Problem K Model Solution
a. When inserting, a tree of degree 0 (one node) is merged with the heap.  So, a link needs to be performed if and only if there is a tree in the heap already with degree 0.  If so, the two will be linked into a tree of degree 1.  If there was already a tree of degree 1, that must be linked with the new tree to get a tree of degree 2.  The linking must continue as long as there is another tree of the next consecutive higher degree, since each link increases the degree of the tree we are building by one, therefore conflicting with an existing tree when there is a tree of the next higher degree.  When a degree is reached where no tree already existed of that degree, the new tree we have linked can be placed at the head of the heap as the only tree of that degree.

So, we must link for as many trees of consecutive degree starting with degree 0 that there are in the heap.  CLR page 459 explains that the set (i.e. 1) bits i indicate that a binomial tree Bi is in the binomial heap.  (This tree has degree i.)  So an lssb(n) = k means that the k smallest possible degree trees are present in the heap, and that the k + 1 smallest is not.  So the number of consecutive degree trees in the heap is the same as the number of consecutive least significant bits that equal 1, which is lssb(n), and therefore we must link lssb(n) times.  The loop runs once for each tree that is linked, which is lssb(n) times.

Note that for even n, the least significant bit = 0, so lssb(n) = 0, and there is no tree of degree 0 (size 1) in the heap.  We can directly insert our single node tree into the heap in constant time, since no linking needs to be done.  Our loop determines this immediately (so the loop never executes, and the tree is inserted by the rest of the code), so the code runs in Θ(1 + lssb(n)) = Θ(1 + 0) = Θ(1) time as needed.  For odd n, the number of links needed is > 0, and is also equal to lssb(n).  Our algorithm loops for each time a link is needed, which is lssb(n) times, and the algorithm is therefore Θ(lssb(n)), which is also Θ(1 + lssb(n)).

Starting with the book algorithm method:

Binomial-Heap-Insert(H, k)

x = Make_Tree(k)
p[x] ( NIL
child[x] ( NIL

sibling[x] ( head[H]
degree[x] ( 0

head[H] ( x
next-x ( sibling[x]


while (next-x ≠ NIL && degree[x] == degree[next-x])


{


if (key[x] ≤ key[next-x]){

sibling[x] ( sibling[next-x]




Binomial-Link(next-x, x)



}else{



head[H] ( next-x




Binomial-Link(x, next-x)




x ( next-x



}



next-x ( sibling[x]


}


return H

The loop checks whether the end of the heap has been reached, and if not, whether the degree of the next tree in the heap is the same as the degree of the tree we have been linking.  If there is a tree with the same degree, it continues linking and merging.  If not, it simply exits, since it has already been merging each new tree, after the tree was linked, to the front of the heap.  Note that prev_x is not needed anymore, since the link and merge operations are always at the front of the heap, so in the else clause head[H] must be updated every time, since x is always at the front of the heap.
Another implementation starting with Prof Saunders' code:
Binomial_Heap_Insert(BH &H, key k)

{

BT T = binomialTree(&k);

int i = 0;

while(H.begin() != null && i == degree(H.begin()){


BT first_tree = H.pop_front( );


T = Binomial_Link(T, first_tree);


++i;

