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Abstract

Estimating the parameters of an elastic or poroelastic medium from
reflected or transmitted acoustic data is an important, but difficult prob-
lem. Use of the Nelder-Mead simplex method to minimize an objective
function measuring the discrepancy between some observable and its value
calculated from a model for a trial set of parameters has been tried by
several authors. In this article the difficulty with this direct approach,
which is the existence of numerous local minima of the objective function,
is documented for the in vitro experiment in which a specimen in a wa-
ter tank is subject to an ultrasonic pulse. An indirect approach, based
on numerical solution of the equations for a set ”effective” velocities and
transmission coefficients, is then observed empirically to ameliorate the
difficulties posed by the direct approach.
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1 Introduction

Cancellous bone is a two component material consisting of a calcified bone ma-
trix, composed of rod shaped trabeculae, with interstitial fatty marrow. The
bone disease osteoporosis is the result of the thinning of the trabecular ma-
trix. As cancellous bone is poroelastic, Biot’s mathematical model [Biot, 1956a],
[Biot, 1956b], [Biot, 1962a], [Biot, 1962b] of a poroelastic medium is applicable.
Early attempts to model observations using the Biot model met with mixed
success. The article of [Haire & Langton, 1999] provides a good review of the
attempts to apply the Biot model to cancellous bone prior to the year 2000.

One means of exploring the structure of cancellous bone is the in vitro exper-
iment, in which a small rectangular or cylindrical element of excised bone placed
in water tank is subjected to an ultrasonic pulse. Such an experiment conducted
by [Hosokawa & Otani, 1997], led to the observation of two images of the inci-
dent pulse arriving at the receiver at different times. The existence of two com-
pressional waves of different velocities is a prediction of the Biot model for an
isotropic medium. Subsequently [Fellah et al. , 2004] and [Sebaa et al. , 2006]
showed that observed transmitted waveforms were in good agreement with the
predictions of the modification of the Biot model due to [Johnson et al. , 1987].

Estimating the parameters of an elastic or poroelastic medium from reflected
or transmitted acoustic data is an important, but difficult problem. A good dis-
cussion of the possible approaches and difficulties in the recovery of bathymetric
and bottom parameters in ocean acoustics can be found in [Gerstoft, 1994]. The
problem of recovering the parameters of cancellous bone has been explored by
[Buchanan et al. , 2002],[Buchanan et al. , 2004],[Buchanan & Gilbert, 2007], and
[Sebaa et al. , 2006]. The approach in these articles was direct use of the Nelder-
Mead simplex method to minimize an objective function measuring the discrep-
ancy between some observable and its value calculated from a model for a trial
set of parameters. In this article the difficulty with the direct approach, which
is the existence of numerous local minima of the objective function, is docu-
mented for the in vitro experiment. An alternative approach, taken for instance
by [Chotiros, 2002] in finding the Biot parameters for water-saturated sands, is
numerical solution of a system of equations. This requires an equal number of
observables and unknowns. This approach, based on numerical solution of the
equations for a set ”effective” velocities and transmission coefficients, will be
considered in this article.

2 The mathematical model

A water-tank experiment similar as to those conducted by [Hosokawa & Otani, 1997],
[Fellah et al. , 2004] and [Sebaa et al. , 2006] is illustrated in Figure 1 and de-
scribed mathematically as follows. Consider a poroelastic segment B of length
L, lying along the x-axis abutted on the left by a fluid layer FL containing a
point source transmitter/receiver at x = xT and on the right by a fluid layer
FR containing a receiver at x = xR. Letting the left edge of B be at x = 0, the
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Parameter Symbol Units

Porosity β
Asymptotic tortuosity α∞

Viscous characteristic length Λ m
Permeability k m2

Fluid density ρf kg ·m−3
Fluid bulk modulus Kf Pa

Fluid viscosity η kg ·(m · s)−1
Frame material density ρs kg ·m−3

Frame material bulk modulus Ks Pa
Frame shear modulus G Pa
Frame bulk modulus Kb Pa

Table 1: Parameters in the Johnson-Koplik-Dashen variant of the Biot model.

Figure 1: Schematic of a water tank experiment.

partial differential equations governing pressure in the fluid regions are

∂2pL
∂x2

− 1

c2L

∂2pL
∂t2

= −f(t)δ(x− xT ),−∞ < x < 0

∂2pR
∂x2

− 1

c2R

∂2pR
∂t2

= 0, L < x <∞,

where cL and cR are the wave speeds in the left and right fluid regions. In this
article the JKD modification of Biot’s model of a poroelastic medium due to
Johnson et al. [Johnson et al. , 1987] is used to describe wave propagation in
the poroelastic segment. The input parameters of this model are given in Table
1. In the JKD model tortuosity is dynamic, i.e. it varies with frequency ω

α(ω) = α∞

(
1 +

ηβ

iωα∞ρfk

√
1 + i

4α2
∞k

2ρfω

ηΛ2β2

)
.

The specific attenuation per cycle is asymptotically d/Λ where d =
√

2η/(ρfω)
is the width of the boundary layer to the frame in which vorticity is significant.
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The governing partial differential equations in the poroelastic segment are[
∂2u
∂x2

∂2U
∂x2

]
=

[
P Q
Q R

]−1 [
ρ11 ρ12
ρ12 ρ22

][
∂2u
∂t2
∂2U
∂t2

]
, 0 < x < L.

