(a) G = (V,E) has an Euler tour ( in-degree(v) = out-degree(v) for all v belonging to V.

=> By way of contradiction, Suppose G has an Euler tour and suppose there exist v belonging to V such that int-degree(v) != out-degree(v).

Case 1)  in-degree(v) < out-degree(v) : Since G has an Euler tour, earch of the edges into v must be traversed exactly once and each of the edges out of v must be traversed exactly once. But with in-degree(v), this is impossible because in order to traverse each “out” edge, at least on “in” edge must be traversed more than once, which is contradictory to our hypothesis.

Case 2)  in-degree(v) > out-degree(v): Similar reasoning as in Case 1) leads to a contradiction too.

<= We need to show that if for all v belonging to V such that in-degree(v) = out-degree(v), then G has an Euler tour. Starting from a vertex v of V, remove the edge (from E), which is starts from v (stored in a variable called v0) and ends with one of v’s neighbor(s) u and remove u from v’s adjacent list. Repeat the same step for v’s neighbor u until we find a circle. We can guarantee to find a circle because for each of the vertex of V in-degree(v) = out-degree(v). Then starting with a new vertex, repeat the same steps until all the edges have been removed. Since we use each edge exactly once, it is easy to see that each edge has been traversed exactly once. 

If we disjoint all the circles, since G is connected we can form a big circle.

So according to the definition of Euler tour, we can form a Euler tour in this constructive way.

(b) Algorithm:

1  Euler_Tour(G) {

2.      tempV = first(V);             //get the first vertex from V.

3.      T<- null

4.

5.      while ( E is not empty) {

6.            if (adj[v] is not empty) {

7.                 u<-pop(adj[v])

8.                  remove (v,u) from E

9.                  insert (v,u) to T

10.                v = u

11.                 if (v == tempV)                  //find a circle

13.                       v = next(V)

14.                 

15.             else {

17.                      

18.                         return false          //find a non-circle, we return null right away

19.             }

20.      }

21.      return true                                        

Correctness of the Algorithm: The algorithm follows the second part of the proof.

Time: O(E) because of the while loop (each edge is being traversed exactly once).

