
AIM, 2005Jul29 1

I

A brief history of exact linear algebra with
LinBox

David Saunders - U of Delaware

July 28, 2005

Abstract:

We present a review of the developments in algorithms and

implementation techniques which have brought us to a state where

integer and rational matrix problems can be solved for a remarkable

range of types and sizes of matrix. Among the problems for which there

is now sophisticated high performance software are linear system

solution, rank, determinant, Smith Normal Form, minimal and

characteristic polynomials.

. . .

INSF grants 0098284 and 0112807

AIM, 2005Jul29 2

Outline

• Algorithmic developments for dense matrices.

• Algorithmic developments for sparse and structured matrices

(blackbox methods).

• survey of applications.

• predictions and open problems.

AIM, 2005Jul29 3

The software package LinBox

• How it came into being

• What it can do

• How it does it

– What algorithms

– What software design techniques

• Where it may evolve in the future

• What can it do for you?

AIM, 2005Jul29 4

Some important other examples

• Linear algebra in Magma: particularly the “Meat Axe” null

space basis method.

• Linear algebra in Maple and Mathematica, the whole range of

computations. Dense methods, variety of representations (to

save memory). Emphasis on capability over performance.

Small problems done well in very general setting.

• The Maple/NAG interface giving floating point numeric

computation with arbitrary but fixed precision.

• Sparse linear algebra: Montgomery’s implementation of Block

Lanczos algorithm for finding null space vector of huge sparse

matrix over GF(2). Used in cryptography, breaking an RSA

key.

• Faugère’s F5 applied to polynomial systems, Grobner bases.

AIM, 2005Jul29 5

LinBox may make these claims:

• It is the only systematic implementation of blackbox methods

for sparse and structured systems.

• It is an important example of BLAS applied to dense linear

algebra over finite fields.

• It is well organized to serve as “middleware” between tools

(BLAS, GMP, NTL, Givaro) and applications (Gap, Maple,

LieAtlas, Singular)

LinBox goal: High performance methods for integer and rational

matrix problems, yet generic for (sparse and dense) matrices over

arbitrary finite fields and rings (primarily because we need this for

the modular methods applied to integer and rational problems)

AIM, 2005Jul29 6

70s - Era of algebraic complexity

Algebraic complexity - count field operations.

• good for matrix of floating point. (Coincides with development

of numeric linear algebra)

• good for matrix over small finite field.

• bad for integer or rational matrix.

Let S(n) = algebraic complexity to solve an n × n system.

Let M(n) = algebraic complexity to multiply n × n matrices.

Known: O(n2) ⊆ O(S(n)) ⊆ O(M(n)) ⊂ O(n3) [Strassen 69, Pan

78]

Open: O(n2) 6= O(S(n))? O(S(n)) 6= O(M(n))?

Note: Dense matrices. Memory used is essentially fixed at O(n2).

AIM, 2005Jul29 7

80’s - Facing the bit complexity

The problem:

Given A, b, integer n × n matrix and n-vector, find rational vector

x : Ax = b.

Suppose entries in A, b are bounded by β. Let d = log(β). The

input size is O(n2d + nd).

Det(A) is bounded by (n1/2β)n, storage size by n(log(n)/2 + d). By

Cramer’s rule, the output involves n determinants as numerator

and det(A) as denominator, Size of solution vector x is

O(n2(log(n) + d), greater than size of A, b in general!

Simplify: Let β < n, so d < log(n). Then, simply, let us ignore log

factors.

Thus: When size of A, b is O∼(n2), size of x is O∼(n2).

AIM, 2005Jul29 8

Direct Elimination Cost

During Gaussian elimination we compute about (1/3)n3 quotients

of minors. Sizes averaging O∼(n).

Thus: The size of intermediate storage is O∼(n3). The time cost

with standard integer arithmetic is O∼(n5).

For example:

10000× 10000 matrix of {0, 1,−1}. Initial memory: 100 Megabytes.

Intermediate memory need: 1012 bytes = 1 Terabyte.

Run time: 1020 cycles = 300 years at 10 GHz speed.

