Home Work W
Model Solution
Algo. 1
Consider a polynomial of degree n :

P = anxn + an-1xn-1+…………..+ a1x + a0
P can be divided into two halves and can be written as a sum of high-half and low half

Phigh =
anxn + an-1xn-1+………… akxk

Plow = ak-1xk-1+…………..+ a1x + a0
k = floor(n/2)
The algorithm makes use of Karatsuba’s method to multiply polynomials using 3 coefficient multiplications and 4 additions/subtractions.
Mult_Hi_Low (polynomial A, polynomial B)

 {

if degree(A) = = degree(B) = = 1 then

 {

e = A[1] * B[1]

g = A[0] * B[0]

f = (A[1] + A[0])* (B[1] + B[0]) - e - g

 }

else

 {

//reduce A and B to the form “ Cx + D” by :

//move first half coefficients of of A and B to Ah and Bh

//reduce degree of Ah and Bh by 1

//move the second half of coefficients of A and B to Al and Bl

//We get A = Ah x + Al
B = Bh x + Bl

e = Mult_Hi_Low (Ah , Bh)

g = Mult_Hi_Low (Al , Bl)

f = Mult_Hi_Low ((Ah + Al) , (Bh + Bl)) – e –g

 }

return (ex2 + fx + g)

 }

Complexity :

At each instance there are 3 recursive calls with the problem halved at each instance. The work done at each instance is addition linear with the size of the polynomials .

So the recureence relation is : T(n) = 3 T(n/2) + ((n)

By case 1 of Master theorm, this gives an efficiency of ((nlg3)
Algo. 2

For this part the difference is that the polynomial is now divided according to the index whether its odd or even
Peven = a0 + a2x2 + ………+ anxn
Podd = a1x1 +………………+an-1xn-1
Thus P(x) = Peven(x) + x Podd(x)

Following the same algorithms as written above , the polynomial multiplication can be done.

Mult_Even_Odd (polynomial A, polynomial B)

 {

if degree(A) = = degree(B) = = 1 then

 {

e = A[1] * B[1]

g = A[0] * B[0]

f = (A[1] + A[0])* (B[1] + B[0]) - e - g

 }

else

 {

//reduce A and B to the form “ Cx + D” by :

//move terms having odd power in A and B to Ao and Bo

//reduce degree of Ao and Bo by 1

//move terms having even power in A and B to Ae and Be

//We get A = Ao x + Ae
B = Bo x + Be

e = Mult_Even_Odd (Ao , Bo)

g = Mult_Even_Odd (Ae , Be)

f = Mult_Even_Odd ((Ao + Ae) , (Bo + Be)) – e –g

 }

return (ex2 + fx + g)

 }

Complexity :

At each instance there are 3 recursive calls with the problem halved at each instance. The work done at each instance is addition linear with the size of the polynomials .

So the recureence relation is : T(n) = 3 T(n/2) + ((n)

By case 1 of Master theorm, this gives an efficiency of ((nlg3)