}

H.push_front(T);
}
Here, each tree of the same degree that must be linked is popped off the list of heap trees and linked with the current tree we need to insert.  When the next tree of the same degree appears, it also is removed from the heap and linked with the new tree we are linking.  The degree of the next tree in the heap is checked using the counter i, since i is incremented each time in the loop, and each time in the loop the tree link also increments by one the degree of the tree we are trying to insert.  When there are no more trees, or the degree of the next tree in the list is greater than the degree of the tree we are linking, the loop exits, and the new tree we have linked is pushed on the front of the list before returning.
b.  TIns(k) is maximum when lssb(k) is maximum, since TIns(k) = Θ(1 + lssb(k)).  lssb(k) is largest when there are the most consecutive least significant 1's possible in k.  This is when k is the largest number that is ≤ n and is all ones.  Let this k be k', so that max TIns(k) = TIns(k'). 
To see why k' is the largest number ≤ n that is all ones, consider that there are two cases: n can either be all ones, or not all ones.  In Case 1, when n is all ones, then the greatest lssb(k) is lssb(k') when k' = n.  In Case 2, when n is not all ones, then somewhere before n's most significant 1 there must be a 0.  Therefore, n cannot have as many ones as the number k' which has one less bit than n does, and all of these bits in k' are ones.  The following is a further explanation:
Case 1 (n is all ones):  1(b-1)1(b-2)…13121110 – clearly, this is the most consecutive ones of any number ≤ n, since n has b bits, all of which are one, so any number < n must either have a 0 somewhere, and therefore < b ones, or it must have < b bits, and therefore also < b ones.
Case 2 (n is not all ones): 1(b-1)0(b-2)…13121110 – since n is not all ones, there must be at least one 0 before the most significant 1, so if n has b bits, there must be at least one 0 in the (b – 1) bits before the last 1 of n, so lssb(n) must be < b – 1.  Let k' be the number with (b – 1) bits (that is, one less bit than n) that is all ones.  This is 1(b-2)…13121110, which is < n since it has only b – 1 bits, and it is the largest number < n with all ones.  Since all the bits of this k' are ones, lssb(k') = b – 1.  Recall that lssb(n) < b – 1, so that this k' has a larger lssb than n does.  Also, clearly no other number < n can have as many least significant ones.  Therefore, this k' does in fact give max lssb(k), and therefore also max Tins(k).
Now that k' is determined, we need to count the number of least significant ones for this k' (in other words, find lssb(k')) in both cases (Case 1 and Case 2).

Case 1 (n is all ones): In this case, k' = n.  Since n is all ones, adding one to n to get n + 1 changes all the ones to zeros and carries over a one to the next highest bit.  Therefore, n + 1 has b + 1 bits.  (This is: n = 1(b-1)1(b-2)…121110 and (n + 1) = 1(b)0(b-1)0(b-2)…020100.)  lg(n + 1) = b, which is one less than the number of bits in the number (n + 1).  b is also the same as the number of bits in n, which is also the number of ones in n and lssb(n).  Therefore, lssb(n) = lg(n + 1).  Note that since n was all ones, and therefore (n + 1) is a one followed by all zeros, (n + 1) is a power of 2 and therefore in this case lg(n + 1) is an integer, so it is equal to lg(n + 1).  Since k' = n in this case, lssb(k') = lssb(n) = lg(n + 1) = lg(n + 1).

Case 2 (n is not all ones): In this case, k' is the number that is all ones and has one less bit than n, as mentioned earlier.  lg(n) is one less than the number of bits in n, plus some fraction.  Therefore, lg(n) is the integer that is one less than the number of bits in n, and is therefore equal to the number of bits in k', which is also lssb(k').  So lssb(k') = lg(n).  Furthermore, in this case, lg(n) will be the same lg(n + 1).  This is because n is not all ones, so the addition of 1 to n will not carry over a bit to the next highest position.  (n + 1) does not reach the next highest power of 2, and therefore lg(n + 1) does not reach the next integer value, so when taking the floor function, lg(n + 1) reduces to the same integer as lg(n) does, so that in this case lg(n + 1) = lg(n).  Therefore, lssb(k') = lg(n) = lg(n + 1).
Therefore, in both (all) cases, the max lssb(k) = lssb(k') = lg(n + 1).  And since TIns(k) = Θ(1 + lssb(k)), and the maximum TIns(k) is TIns(k'), and:

TIns(k') = Θ(1 + lssb(k'))

 = Θ(1 + lg(n + 1))

 = Θ(lg(n + 1))
 = Θ(lg(n + 1))
 = Θ(lg(n))

Therefore, since S(n) = the maximum TIns(k) = TIns(k') = Θ(lg(n)), S(n) = Θ(lg(n)).
