Homework Problem V Solution

CISC 621 - Fall 2003
Problem A (CLRS 28.2-2)
How would you modify Strassen's algorithm to multiply $n \times n$ matrices in which n is not an exact power of 2? Show that the resulting algorithm runs in time $\Theta\left(n^{\lg 7}\right)$.

Strassen's algorithm can be applied to $n \mathrm{x} n$ matrix multiplications where n is not an exact power of 2 by padding the operands with 0 's. Let $m=2^{k}$ such that $2^{k-1}<\mathrm{n}<2^{k}$ (m equals $2^{[\lg n]}$). Create $m \times m$ matrices A^{\prime} and B^{\prime} by padding A and B respectively.
Applying Strassen's algorithm, the resulting matrices C^{\prime}, A^{\prime} and B^{\prime} appear as follows, where C^{\prime} is the matrix product of A^{\prime} and B^{\prime} :

$$
C^{\prime}=\left[\begin{array}{ll}
\mathrm{C} & 0 \\
0 & 0
\end{array}\right] A^{\prime}=\left[\begin{array}{ll}
\mathrm{A} & 0 \\
0 & 0
\end{array}\right] \quad B^{\prime}=\left[\begin{array}{ll}
\mathrm{B} & 0 \\
0 & 0
\end{array}\right]
$$

To obtain the product, we simply extract the matrix C from C^{\prime}.
The runtime for this method is $\Theta\left(m^{\mathrm{lg} 7}\right)$. Since $2^{k-1}<n$, it follows that $m<2 n$. Therefore, the runtime becomes $\Theta\left((2 n)^{\lg 7}\right)=\Theta\left(2^{\lg 7} \cdot n^{\lg 7}\right)=\Theta\left(n^{\lg 7}\right)$.

Problem B (CLRS 28.2-3)
What is the largest k such that if you can multiply 3×3 matrices using k multiplications, then you can multiply $n \times n$ matrices in time $o\left(n^{l_{g 7} 7}\right)$? What would the running time of this algorithm be?

Strassen's algorithm takes the approach of a recursive multiply with a base condition of 2×2 matrices. We are asked to apply an algorithm using a base condition of a 3×3 matrix and told it will take k multiplications.

Consider the comparative recursions:
Strassen: $\quad \mathrm{T}(n)=7 \mathrm{~T}(n / 2)+\Theta\left(n^{2}\right)$
$3 \times 3: \quad \mathrm{T}(n)=k \mathrm{~T}(n / 3)+\Theta\left(n^{2}\right)$
As the hint points out, case 1 of the Master Theorem applies and the recursive term dominates. Concentrating on the 3×3 recursion, we want to solve for k such that the number of multiplies will be less than $n^{\text {l97 }}$. We do so as follows:
$\Theta\left(n^{\lg 7}\right) \geq \Theta\left(n^{\log [3] k}\right)$, so
$n^{\lg 7} \geq n^{\log [3] k}$
$\lg 7 \geq \log _{3} k$
Utilizing maple as suggested to solve for k we find that $21.8499 \geq k$.
Therefore the largest k possible, while still doing better than $\mathrm{O}\left(n^{197}\right)$ using this 3×3 method is 21 .

Plugging 21 back into the recurrence and solving using case 1 of the Master Theorem provides us with a running time of:

$$
\Theta\left(n^{\log [3][21)}\right) \approx \Theta\left(n^{2.7712}\right)
$$