AIM, 2005Jul29 9

[Dixon 82]

Given n × n matrix A, vector b over Z, solve Ax = b. Choose a

prime p near 232 (wordsize prime)

Compute LU mod p. O(n3). Set x0 = U−1L−1b (mod p). Set

r1 = (Ax0 − b)/p. O(n2)

[Hensel lifting - base p expansion of x]

for i = 1 to nlogp(n) [Hadamard bound] do:

Set xi = U−1L−1ri (mod p). O(n2)

Set ri+1 = (Ax − b)/p. (Can be done in O(n2))

Thus: bit complexity of O∼(n3), memory O∼(n2).

AIM, 2005Jul29 10

Ax0 = b(mod p), A(x0 + x1p) = b(mod p2), A(x0 + x1p + x2p2) = b(mod p3), . . .

n3, n2, n2, . . .

Dixon’s method Bit complexity of O∼(n3), memory O∼(n2): No

worse than classic algebraic cost!

For example:

10000× 10000 matrix of {0, 1,−1}. Initial memory: 100 Megabytes.

Intermediate memory need: 108 bytes = 100 Megabytes.

Run time: 1012 cycles = 17 minutes at 1 GHz speed.

Further work: output sensitive method. Early termination.

AIM, 2005Jul29 11

Dense Matrix Rational Solving

order 100 200 300 400 500 600 700 800

Bottom up 0.91 7.77 29.2 78.38 158.85 298.81 504.87 823.06

Bottom up

(use BLAS) 0.11 0.60 1.61 3.40 6.12 10.09 15.15 21.49

Top down 0.03 0.20 0.74 1.84 3.6 6.03 9.64 14.31

All entries are randomly and independently chosen from [−220, 220].

1. The Bottom up is implementation of Dixon lifting without calling BLAS in

LinBox.

2. The Bottom up (use BLAS) is implemented by Zhuliang Chen the idea of

FFLAS and mixture of Dixon lifting and the Chinese remainder algorithm.

3. The Top down is implemented by us using hybrid numeric/symbolic solver

(in prep. for publication).

AIM, 2005Jul29 12

Smith Form History

n × n dense matrices with constant size entries, using standard Mat Mul.

Author(s) Year Time Cost Method

Smith 1861 UNK D

Kannan and Bachem 1979 Polynomial D

Iliopoulos 1989 O∼(n5) D, mod det

Hafner and McCurley 1991 O∼(n5) D, mod det

Giesbrecht 1995 O∼(n4) P, mod det

Storjohann 1996 O∼(n4) D, mod det

Eberly, Giesbrecht and Villard 2000 O∼(n3.5) P, mod sn

Kaltofen and Villard 2003 O∼(n3.33) P, mod Dn

Local at a prime p Folklore O∼(n3) D, mod pe

Saunders, Wan 2004 O∼(n3.5) P, smooth/rough

Last invariant factor: Pan 88, Abbot Bronstein Mulders 1999, Mulders

Storjohann 1999

AIM, 2005Jul29 13

Matrix with one million entries

1000 × 1000, dense

200 × 5000, dense

2000 × 2000, 1/4

dense

10000 × 12000

100 per row, sparse

..

... .. .

.

100000 × 100000

10 per row, sparse

AIM, 2005Jul29 14

measure sparsity as power of dimension

n × n matrix ⇒ ne nonzero entries

n = 1000 ⇒ 106 = n2

n = 2000 ⇒ 106 = n1.82

n = 10000 ⇒ 106 = n1.5

n = 100000 ⇒ 106 = n1.2

Gaussian elimination - Dense matrix: n3 = n ∗ ne arithmetic ops.

(e = 2)

Gaussian elimination - Sparse matrix: n ≤ ops ≤ n3

Time is anywhere from much less than n ∗ ne to much more.

Memory need is anywhere from ne to n2 = n ∗ ne

For sparse matrices, asymptotic analysis is much less helpful for

understanding algorithm performance in practice.

