Model Solution for Homework Problem S

Q1
The key to the SCC algorithm is that G and GT have exactly same strongly connected components. U and v are reachable from each-other if and only if they are reachable from each-other in G and GT.

Thus taking a transpose preserves SCC boundaries. That in combination with taking vertices in decreasing order for the DFS in GT, ensures that the algorithm does not visit vertices outside an SCC.

Prof. Deaver’s algorithm does not use the transpose and tries to make up for this by taking increasing order for 2nd DFS. This Fails. It fails when there is a SCC that is reachable from an earlier component.

e.g:

[image: image1]
Figure shows a directed graph G and its strongly connected components. Each vertex is labeled with its discovery and finishing time during 1st DFS.
On performing a DFS on the same graph G in increasing order of finishing times, we get:

Figure shows the wrongly computed strongly connected component edc. They are 2 different SCC ed & c, as e and d are not reachable from c.
Q2

 Algorithm ComponentGraph

1. Call DFS (G) to compute finishing time f[u] for each vertex

2. Compute GT

3. Call DFS (GT), but in the main loop of DFS, consider vertices in order of decreasing f[u].

4. Store the vertices of each tree in the depth-first forest of step3 as a separate strongly connected component Ci and this obtain C1, C2,……Ck, where C1 to Ck represent the strongly connected components.
5. For each SCC Ci

a. For each vertex v in Ci

i. Component[v] = i;

6. For each edge e(u,v) in E

a. If (component[u] != component[v])

i. Add e(u,v) to Ecc[component[v]]

7. For each SCC Ci

a. Temp[i] = NULL

8. For each SCC Ci

a. TempList = NULL

b. For each edge e(u,v) in Ecc[i]

i. If temp[Component[v]] == 0)

1. temp[component[v] = 1

2. Add e(component[u], component[v]) to TempList

c. For each edge e(x,y) in TempList

i. Temp[y]=NULL

d. Escc = Escc U TempList

9. return C, Escc

 Explaination

· The algorithm computes the strongly connected components in steps 1 to 4 and stores the vertices belonging to same component in Ci. Thus building a list of components C1, C2,….Ck each containing the vertices belonging to that component

· Step 5 assigns a component field to each vertex that indicates the component number to which it belongs. The component numbers are assumed to be sequentially increasing from 1 to k

· In Step 6 all the edges that connect 2 different components are extracted in Ecc

· Step 7 and 8 extract unique edges that connect 2 components. Thus if there are more than 1 edges connecting same component pair, it keeps only one edge representing a link between the components in Escc.

· Step 9 returns C which contains vertices belonging to different components and Escc which contains edges connecting components such that there is at most one edge between 2 vertices in the component graph

Complexity

· Steps 1 to 4 take O(V+E) time, as in algorithm for finding Strongly Connected Components

· Step 5 is O(V)

· Step 6 is O(E)

· Step 7 is O(V)

· Step 8 is O(E) as count of total number of edges in Ecc[1]….Ecc[k] for SCC C1 to Ck respectively can be atmost E.
Thus running time of the algorithm is O(V+E)

3/4

2/7

5/6

8/9

1/10

a

b

c

d

e

e

d

c

b

a