The quantities u(x, t) and U(x, t) track the motions of the frame and interstitial
fluid respectively. The moduli P,Q, and R in the Biot model are calculated from
the inputs in Table 1

P :=
(1− β)

(
1− β − Kb

Ks

)
Ks + β Ks

Kf
Kb

1− β − Kb

Ks
+ β Ks

Kf

+
4

3
G

Q :=

(
1− β − Kb

Ks

)
βKs

1− β − Kb

Ks
+ β Ks

Kf

R :=
β2Ks

1− β − Kb

Ks
+ β Ks

Kf

All of the parameters in Table 1 are independent of frequency in the JKD model,
and thus so are P,Q, and R. The high-frequency approximations to the mass-
coupling coefficients

ρ11 = (1− β)ρs + βρf (α(ω)− 1) (1)

∼= (1− β)ρs + βρf (α∞ − 1) +
Z√
iω

ρ12 = −βρf (α(ω)− 1)

∼= −βρf (α∞ − 1)− Z√
iω

ρ22 = βα(ω)ρf

∼= βα∞ρf +
Z√
iω

where

Z =
2βα∞

Λ

√
ρfη

are appropriate for an ultrasonic source. Thus at frequencies high enough for
these approximations to be valid, the governing equations are independent of
permeability. Figure 2 shows that for Sample M1F04 of Table 2 and perme-
abilities in the range 10−10 − 10−8 m2 suggested in [McKelvie & Palmer, 1991],
the high-frequency approximations in (1) are valid down to frequencies below
100 kHz.

In the two fluid segments displacement is related to fluid pressure by

ρ
∂2U

∂t2
= −∂p

∂x
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Figure 2: Comparison of the exact and approximate formulas for the density
parameters given in (1) for two values of permeability k0. The sample was
M1F04 of Table 2.

where ρ is the fluid’s density. Normal frame stress and pore fluid stress are
related to the frame and fluid displacements by

σxx = P
∂u

∂x
+Q

∂U

∂x
(2)

σf = Q
∂u

∂x
+R

∂U

∂x

respectively. Pore fluid pressure is related to pore fluid stress by pf = −σf/β.
At the fluid-poroelastic interface x = 0 continuity of total pressure, continuity
of pore fluid pressure, and continuity of specific flux give

−pL(0, t) = σxx(0, t) + σf (0, t) (3)

pL(0, t) = −σf (0, t)

β

∂UL
∂t

(0, t) = β
∂U

∂t
(0, t) + (1− β)

∂u

∂t
(0, t).

Comparable conditions are imposed at the other fluid-poroelastic interface x =
L.
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3 Solution by integral transform

Let ĝ(s) = L{g(t)} =
∫∞
0
e−stg(t)dt denote the Laplace transform of a function

g. The transformed problem is

∂2p̂L
∂x2

− s2

c2L
p̂L = −f̂(s)δ(x− xT ),−∞ < x < 0 (4)[

d2û
dx2

d2Û
dx2

]
= s2

[
P Q
Q R

]−1 [
ρ11 ρ12
ρ12 ρ22

] [
û

Û

]
, 0 < x < L

∂2p̂R
∂x2

− s2

c2R
p̂R = 0, L < x <∞.

For all of the simulations presented in this article s = iω sufficed.
The system of equations for the poroelastic segment in (4) can be written(

d2û
dx2

d2Û
dx2

)
=

(
s2

PR−Q2

)(
Rρ11 −Qρ12 Rρ12 −Qρ22
−Qρ11 + Pρ12 −Qρ12 + Pρ22

)(
û

Û

)
.

In terms of the eigenvalues λj and corresponding eigenvectors vj , j = 1, 2, of
the matrix on the right hand side the system becomes(

d2û
dx2

d2Û
dx2

)
=

s2

PR−Q2
V∆V−1

(
û

Û

)
where

V =
(
v1 v2

)
,∆ =

(
λ1 0
0 λ2

)
.

With

b := −Rρ11 + 2Qρ12 − Pρ22
c := RP (ρ11ρ22 − ρ212) +Q2(ρ212 − ρ22ρ11)

the eigenvalues are

λ1 =
−b−

√
b2 − 4c

2
, λ2 =

−b+
√
b2 − 4c

2

with corresponding eigenvectors

vi =

(
vi1
vi2

)
=

1√
1 +

(
Rρ11−Qρ12−λi

Qρ22−Rρ12

)2
(

1
Rρ11−Qρ12−λi

Qρ22−Rρ12

)
, i = 1, 2. (5)

The Biot theory predicts two compressional waves, a fast wave and a slow wave,
with complex-valued velocities

cF =

(
λ1

PR−Q2

)−1/2
, cS =

(
λ2

PR−Q2

)−1/2
. (6)
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Figure 3: Fast (upper panes) and slow (lower panes) wave speeds and attenua-
tions for the six parameter sets of Table 2.

From these the velocity and attenuation are calculated as

vJ =
|cJ |2

Re cJ
, aJ =

Im cJ

|cJ |2
, J = F, S. (7)

Figure 3 shows fast and slow wave speeds and attenuations for the six sample
of Table 2 below.

The solution to (4) has the form

p̂L = C1 exp(sx/cL),−∞ < x < xT (8)

p̂L = C2 exp(−sx/cL) + C3 exp(sx/cL), xT < x < 0

û = C4vF1 exp(−sx/cF ) + C5vF1 exp(sx/cF ) + C6vS1 exp(−sx/cS) + C7vS1 exp(sx/cS), 0 < x < L

Û = C4vF2 exp(−sx/cF ) + C5vF2 exp(sx/cF ) + C6vS2 exp(−sx/cS) + C7vS2 exp(sx/cS), 0 < x < L

p̂R = C8 exp(−sx/cR), L < x <∞.