AIM, 2005Jul29 15

90’s - Era of Blackbox algorithms

the minimal polynomial of a matrix is the lowest degree monic

polynomial m(x) =
∑

i mix
i, such that m(A) =

∑

i miA
i = 0.

Matrix sequence viewpoint (over n2 dimensional vector space):

I, A, A2, A3, . . . , Af , Af+1, . . .

m0, m1, m2, m3, . . . , mf

m0, m1, m2, m3, . . . , mf

mA(A) = 0.

AIM, 2005Jul29 16

Lanczos: Vector sequence viewpoint (over n dimensional space)

b, Ab, A2b, A3b, . . . , Aeb, Ae+1b, . . .

m0, m1, m2, m3, . . . , me

m0, m1, m2, m3, . . . , me

mA,b(A)b =
∑

i miA
ib = 0 (and shifted:

∑

i miA
i+kb = 0)

Wiedemann: Scalar sequence viewpoint (over 1 dimensional space)

uT b, uT Ab, uT A2b, uT A3b, . . . , uT Adb, uT Ad+1b, . . .

m0, m1, m2, m3, . . . , md

m0, m1, m2, m3, . . . , md

uT mu,A,b(A)b =
∑

i uT miA
ib = 0 (and shifted)

d ≤ e ≤ f

AIM, 2005Jul29 17

Wiedemann’s method

Wiedemann’s method is to sparse matrices as Gaussian elimination

is to dense matrices.

Berlekamp/Massey: if scalar sequence satisfies a linear

recurrence of degree n or less, the minimal polynomial may be

found from the first 2n sequence entries in time O(n2).

[Wiedemann 88]:

1. If vector u is chosen at random, mA,b = mu,A,b with high

probability.

2. If vector b is also chosen at random, mA = mA,b = mu,A,b with

high probability.

AIM, 2005Jul29 18

Consequences: (a) Solve nonsingular system:

0 = mA,b(A)b = m0b + m1Ab + . . . + meA
eb

= m0b + A(m1b + . . . + meA
e−1b)

↓

b = A(−1/m0)(m1b + . . . + meA
e−1b)

(b) Compute minimal polynomial mA in O(n1+e) for matrix with

O(ne) nonzeros.

AIM, 2005Jul29 19

mA(x) = (x − 2)(x − 3) = 6 − 5x + x2.
0

@

1 0

0 1

1

A

0

@

2 0

1 3

1

A

0

@

4 0

5 9

1

A

0

@

8 0

19 27

1

A

0

@

16 0

65 81

1

A

6 −5 1

6 −5 1

0

@

1

1

1

A

0

@

2

4

1

A

0

@

4

14

1

A

0

@

8

46

1

A

0

@

16

146

1

A

6 −5 1

6 −5 1

u =
“

1 1
”

.

(2) (6) (18) (54) (162)

6 −5 1

6 −5 1

6 −5 1

AIM, 2005Jul29 20

u = (1 1).

(2) (6) (18) (54) (162)

−3 1

−3 1

−3 1

u = (1 0).

(1) (2) (4) (8) (16)

−2 1

−2 1

−2 1

But u = (0 1) works:

(1) (4) (14) (46) (146)

−4 1

6 −5 1

6 −5 1

AIM, 2005Jul29 21

Preconditioners

Let’s use Wiedemann’s minpoly algorithm to get the determinant.

(This is also an example of a Las Vegas algorithm arising from

Monte Carlo method).

1. wu,A,b|lA,b|mA. [always]

2. if wu,A,b(0) = 0, then det(A) = 0. [always]

3. if deg(wu,A,b) = n, then det(A) = wu,A,b(0). [always]

4. det(A) = det(AB)/det(B). [always]

5. If A is nonsingular, vectors u, v, and matrix B are random

variables, then deg(wu,AB,b) = n. [with high probability]

AIM, 2005Jul29 22

More preconditioners

If A is nonsingular, then with high probability, det(A) = constant

coefficient of wu,AB,v for random u, v, B.

...when B is a Benes network matrix [Wiedemann 88].

...when B is a Toeplitz matrix [Kaltofen, S 91].

