form fi(x) = f(x)x*, where f(0) # 0. The image
and kernel of A not complementary. Reduce the problem to the nilpotent
part. Consider that nilpotent part of A is similar to a block diagonal of
the form @®J(z, k;), where there are not too many k; and they are not too
large. Push through the details.
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