Here the notation vFj = v1j , vSj = v2j , j = 1, 2 has been adopted. The trans-
formed jump conditions for the delta function

p̂L(x+T )− p̂L(x−T ) = 0 (9)

∂p̂L
∂x

(x+T )− ∂p̂L
∂x

(x−T ) = − f̂

c2L
,
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and the transforms of the three conditions (3) at the two fluid-poroelastic in-
terfaces x = 0, L yield a 8× 8 linear system

AC = b (10)

C = {Cj}8j=1 , b =

[
0,− f̂

c2L
, 0, . . . , 0

]T
for the coefficients in (8).

4 Simulated transmitted and reflected pressure
waves

In order to study the feasibility of recovering some of the Biot-JKD parameters
from experimentally measured reflected and transmitted pressure waves, it is
necessary to simulate these observations. The incident pulse

f(t) = exp
(
− (t− tc)2 /Σ

)
sinω0t (11)

with f0 = 2.25 MHz, ω0 = 2πf0, t0 = 1/f0,Σ = t20 is used. Laplace and in-
verse Laplace transforms are approximated using the fast Fourier transform as
described in [Buchanan et al. , 2011a], [Buchanan et al. , 2011b]. All instances
of square roots of complex-valued quantities such as those in (1) and (5) were
evaluated using MATLAB’s sqrt, which takes the branch cut to be the positive
real axis. Figure 4 shows the pressure wave incident on the left edge of the
bone specimen and its spectral content for tc = 1.75t0, 1.9t0, 2.0t0. For purpose
of computing inverse Laplace transforms frequency is restricted to the range
0.5 − 4 MHz, since this encompasses the strongest portion of the spectrum of
the incident pulse. Figure 2 suggests that the high-frequency JKD approxima-
tions (1) are valid in this range.

For simulations the parameters of Table 2 are used. The parameters for
specimens M1F04-M3F04 were taken from [Fellah et al. , 2004] while M1S06D-
M3S06D are the measured values of the drained specimens given in [Sebaa et al. , 2006].
In the experiments being simulated the interstitial fluid is the tank water hence
cF = cR = c0. The remaining parameters of Table 1, which are the same for all
simulations, are ρf = 1000 kg ·m−3,Kf = 2.28× 109 Pa, η = 0.001 kg ·(m · s)−1.

From (8) the received pulses at positions x = xT and x = xR are

pL = L−1 {C3 exp(sxT /c0)} = L−1
{
RTotal exp (−2sxT /c0)

f̂

s

}
(12)

pR = L−1 {C8 exp(−sxR/c0)} = L−1
{
TTotal exp (−s (−xT /c0 + (xR − L)/c0))

f̂

s

}
where the reflection and transmission coefficients RTotal and TTotal are express-
ible in terms of the frequency-domain exponentials

e1 = exp (−sL/cF ) , e2 = exp (−sL/cS) (13)
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Figure 4: Top: Incident pulses travelling in the water to the left of the bone
segment before first interaction with the bone for three values of the parameter
tc in (11). Bottom: Spectral content of the pulses.

M1F04 M2F04 M3F04 M1S06D M2S06D M3S06D
β 0.83 0.77 0.88 0.71 0.75 0.55

α∞ 1.05 1.01 1.02 1.02 1.045 1.08
Λ 5.00E-06 2.70E-06 2.70E-06 1.04E-05 1.50E-05 1.95E-05
ρs 1960 1960 1960 1990 1990 1990
Ks 2.00E+10 2.00E+10 2.60E+10 1.08E+10 1.08E+10 1.08E+10
G 2.60E+09 1.70E+09 3.50E+08 1.77E+09 9.68E+08 1.07E+09
Kb 3.30E+09 4.00E+09 1.30E+09 4.08E+09 1.54E+09 1.49E+09

Table 2: JKD parameters for six specimens. M1F04-M3F04 are from
[Fellah et al. , 2004] and M1S06-M3S06 are from [Sebaa et al. , 2006].
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Figure 5: L = 5 mm. Circles are the rough estimates of the arrival times of the
fast and slow waves used in the recovery of the effective parameters.

corresponding to the times required to traverse the specimen by fast and slow
waves, respectively,

RTotal =
1

2c0

A3,00 +A3,02e
2
2 +A3,11e1e2 +A3,20e

2
1 +A3,22e

2
1e

2
2∑2

m,n=0Bmne
m
1 e

n
2

(14)

TTotal =
1

c0

A8,01e2 +A8,10e1 +A8,12e1e
2
2 +A8,21e

2
1e2∑2

m,n=0Bmne
m
1 e

n
2

.

These kernels are constant multiples of the reflection and transmission kernels
given in [Fellah et al. , 2004] and [Sebaa et al. , 2006]. The coefficients are com-
plicated functions of the parameters P,Q,R, β and the eigenvectors (5). Figure
5 shows the simulated pressure measurements pR(xR, t) to the right of the bone.

5 Difficulty in recovering the Biot parameters

Some of the Biot-JKD parameters can be found in the literature, if the con-
stituent materials of the frame and fluid are known. Others require observations
involving the particular specimen. One approach to recovering these Biot pa-
rameters from observed pressure in a waveform pObs such as the ones illustrated
in Figure 5 is to minimize difference of pObs with waveforms pTrial calculated
from a trial set of Biot parameters using some minimization routine such as the
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β α∞ Λ Kb G
min 0.5 1 1µm 5× 108 Pa 1× 108 Pa
max 0.99 2 200µm 5× 109 Pa 5× 109 Pa
Scale 1 1 10µm 109 Pa 109 Pa

Table 3: Parameter ranges for five JKD parameters.