...when B is a Butterfly matrix [Turner -]

...when B is a Sparse matrix [Wiedemann 88, Villard -]

...even when B is diagonal [Chen, Eberly, Kaltofen, S, Turner,

Villard 02].

AIM, 2005Jul29 23

We may compute mA, cA, or M by the Chinese remainder

algorithm, and count the sign alternations. In this application

thousands of word sized primes are needed.

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

bi
ts

matrix order

Actual required
Estimated by:150.1n + 17.3nln(n)

We abstract the CRA process for convenience, separation of

concerns, efficiency, and for parallel implementation.

AIM, 2005Jul29 24

class CRA {

// E, the early termination threshold, is the minimum number of

stable steps.

// L is the minimum total number of steps.

void initialize(int E, int L) : E(E), L(L) {};

// check termination condition

bool terminated()

{ return stableSteps ≥ E && totalSteps ≥ L;}

// add to the data the residues for one new modulus.

void progress (integer modulus, Vector residues) ;

// result residues mod the lcm of the moduli.

Vector result () ; };

AIM, 2005Jul29 25

combine in a loop – parallelizable

template<class Function, class RandPrime>

Vector loop (Function residues, RandPrime genprime) {

integer p;

while(! terminated()) {

genprime.randomPrime(p);

progress(p, residues(p)); }

return result();

}

Also, can we can encapsulate a fast early termination strategy...

AIM, 2005Jul29 26

Goal
T : time computing the characteristic polynomial at each d bit prime. N1: the

number of d bit primes required without early termination. N2: the number of d bit

primes required with early termination. N2 ≤ N1.

No early termination + divide and conquer

O(T ∗N1) +

n

z }| {

O∼(d ∗N1) · · · O∼(d ∗N1)

Early termination + incremental

O(T ∗ N2) +

n

z }| {

O∼((d ∗ N2)
2) · · · O∼((d ∗ N2)

2)

GOAL: Early termination + divide and conquer

O(T ∗ N2) +

n

z }| {

O∼(d ∗ N2) · · · O∼(d ∗ N2)

AIM, 2005Jul29 27

Fast Early Termination

A certificate, a random linear combination of residues is used to

detect when the early termination happens.

Solution: Early termination + divide and conquer + certificate

O(T ∗ N3) +

n

z }| {

O∼(d ∗ N3) · · · O∼(d ∗ N3) + O∼((d ∗ N3)
2)

Note: N3 ≈ N2. N3 may be slightly larger than N2. because the certificate, a sum,

can be as large as nrV where n is the number of summands, r bounds the random

coefficients and V is the largest of the values being computed.

AIM, 2005Jul29 28

Experimentation

We tested with “random” matrices. Each one is the product of a unit random lower

triangle matrix, a random diagonal matrix, and a unit upper triangle matrix. And

each entry is independently and uniformly chosen from [0, 99].

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 150 200 250 300 350 400 450 500 550 600

tim
e

(s
)

matrix order

NOET+INC
NOET+DAC

ET+INC
ET+DAC

AIM, 2005Jul29 29

the small prime problem

...if field is large enough.

If diagonal preconditioner used, suppose

A =









1 0 0

0 1 0

0 0 1









, then AB =









b1 0 0

0 b2 0

0 0 b3









,

for random diagonal matrix B.

Over GF(2) it is not possible that the diagonal entries are distinct.

Hence deg(mAB) < 3. A fortiori, deg(wu,AB,v) < 3.

But an an extension field is large enough. May use Zech log

arithmetic in nonprime field for speed. [Dumas 2002]

Next: Examples

AIM, 2005Jul29 30

Welker’s homology boundary matrices

Problem: Homology of simplicial complexes in dimensions up to

about 10.

Specific computation: Smith Normal form of {0, 1,−1}-boundary

matrices.

Solution: Jean-Guillaume Dumas code (Gap package[Dumas,

Heckenback, S, Welker 2003]/LinBox) for sparse matrix Smith

form. [Dumas, S, Villard 2001.]

