Home Work W
Model Solution
Algo. 1
Consider a polynomial of degree n :

P = anxn + an-1xn-1+…………..+ a1x + a0
P can  be divided into two halves and can be written as a sum of high-half and low half 

Phigh = 
anxn + an-1xn-1+………… akxk





Plow =  ak-1xk-1+…………..+ a1x + a0
k = floor(n/2)
The algorithm makes use of Karatsuba’s method to multiply polynomials using 3 coefficient multiplications and 4 additions/subtractions.
Mult_Hi_Low (polynomial A, polynomial B)

     {


if  degree(A) = = degree(B) = = 1      then 

        { 



e = A[1] * B[1] 


g = A[0] * B[0]



f  = (A[1] + A[0] )* ( B[1] + B[0] ) - e - g

         }


else  

        {




//reduce A and B to the form  “ Cx + D”  by :



//move first half coefficients of of A and B to Ah and Bh


//reduce degree of Ah and Bh by 1


//move the second half of coefficients of A and B to Al and Bl


//We get  A = Ah x + Al
B = Bh x + Bl


e = Mult_Hi_Low (Ah , Bh)



g = Mult_Hi_Low (Al , Bl)



f  = Mult_Hi_Low ( (Ah + Al) , (Bh + Bl) ) – e –g


         }


return (ex2 + fx + g)

      }

Complexity :

At each instance there are 3 recursive calls with the problem halved at each instance. The work done at each instance is addition linear with the size of the polynomials . 

So the recureence relation is : T(n) = 3 T(n/2) + ( (n)

By case 1 of Master theorm, this gives an efficiency of ( (nlg3)
Algo. 2

For this part the difference is that the polynomial is now divided according to the index whether its odd or even
Peven  =  a0 + a2x2 +  ………+ anxn
Podd   =  a1x1 +………………+an-1xn-1
Thus P(x) = Peven(x) + x Podd(x)

Following the same algorithms as written above , the polynomial multiplication can be done.

Mult_Even_Odd (polynomial A, polynomial B)

     {


if  degree(A) = = degree(B) = = 1      then 


        { 



e = A[1] * B[1] 



g = A[0] * B[0]



f  = (A[1] + A[0] )* ( B[1] + B[0] ) - e - g


         }



else  


        {




//reduce A and B to the form  “ Cx + D”  by :



//move terms having odd power in  A and B to Ao and Bo


//reduce degree of Ao and Bo by 1



//move terms having even power in A and B to Ae and Be


//We get  A = Ao x + Ae
B = Bo x + Be


e = Mult_Even_Odd (Ao , Bo)



g = Mult_Even_Odd (Ae , Be)



f  = Mult_Even_Odd ( (Ao + Ae ) , (Bo + Be) ) – e –g


         }


return (ex2 + fx + g)

      }

Complexity :

At each instance there are 3 recursive calls with the problem halved at each instance. The work done at each instance is addition linear with the size of the polynomials . 

So the recureence relation is : T(n) = 3 T(n/2) + ( (n)

By case 1 of Master theorm, this gives an efficiency of ( (nlg3)