Nelder-Mead simplex method. The difficulty with this approach is that there are
typically numerous local minima, with the consequence that the result may not
be near the actual parameter values unless a very good initial guess is available
[Buchanan et al. , 2002],[Buchanan et al. , 2004],[Buchanan & Gilbert, 2007],[Gerstoft, 1994].
Table 3 gives ranges for the five parameters in Table 1 that require observation
of the particular specimen. The ranges for porosity β, asymptotic tortuosity
α∞, and viscous characteristic length Λ are taken from [Sebaa et al. , 2006].
The ranges for Kb and G were chosen to encompass the range of values in Table
2.

The procedure described below is used to illustrate the difficulty in recovering
the five parameters of Table 3. All other parameters were given the values in
Table 2. Both pL and pR waveforms were assumed to be observed. A set of
parameters was sought that minimized the objective function

fobj =
∥∥pTrialL − pObs

L

∥∥
2

+
∥∥pTrialR − pObs

R

∥∥
2

+ Penalty, (15)

where the norms are the vector 2-norms with the pressures computed at 1024
discrete times. A linearly increasing penalty term was used in the objective
function when a trial parameter value deviated by more than 25% from the
ranges of Table 3. The general form of the penalty terms used in the algorithms
presented is

Penalty =

N∑
n=1

[max(0, vn,min − vn) + max(0, vn − vn,max)] (16)

where vn is the candidate value of the nth variable, and the corresponding target
range is [vn,min, vn,max]. The simplex method worked with values that were
normalized by the factors in the ”Scale” row of Table 3. Because of the wide
range given in Table 3 and its strong influence, the viscous characteristic length
was treated specially. The initial guesses generated by Algorithm 1 were used in
the simplex method to minimize (15). The implementation of the Nelder-Mead
algorithm used was MATLAB’s fminsearch. The parameter set that yielded
the lowest objective function value among the 48 trial sets was selected.

Algorithm 1 Generate a series of initial guesses:

• Select a parameter range, rmin to rmax from Table 3

• For h = 0.3, 0.2, 0.1

11
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Figure 6: Outcome of Algorithm 1 vs objective function value. The specimen
was M1F04. Red lines: Target values from Table 2. The specimen length was
L = 5 mm .

– lowvals = (1 + h) ∗ rmin

– highvals = (1− h) ∗ rmax

– Loop through all 16 high/low combinations of (β, α∞,Kb, G)

∗ For each combination find the univariate minimum for Λ among
100 evenly spaced points between 1 and 200µm.

Table 4 shows the degree of success that the simplex method with the ini-
tializations generated by Algorithm 1 had in recovering the six parameter sets
of Table 2. As no noise or modelling error was present, a nearly exact recov-
ery was possible, but this happened in only one, Sample M1F04, of the six
attempts. Figures 6, 7 and 8 illustrate the presence of numerous local minima
of the objective function in the cases of M1F04, M2F04, and M1S06D. Even
though the stopping criteria of MATLAB’s fminsearch were met in almost all
instances, indicating that the result was likely a local minimum, more than 40
of the 48 trials in each of the six samples considered found local minima that
differed from all others by 5% in at least one of the five parameter values. Even
if a disagreement of at least 5% was required in one of the three most strongly
influential parameters β, α∞, and Λ, there were still typically about 20 distinct
minima.
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Figure 7: Outcome of Algorithm 1 vs objective function value. The specimen
was M2F04. Red lines: Target values from Table 2. The specimen length was
L = 5 mm .

Sample β α∞ Kb G Λ Trial # Obj. ftn. Time(s)
M1F04 0.830 1.050 3.36E+09 2.57E+09 4.99E-06 12 0.0001 767
Target 0.830 1.050 3.30E+09 2.60E+09 5.00E-06
M2F04 0.765 1.025 5.74E+09 6.29E+08 2.57E-06 28 0.0067 709
Target 0.770 1.010 4.00E+09 1.70E+09 2.70E-06
M3F04 0.879 1.023 1.51E+09 2.18E+08 4.91E-06 25 0.0013 690
Target 0.880 1.020 1.30E+09 3.50E+08 5.00E-06

M1S06D 0.689 1.046 6.25E+09 4.53E+08 9.08E-06 19 0.0672 774
Target 0.710 1.020 4.08E+09 1.77E+09 1.04E-05

M2S06D 0.719 1.101 2.94E+09 3.62E+08 1.29E-05 3 0.0323 841
Target 0.750 1.045 1.54E+09 9.68E+08 1.50E-05

M3S06D 0.582 1.597 3.64E+09 7.49E+07 5.88E-06 3 0.8281 1355
Target 0.550 1.080 1.49E+09 1.07E+09 1.95E-05

Table 4: Result of using the simplex method with each of the 48 initial guesses
generated by Algorithm 1. Trial # is the initial guess that produced the lowest
objective function value.
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was M1S06D. Red lines: Target values from Table 2. The specimen length was
L = 5 mm .

6 Effective parameters

The wave speeds and attenuations shown in Figure 3 are computable from
the Biot parameters, but given the difficulties in finding these parameters di-
rectly from observed waveforms illustrated in the last section, the possibility
of finding the wave speeds and attenuations directly from the observed wave-
forms was contemplated. The approach was based on the formulas derived
in [Buchanan et al. , 2011a] for kernels T (FL|B, J), T (B|FR, J), J = F, S, and
R(FL|B) representing the transmission coefficients from the fluid on the left
side into the bone as a fast or slow wave, the transmission coefficient of a fast
or slow wave from bone into the fluid on the right side, and reflection coefficient
of a wave in the water off the left edge of the bone specimen. Recovery of the
real and imaginary parts of the complex wave speeds cJ , J = F, S, the reflec-
tion coefficient R(FL|B) and the composite coefficients for direct (unreflected)
transmission through the bone