Example: 135135 × 270270 matrix, 5 entries per row (n1.14). Smith

form: 133991 one’s, 220 three’s, 924 zeroes. Time: 4 days.

AIM, 2005Jul29 31

Krattenthaler: ”Combinatorialists love

determinants”

Favorite theorem: the number of < . . . > of size n is NICE(n).

NICE formula is (roughly) hypergeometric. For many < . . . > the

n-th instance is a determinant. The nice formula arises if the

determinant involves only small primes.

Example problem: Conjectured formula

det(qmaj
B

(σπ−1)) =
n

∏

i=1

(1 − q2i)e(i)
n

∏

i=2

(1 − qi)f(i)

Done by Macsyma: n = 1, 2, 3, 4(hard) Done by LinBox: n = 5,

matrix size is 2n ∗ n! = 3840, entries are smallish powers of q.

We then deduce e(i) = 2n−1n!/i, f(i) = 2nn!(i − 1)/i

Specific computation: Recent hybrid Smith form algorithm [Wan, S

2004]. (fastest way to get integer determinant in this case).

AIM, 2005Jul29 32

Krattenthaler π formula determinants

Another family of determinants generates formulas for π.

Interesting for LinBox: Matrix is very sparse with mostly small (9

digit) entries, but a few entries are very large (1000 digits).

Blackbox for A = B + C, where B entries are int, C entries are

GMP integers Ax = Bx + Cx, where C has few nonzeroes and Bx

is fast to compute.

AIM, 2005Jul29 33

Royle’s graph adjacency matrices

Problem: Find two graphs with cospectral symmetric cubes.

Subproblem: Pairs of strongly-regular graphs with cospectral

symmetric square have been found. Do any pairs of

strongly-regular graphs have cospectral symmetric cubes?

Specific computation: Determinants of A + αI mod p, for 32548

matrices. Each of them is of order 7140 with 295680 nonzeros

(n1.4).

Ans: (Pernet and Dumas) No cospectral pairs for strongly-regular

graphs with 36 or fewer vertices. Time cost: About one minute per

determinant. Use blackbox determinant algorithm discussed above.

AIM, 2005Jul29 34

Chandler’s Toeplitz matrices

Problem: Smith forms of 0,1 Toeplitz matrices. Order about 10000.

Incidence matrix of flats in projective spaces.

Richly structured Smith forms, but only one small prime occurring

except in largest invariant factor. Easy for LinBox.

AIM, 2005Jul29 35

Lie Atlas operator signatures

General topic: understanding symmetry

Specific question: For Weyl group E8, given lie algebra operator α

constructed in a certain way, is α positive (semi)definite in every

irreducible representation?

There are 112 representations. The largest is as 7168 × 7168

rational matrices. The operator α maps to matrix A which is dense

and has entries of length about 100 digits. But also A has a

representation as a product of 121 very sparse matrices, each with

quite small entries.

In the other representations the structure is the same but the

matrix order is smaller and the entry lengths are smaller.

Solution:

Method 1. LU plus CRA of diagonal entries - use A in dense form

(construction a major cost).

AIM, 2005Jul29 36

Method 2. Minimal polynomial plus CRA of coefficients - use A in

product form as a blackbox.

AIM, 2005Jul29 37

LU or minimal polynomial: about 12000 instances mod wordsize

primes are needed.

[Adams, Saunders, Wan 2005]: Obtained complete computation for

an operator α1 of low rank (verifies a difficult recent theorem).

Partial solution for an operator α2 of full rank. Estimation that the

order 7168 representation will take 2 cpu years for this operator by

current methods.

Lie Atlas group has desire to compute signatures for many such

operators.

AIM, 2005Jul29 38

Summary of Sparse Smith Form algorithms

n × n Sparse matrices with constant size entries, using standard Mat Mul.

Author(s) Year Time Cost Method

Giesbrecht 1996 O
∼(n

4) P, MinPoly

Dumas, Saunders, and Villard 2000 O
∼(n

4)a P, local Smith form

Eberly, Giesbrecht and Villard 2000 O
∼(n

3.5) P, M++, Bisection

Saunders and Wan 2005 O
∼(n

3.5) P, M+

Open problem: Memory efficient (Blackbox) method for local (mod

pe) Smith form.

aWe ignore the time for factoring the valences.

