CISC 662 HW P Model Solution

ANONYMOUS@heaven.org

November 23, 2003

Exercise 23.2-4

Kruskal’s Algorithm Kruskal’s algorithm for finding MST can be broken into the following
parts,

1. Make-Set takes O(|V]) total

2. Sort edges ... takes O(|E|lg|E]) if no prior knowledge about weights.

3. Find-Set takes O((|E| + [V])a(|V])).

Since we are given the informaiton about edge weights, we can use counting sort or any linear
sorting algorithm that uses prior knowledge of the input to achieve linear sorting, thus makes the
time for sorting edges down to O(|E|). Therefore, the dominate term becomes O((|E|+|V])a(|V])).
However, usually |E| > |V, we can claim the whole thing to be:

O(|E[a(]V]))
Since «() is bounded by O(log*), we can also write the result to be:
O(|E[log™ |V])
given that log™ is never over 5 for pratical usage, we have:
O(|E])
Grading Scheme:
sorting takes: O(|E|) time (Chap.8.2)
union-find takes O(|E|log* |[V]) or O(|E|log* W) time (with union by rank and path compres-
sion)
You'll get points as long as you stated the above. two points off if any one is missing, all points
gone if none stated.

Exercise 23.2-5

Prim’s Algorithm If implementing Priority queue using Fibonacci heap. = makes necessary
operations (Extract Min) into O(lg|V]). This cuts the running time down to O(|E| + |V |1g|V]).

In case where edge weight bounded by constant W, with linear sorting, the cost for single
operation is reduced to a uniform O(1), thus give the O(|E| + |V|) total running time. However,
|E| usually dominates |V'|, one can claim the final running time is O(|E|). Thus we have:

O(|El)

Grading Scheme

Extract Min in Fibonacci Heap-based Priority Queue: O(lg|V)

Linear sorting cut cost per operation to O(1) amortized if edge weight bounded by constant .

Total running time be O(|E| + |V|), O(|E| + W), or O(|E|)

You'll get points as long as you stated the above. Two points off for not using Fibonacci heap,
two points for linear sorting, one point for forgetting about total running time.