TJ = T (FL|B, J)T (B|FR, J), J = F, S, (17)

was attempted at five frequencies in the range 0.5−4 MHz. The magnitude and
phase of the coefficients TJ and R(FL|B) are plotted in Figure 9. In the process
of seeking frequency dependent velocities the anomaly shown in Figure 10 was
encountered. The recovered speeds, represented by ◦ in the figure, lay on curves
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in the graph). The formula for the kernels are given in [Buchanan et al. , 2011a].
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different from the velocity curves of Eqn (7). The dashed-line curves in Figure
10 will be termed the effective, as opposed to the intrinsic, velocities. The
formula for the effective velocity is obtained by starting with the representation
for the direct arrivals of the fast and slow waves to the right of the bone and
regrouping factors so that the complex-valued quantities TJ and cJ defined
in (17) and (6) are replaced by real-valued quantities. Let the transmission
coefficients TJ have polar representations TJ = |TJ | exp(iϕJ), J = F, S. The
procedure just described leads to

pJ(x, t) =
1

2c0
L−1

{
TJ exp (−s |xT | /c0) exp (−sL/cJ) exp (−s (xR − L) /c0)

f̂(s)

s

}

=
1

2c0
L−1

{
|TJ | exp(iϕJ) exp

(
−iω L

|cJ |2
(Re cJ − i Im cJ)

)
exp (−iω |xT | /c0)

exp (−iω (xR − L) /c0) f̂(iω)iω

}

where as noted earlier s = iω. Define the effective transmission coefficients to
be

T ′J := |TJ | exp

(
−ω L

|cJ |2
Im cJ

)
= |TJ | exp (−ωaJL)

from (7), and the effective velocities to be

v′J = vJ

(
1− vJϕJ

ωL

)−1
, J = F, S. (18)

In terms of these effective parameters, pJ(x, t), J = F, S can be expressed as

1

2c0
L−1

{
T ′J exp (−iω |xT | /c0) exp (−iωL/v′J) exp (−iω (xR − L) /c0)

f̂(iω)

iω

}
(19)

As indicated in Figure 10 the effective velocity curves better track the recovered
velocities. Figure 11 shows the intrinsic and effective wave speeds for the six
samples of Table 2. Similarly, if R(FL|B) = R0 exp(iθ), then the effective
velocity of the reflected wave is found to be

c′0 = c0

(
1− θc0

ω |xT |

)−1
.

Algorithms 2 and 3 generate initial estimates to be used in the simplex
method to obtain frequency-independent estimates for v′J , T ′J , J = F, S,R0, c

′
0.

Since the coefficients T ′J and R0 are expected to be between 0 and 1, they can
be found by a fairly coarse sweep of this interval. The effective velocities v′J can
be estimated from observation of the transmitted wave form, thereby narrowing
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speeds v′J in (18) [dashed line]. Top: J = F . Bottom: J = S. The sample was
M1F04 and the length was L = 5 mm.
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Figure 11: Solid lines are the intrinsic velocities vJ , J = F, S. Dashed lines are
the effective velocities v′J . Top: J = F . Bottom: J = S

v′F T ′F v′S T ′S
min 1900 m · s−1 0 950 m · s−1 0
max 4100 m · s−1 1 1550 m · s−1 1
Scale 103 m · s−1 10−1 103 m · s−1 10−1

Table 5: Parameter ranges for four transmitted effective parameters.

the range of guesses required. The trial pressures

pTrialR =
1

2c0
L−1

{
(T ′F exp (−sL/v′F ) + T ′S exp (−sL/v′S))

exp (−stW ) f̂(s)s

}
(20)

pTrialL =
1

2c0
L−1

{
R0 exp (−s |xT | /c′0) exp (−s |xT | /c0)

f̂(s)

s

}

for the direct transmitted and reflected arrivals were used in (15). A penalty
term of the form (16) was imposed if T ′F , v

′
F , T

′
S or v′S moved outside of the

ranges shown in Table 5.

Algorithm 2 Generate initial estimates for transmitted effective parameters:

• Obtain approximate arrival times tF0 and tS0 for the fast and slow waves
by observation (Figure 5)
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Figure 12: First row: Exact and approximate transmitted waveforms. Fifth row:
Exact and approximate reflected waveforms. Remaining panels: Blue square:
actual value of effective quantity; red x: inversion value of effective parameters
at frequency 2.24 MHz The specimen was M2F04 and the length L = 5 mm.

• For m = 0, . . . ,M, J = F, S calculate times tJm = tJ0+m×0.025×10−5 s

– Estimate trial wave speeds v′J = L/ (tJm − tW )

– For n = 1, . . . , N estimate T ′F = T ′S = 1− n/N

In the above tW is the time that the pulse travels through water, i.e. tW =
|xT |+xR−L

c0
. The algorithm for generating estimates for R0 and c′0 was

Algorithm 3 Generate the initial estimates for reflected effective parameters:

• c′0 = c0

• For n = 1, . . . , 5

– R0 = 1.1− 0.2n

Figures 12 and 13 illustrate the outcomes of applying Algorithms 2 and 3
for the two samples M2F04 and M2S06D. The constant approximations to the
six parameters are all seen to be near the correct values at the center frequency.
Table 6 gives the results for all six samples of Table 2. Typically the values of
the effective parameters given in Table 6 were the best of a small number of
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Figure 13: First row: Exact and approximate transmitted waveforms. Fifth row:
Exact and approximate reflected waveforms. Remaining panels: Blue square:
actual value of effective quantity; red x: inversion value of effective at frequency
2.24 MHz The specimen was M2S06D and the length L = 5 mm. As can be seen
the trial pressures attempted only to approximate the directly transmitted and
reflected arrivals.

