
CISC 621 - Homework Problem R

Model Solution

a) Kruskal’s algorithm produces a MSF for G even when G is
unconnected because it adds safe edges to the set A in such a way that
the edges in the set do not need to form a single tree.
The algorithm in the first step considers a forest of |V| trees. Then, at
each step, it finds a safe edge to add to the growing forest by finding,
of all the edges that connect any two trees in the forest, an edge (u,v)
of least weight. Thus, the algorithm ends up producing a set of
connected components, with each connected component a MST.

b) MSF-Kruskal (G,w)

1 A <- 0
2 num_vertices <- 0 \\ variable to store number of vertices in

the graph
3 num_msf_edges<- 0 \\ variable to store the number of MSF

edges for G
4 num_components <- 0 \\ variable to store the number of

components in G
5 for each vertext v ε V[G]
6 do Make-set (v)
7 num_vertices <- num_vertices + 1 ** new addition**
\\ After the loop, the variable num_vertices contains the number of
vertices in the graph
8 sort the edges of E by nondecreasing weight w
9 for each edge (u,v) ε E , in order by nondecreasing weight
10 do if FIND-SET(u) ≠ FIND-SET (v)
11 then A<- A U {(u,v)}
12 UNION (u,v)
13 num_msf_edges = num_msf_edges + 1
 ** new addition **//

\\ After the ‘for’ loop, the variable num_msf_edges contains
the number of edges in MSF

14 num_components<-num_vertices - num_msf_edges
 \\ ** new addition **\\

15 return A, num_components \\ finally return the number of
components stored in the variable num_components

c) Prim’s algorithm first processes the nodes within the component
pointed to by root r. The algorithm then adds at each step a safe edge
that is always a least weight edge connecting the tree to a vertex not
in the tree but present in the same component. In this way, the
algorithm constructs MST for that component.
Once the construction is complete, all the nodes in the priority queue
Q have weight ∞. Assuming that the Extract-Min() function
arbitrarily selects one of those nodes, the algorithm then starts
executing in a similar fashion as above. The algorithm decreases the
weight of adjacent nodes and sets the parent pointers of these nodes.
However, the algorithm does not keep track of the root nodes of
different MST’s formed. It only contains pointer to the root node of
the first MST formed. Also, the parent of root nodes other than the
root node of first MST is not set to NIL & their key value still equals
to ∞.
Thus, Prim’s algorithm does not work when G is unconnected

d) MSF_PRIM(G,w,r)
// sibling list is used to link root nodes of different MSTs

1 Q<- V[G]
2 num_components <- 0 //stores the number of components in G
3 for each u ε Q
4 do key[u]<- ∞
5 key[r]<- 0
6 П [r]<- NIL
7 sibling[r] <- NIL //set root’s sibling to NIL
8 num_components <- 1 // increment the num_component

variable to count the first component
9 while Q ≠ 0
10 do u <- Extract-Min (Q)

 // new addition
 11 if key[u] = ∞

12 num_components <- num_components + 1 // since a
//new node is being traversed when the key value is ∞

 13 key[u] <-0 // as u is the new root node
 14 П[u] <- NIL // since u is the new root node
 15 sibling[r] <- u // make sibling of r point to u
 16 sibling[u]<-NIL //make sibling of u point to NIl
 17 r <- u // assign u to r
 18 for each v ε Adj[u]
 19 do if v ε Q and w(u,v) < key[v]

 20 then П [v]<- u
 21 key[v] <- w(u,v)
 22 return num_components // finally return the number of
components in G