M++ SoftO(n2) mem.

M+ O(n2) mem.

AIM, 2005Jul29 39

Numeric/Symbolic Rational solver

[Wan 04] successive refinement using numeric solver.

Let r = b.

Repeat:

approximate: x = A−1r for some significant bits. (mod 1/2α)

amplify: r = (Ax − r)2α

adjust: truncate r.

Dixon revisited:

r = b.

repeat

approximate: x = A−1r(modp)

amplify: r = (Ax − b)/p.

adjust: r(modp).

AIM, 2005Jul29 40

x0, x0 + x1/2
α, x0 + x1/2

α + x2/2
2α, . . .

ne, ne, ne, . . .

Cost can be O∼(()n1+e), if numeric solver can get α bits of

accuracy.

Next: A success story. After: then what?

AIM, 2005Jul29 41

Trefethen’s matrix

Ti,j =

8

>

>

<

>

>

:

i-th prime, if i = j, [diagonal of primes]

1, if i − j is a power of 2[bands of 1’s]

0, otherwise.[very sparse matrix]

T9 =

































2 1 1 0 1 0 0 0 1

1 3 1 1 0 1 0 0 0

1 1 5 1 1 0 1 0 0

0 1 1 7 1 1 0 1 0

1 0 1 1 11 1 1 0 1

0 1 0 1 1 13 1 1 0

0 0 1 0 1 1 17 1 1

0 0 0 1 0 1 1 19 1

1 0 0 0 1 0 1 1 23

































.
T20000 X =





















1

0

0
...

0





















What X1?

AIM, 2005Jul29 42

Rational solve on Trefethen’s matrix

2002

• CRA - Jean-Guillaume Dumas, (4 days, 180 procs)

• CRA and Dixon, Hensel lifting - William Turner (est. similar

effort)

• Dixon, Hensel lifting - Zhendong Wan (12.5 days, 1 proc, big

mem)

2004

• Hybrid numeric/symbolic solver - Zhendong Wan (12.5

minutes, 1 proc, small mem)

Days to minutes: A factor of 1440 speedup!

• Solution is quotient of integers having 105 digits.

AIM, 2005Jul29 43

Hybrid algorithms

Wan’s rational solver is an example of a numeric-symbolic hybrid

applied to a symbolic problem (rational solution to linear system).

Problem for integer systems is to get the numeric part to converge

(numeric preconditioning issue). Poor luck so far.

The converse problem may be more important. Consider a

(large, sparse) numeric linear system which is

• too large or too nasty (fill in) for sparse direct solvers.

• unresponsive to iterative methods.

It may prove useful to solve it exactly. Relative to numeric iterative

methods existing blackbox method is ”slow but sure”.

AIM, 2005Jul29 44

Predictions

• Elimination/Blackbox hybrids (in particular, fuller

implementation and use of block methods).

• Symbolic/Numeric hybrids

• Exact linear algebra applied to numeric problems.

• Linking of LinBox into general purpose systems such as Maple,

Mathematica.

Alternative: native reimplementations - not likely

• Mod p in O∼(()n1+e) plus chinese remainder algorithm ⇒

Integer problems in O∼(()n2+e) time. Better?

• Extension to polynomial matrices.

AIM, 2005Jul29 45

An engineered Smith form algorithm

Degree
Minpoly
AA^T

Valence
Largest
Invariant

Rank

Factor, d

<sqrt(n) >= sqrt(n)

Elimination EGV

Bisection

log d_r < n log n

Rough Part mod d_r

Smith Form
Invariant Factors

Rank
Form
Smith
Local

Bisection
EGV

elsee < sqrt(n)e = 1

Bound Local mod p^e

Repeat unitl rank agrees, double e for next step
Starting with a possible e

At each possible p
Smooth Part

d_r, rough part of d
d_s, smooth part of d

log d_r >= n log n

Too big