v′F v′S c′0 T ′F T ′S R0

M1F04 3868 1418 1508.5 0.034 0.146 0.093
Actual 3880 1418 1508.5 0.032 0.141 0.092
M2F04 3259 1397 1508.2 0.040 0.032 0.120
Actual 3271 1399 1508.3 0.037 0.029 0.119
M3F04 2346 1408 1508.3 0.029 0.059 0.060
Actual 2357 1410 1508.4 0.026 0.055 0.060

M1S06D 3208 1487 1509.5 0.065 0.412 0.129
Actual 3209 1487 1509.5 0.064 0.404 0.129

M2S06D 2310 1409 1509.7 0.164 0.340 0.106
Actual 2310 1409 1509.7 0.161 0.332 0.106

M3S06D 2008 1189 1509.7 0.605 0.155 0.196
Actual 2008 1189 1509.9 0.605 0.151 0.196

Table 6: Recovery of constant approximations to the effective parameters for
six samples. The values labeled ”Actual” are those at the center frequency.
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physically reasonable (as defined by Table 5) local minima. Figure 14 illustrates
this.

The effective velocities and kernels have the undesirable trait of depending
upon the length L of the specimen. Recovery of the intrinsic velocities and
kernels could be accomplished by computing the effective parameters at two
different lengths L1 and L2 by means of the formulae

aJ = − 1

ω (L1 − L2)
log

(
T ′J1
T ′J2

)
(21)

|TJ | = T ′Jm exp (ωaJLm) ,m = 1, 2

vJϕJ =
L1L2ω (v′J2 − v′J1)

L1v′J2 − L2v′J1

vJ = v′Jm

(
1− vJϕJ

ωLm

)
,m = 1, 2,

however this may not be necessary as accurate approximation of the effective
parameters by the approach described in the next section may permit recovery
of the original Biot parameters.

7 A new approach for recovering the Biot pa-
rameters

Denote the numerical approximation to an effective parameter at the center
frequency found by Algorithm 2 or 3 with a tilde, e.g. ṽ′F (ω0). The equations
for calculating the effective parameters

v′F (ω0, β, α∞,Λ,Kb, G) = ṽ′F (ω0) (22)

v′S(ω0, β, α∞,Λ,Kb, G) = ṽ′S(ω0)

T ′F (ω0β, α∞,Λ,Kb, G) = T̃ ′F (ω0)

T ′S(ω0, β, α∞,Λ,Kb, G) = T̃ ′S(ω0)

R0(ω0, , β, α∞,Λ,Kb, G) = R̃0(ω0)

constitute five equations in the five unknown Biot parameters. The system of
equations may be solved by Newton’s method, for instance. The details are
given in Algorithm 4.

Algorithm 4 Find the Biot parameters by solving the system of nonlinear equa-
tions (22):

• Find ṽ′F (ω0), ṽ′S(ω0), T̃ ′F (ω0), T̃ ′S(ω0), R̃0(ω0) using Algorithms 2 and 3

• For h = 0.45, 0.37, 0.29, . . . , 0.05

– lowvals = (1 + h) ∗ [.5, 1, 1e8, 1e8, 1e− 6]
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Sample β α∞ Λ Kb G Try # Obj. ftn. Time(s)
M1F04 Newt 0.827846 1.04542 5.31E-06 2.49E+09 3.10E+09 15

Simp 0.830006 1.04281 5.12E-06 2.56E+09 3.06E+09 0.0019 20.618
Targ 0.83 1.05 5.00E-06 3.30E+09 2.60E+09

M2F04 Newt 0.768722 1.01787 2.85E-06 3.88E+09 1.75E+09 14
Simp 0.770182 1.00765 2.71E-06 3.79E+09 1.83E+09 0.0008 22.238
Targ 0.77 1.01 2.70E-06 4.00E+09 1.70E+09

M3F04 Newt 0.878734 1.0214 5.33E-06 1.15E+09 4.32E+08 47
Simp 0.880555 1.01708 5.08E-06 1.11E+09 4.72E+08 0.0012 28.815
Targ 0.88 1.02 5.00E-06 1.30E+09 3.50E+08

M1S06D Newt 0.709967 1.02027 1.10E-05 3.99E+09 1.82E+09 11
Simp 0.711586 1.01754 1.05E-05 3.95E+09 1.84E+09 0.0016 21.945
Targ 0.71 1.02 1.04E-05 4.08E+09 1.77E+09

M2S06D Newt 0.749729 1.04305 1.57E-05 1.49E+09 9.96E+08 3
Simp 0.751109 1.04221 1.51E-05 1.48E+09 9.94E+08 0.0012 14.695
Targ 0.75 1.045 1.50E-05 1.54E+09 9.68E+08

M3S06D Newt 0.550511 1.07425 2.05E-05 1.43E+09 1.09E+09 19
Simp 0.550208 1.07387 1.96E-05 1.44E+09 1.09E+09 0.0032 29.043
Targ 0.55 1.08 1.95E-05 1.49E+09 1.07E+09

Table 7: Application of Algorithm 4 for a specimen width of L = 5mm . In
Algorithm 2 M = 2, N = 20.

– highvals = (1− h) ∗ [.99, 2, 1e10, 1e10, 200e− 6]

– Loop through all 16 high/low combinations of the first four parameters
(β, α∞,Kb, G)

∗ For each combination find approximate value for Λ by solving
T ′S(ω0, β, α∞,Λ,Kb, G) = T̂ ′S(ω0). Use half and twice this value
as the low/high for Λ

∗ Use (β, α∞,Λ,Kb, G) as an initial guess in Newton’s method

∗ If it converges to physically reasonable values (Table 3) stop.

• Use the result as an initialization in simplex method (MATLAB fmin-
search)

Table 7 shows the result of applying Algorithm 4 to find the parameters of
Table 2 for a specimen length of L = 5 mm.

A difficulty in assessing parameter recovery schemes is that, in the absence
of actual experimental data, simulated experimental data must be used. Ideally
there exist two independent computational procedures which are known to agree
well with experimental observation so that one can be used for the simulated
experimental data and the other to generate the trial parameter data. In the
present case the Biot-JKD model has produced by far the best agreement with
experimental observation and so it is used for both the simulated experimental
data and the trial data. This may result in the proposed recovery algorithm
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producing unrealistically accurate results since modeling error, the discrepancy
between the experimental observations and the best-fit trial solution, is not
present. An instance of this was noted in connection with Algorithm 1 in the
case of M1F04 (Table 4).

Figure 15 shows the effect of varying the parameter tc in formula (11) on
the reflected and transmitted waveforms in the case of sample M2F04. Figures
16 and 17 show the outcome of Algorithms 2 and 3 when tc = 2.0t0 is used for
the simulated experimental waveforms while tc = 1.75t0 is used in computing
trial parameter sets (cf Figures 12 and 13). Since the effect is reminiscent of the
discrepancies observed in [Sebaa et al. , 2006], Figures 15-17, the robustness of
Algorithm 4 will be assessed by using tc = 1.75t0 for computing trial waveforms,
but using some other value tObs

c for the simulated experimental waveform. It was
found that Algorithm 4 in the form presented above sufficed for tObs

c = 1.8t0 and
1.9t0. For tObs

c = 2.0t0 there was still a local minimum of the objective function
that corresponded to a good approximation to the effective parameters, but it
was not necessarily the global minimum. Moreover even for the most accurate
set of effective parameters the recovered parameters did not necessarily corre-
spond to a fully plausible solution, since while typically β and Λ were plausible,
one of Kb or G were negative, or, and sometimes additionally, α∞ < 1. The
following modification of Algorithm 4 was used. It uses the effective parameters
which correspond to the three lowest objective function values, rather than just
the lowest one.

Algorithm 5 Find Biot parameters in the event of trial/experimental data dis-
crepancies

• Find the sets of distinct effective parameters ṽ′Fj(ω0), ṽ′Sj(ω0), T̃ ′Fj(ω0), T̃ ′Sj(ω0), j =
1, 2, 3 with lowest objective function values using Algorithm 3

• Find R̃0(ω0) using Algorithm 3

• For j = 1, 2, 3 using ṽ′Fj(ω0), ṽ′Sj(ω0), T̃ ′Fj(ω0), T̃ ′Sj(ω0)

– For h = 0.05 + 0.08k, k = 0 to 5.

∗ lowvals = (1 + h) ∗ [.5, 1, 1e8, 1e8, 1e− 6]

∗ highvals = (1− h) ∗ [.99, 2, 1e10, 1e10, 200e− 6]

∗ Loop through all 16 high/low combinations of the first four pa-
rameters (β, α∞,Kb, G)

∗ For each combination find approximate value for Λ by solv-
ing T ′S(ω0, β, α∞,Λ,Kb, G) = T̂ ′Sj(ω0) use half and twice this
value as the low/high for Λ

∗ Use (β, α∞,Λ,Kb, G) as an initial guess in Newton’s method.
If it converges to physically reasonable values (Table 3) terminate
both h and j loops

• If the j loop terminated with a physically reasonable value, use the result
as an initialization in simplex method (MATLAB fminsearch)
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Figure 15: Effect of varying the parameter tc on the transmitted wave form.
The sample was M2F04 and the specimen length was L = 5 mm .

• Otherwise if the j loop terminates with one or more parameter sets that
are not completely physically reasonable

– For the parameter set with lowest objective function value

∗ Reset any unreasonable value to the proximate reasonable value
of Table 3

∗ Use the result as an initialization in simplex method (MATLAB
fminsearch)

Table 8 shows the result of applying Algorithm 5 with tc = 2.0t0 used for
the simulated experimental observations. For two of the samples no completely
reasonable parameter set was found, but sending the amended results to the
simplex method did produce a physically plausible result. Whether the Newton
phase terminated successfully or not did not affect the final objective function
value discernibly. Table 9 shows the effect of the increasing discrepancy in tc
for the trial and simulated experimental waveforms up to tc = 2.2t0 where Al-
gorithm 5 experienced its first failure. Up through tc = 2.0t0 the errors tended
to increase monotonically and the deterioration did not markedly correlate with
whether the Newton phase of the algorithm produced a fully physically reason-
able answer or not. For tc = 2.1t0 and 2.2t0 the results became more idiosyn-
cratic. For instance for M1F04 the algorithm terminated successfully with an
accurate answer after the Newton phase for tc = 2.2t0, but not for tc = 2.0t0
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Figure 16: Outcome of Algorithms 2 and 3 when in (11) tc = 1.75t0 is used for
trial solutions, but tc = 2.0t0 is used for the simulated experimental observation.
The sample is M2F04 of Table 2, the specimen length is L = 5 mm.
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Figure 17: Outcome of Algorithms 2 and 3 when in (11) tc = 1.75t0 is used for
trial solutions, but tc = 2.0t0 is used for the simulated experimental observation.
The sample is M2S06 of Table 2, the specimen length is L = 5 mm.
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Sample β α∞ Λ Kb G Try # Obj. ftn. Time(s)
M1F04 Newt 0.817361 0.994453 5.88E-06 -9.04E+08* 5.29E+09 577*

Simp 0.826142 1.00661 5.45E-06 1.22E+08 4.56E+09 0.14 176
Targ 0.83 1.05 5.00E-06 3.30E+09 2.60E+09

M2F04 Newt 0.771267 0.982397 3.13E-06 1.26E+09 3.35E+09 14
Simp 0.772825 0.983964 2.87E-06 2.18E+09 2.84E+09 0.10 25
Targ 0.77 1.01 2.70E-06 4.00E+09 1.70E+09

M3F04 Newt 0.879108 0.994889 6.01E-06 -1.73E+08* 1.29E+09 577*
Simp 0.881484 0.996204 5.46E-06 1.23E+08 1.12E+09 0.07 157
Targ 0.88 1.02 5.00E-06 1.30E+09 3.50E+08

M1S06D Newt 0.718138 0.994846 1.13E-05 3.02E+09 2.31E+09 11
Simp 0.718306 0.992291 1.09E-05 3.01E+09 2.31E+09 0.31 19
Targ 0.71 1.02 1.04E-05 4.08E+09 1.77E+09

M2S06D Newt 0.755936 1.0233 1.58E-05 1.12E+09 1.16E+09 3
Simp 0.755056 1.02191 1.55E-05 1.13E+09 1.16E+09 0.30 15
Targ 0.75 1.045 1.50E-05 1.54E+09 9.68E+08

M3S06D Newt 0.569176 1.11516 1.85E-05 1.58E+09 1.01E+09 19
Simp 0.564775 1.11435 1.89E-05 1.62E+09 9.95E+08 0.72 35
Targ 0.55 1.08 1.95E-05 1.49E+09 1.07E+09

Table 8: Application of Algorithm 5 for a specimen length of L = 5mm . In
Algorithm 2 M = 2, N = 20. *: For M1F04 and M3F04 the algorithm ran
through three effective parameter sets without finding a completely reasonable
solution.

and tc = 2.1t0 where the last stage of the algorithm had to be invoked and
the answers were less accurate. This suggests that Algorithm 2 failed to find
the global minimum for the last-mentioned values of tc, but a more exhaustive
search failed to confirm this. Also between tc = 2.1t0 and tc = 2.2t0 the errors
were less likely to decline.

8 Summary and Conclusions

This article affirms that the well-known difficulty with parameter recovery schemes
based on minimization, the presence of numerous local minima, obtains in the
case of recovering the parameters of the Biot-JKD model. A different approach,
based upon numerical solution of the equations for a set of five effective wave
speeds and transmission and reflection coefficients, seems promising. While the
first stage of the proposed algorithm, recovery of the effective parameters, does
admit multiple solutions, the availability of good guesses for the effective wave
speeds, and the narrow range for the reflection and transmission coefficients,
makes determination of the probable global minimum easier. The second stage
of the algorithm, numerical solution of the system of equations, appears to
have few solutions, with no more than one physically plausible solution being
detected in any simulation done thus far. This second stage of the proposed
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Sample Tc β α∞ Λ Kb G
M1F04 1.8 0.13% 1.22% 3.78% 35.13% 28.24%

1.9 0.42% 2.93% 7.65% 73.80% 58.89%
2* 0.46% 4.13% 9.07% 96.29% 75.29%

2.1* 5.15% 3.15% 7.10% 97.73% 288.26%
2.2 1.32% 3.24% 0.84% 66.80% 43.31%

M2F04 1.8 0.01% 0.55% 1.66% 10.80% 16.47%
1.9 0.05% 1.27% 3.48% 22.35% 34.13%

2 0.37% 2.58% 6.47% 45.56% 66.87%
2.1* 0.44% 5.79% 13.47% 97.13% 138.97%
2.2* 1.25% 5.85% 12.48% 96.82% 135.36%

M3F04 1.8 0.04% 0.66% 3.17% 28.60% 69.24%
1.9 0.06% 1.57% 6.80% 63.28% 153.64%
2* 0.17% 2.33% 9.15% 90.56% 219.03%

2.1* 0.40% 2.48% 7.57% 92.06% 221.67%
2.2 Failed

M1S06D 1.8 0.06% 0.15% 0.56% 1.12% 1.38%
1.9 0.59% 1.23% 2.97% 12.21% 14.49%

2 1.17% 2.72% 4.70% 26.11% 30.40%
2.1 1.58% 3.33% 2.48% 30.41% 33.96%

2.2* 1.68% 7.92% 7.24% 66.05% 76.38%
M2S06D 1.8 0.10% 0.55% 1.49% 6.64% 5.18%

1.9 0.18% 1.26% 2.43% 14.33% 11.30%
2 0.67% 2.21% 3.43% 26.75% 19.55%

2.1 1.07% 3.46% 3.20% 41.31% 29.81%
2.2 0.37% 0.35% 9.64% 9.82% 9.30%

M3S06D 1.8 0.12% 0.57% 1.04% 3.66% 2.14%
1.9 1.23% 0.38% 0.35% 2.10% 0.56%

2 2.69% 3.18% 2.94% 8.98% 7.06%
2.1 4.84% 6.09% 8.55% 18.80% 14.86%
2.2 8.53% 9.47% 14.81% 26.95% 23.63%

Table 9: Percentage error when the target reflected and transmitted waveforms
were computed with tc = Tct0, but the trial waveforms are computed with
tc = 1.75t0. *: no completely reasonable parameter set was found and the last
part of Algorithm 5 was used. The sample length was L = 5mm.
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approach has three possible outcomes: a fully physically reasonable solution, a
partially reasonable solution or no solution. It is thus possible that the success
or failure of this stage of the algorithm indicates the extent to which the poroe-
lastic medium under consideration is accurately approximated by the isotropic
Biot-JKD model.
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