CISC 621 Algorithm Design and Analysis

	Assignment C
	Grader: Namratha Hundigopal


Points considered while grading:


(1) For problems A, B, C

· A recurrence form for the problem.

· The correct solution to the recurrence. 

(2) For Problem D

Justification to why the improved algorithm is better (In terms of value comparison) than the original algorithm.
MODEL SOLUTION

A general recurrence is in the form:  

	T (n) =
	{
	( (1)                   When n=1

aT(n/ b) + f (n)    When n >1
	

	
	
	Where f(n) is the cost of dividing the problem and combining the results of the sub problem.


 a) Array passed as pointer:

Recurrence form:  T (n) = T (n/2) + ( (1)
Here a =1, b = 2

f (n)  =  ( (1) as each call to binary search can be done in  constant time.

Method: Master theorem. 

n log b a  = n log 2 1  = n 0 = 1

And f (n) = ( (1) 

Case 2 of master theorem can be applied,

Since f (n) = ( (n log b a) = ((n log 2 1) = ( (1), the solution of the recurrence is 

T (n) = (  (log n).

b) Array passed by value:

Let N is the size of the array. Since the entire array is copied on each call to binary search we get f (n) = ((N)

The recurrence form:  T (n) = T (n / 2) +( (N)
Here a =1, b =2, and f (n) = ( (N)

First method

· The height of the tree is log2n. The solution of the recurrence is at most the number of levels / depth times the cost at each level. Which is O (N log 2 n)
Second Method

	T (n) =
	{
	T (n / 2) + C1 N + C2
	When n > 1

	
	
	C1 N + C3 
	When n = 1

	                       Where N = Size of the array

	T (n)
	= T (n / 2) + C1 N+ C2

	T (n)
	=T (n/ 4) + 2(C1N+ C2) 

	T (n)
	=T (n / 8) + 3 (C1 N + C2)

	Each step, n is divided into one higher power of 2, and one more 

C1 N+ C2 term is added.

	T (n)
	≤T (n / 2i) + i (C1 N + C2)

	When i
	= log n
	

	T (n)
	≤T (1)+ log n (C1 N + C2)
	

	T (n)
	≤C1N+C3+logn (C1 N+C2) 
	← Substituting for T (1)



	
	=C1N+C3+C1 N log n +C2 log n

	
	=C1 N log n+ C1 N+C2 log n+ C3

Ignoring lower order terms in the above we get

	T (n)
	= 0 (N log n)
	


Note: Master theorem cannot be applied to this problem as f (n) = ((N) is not polynomially larger than n log 2 1.

c) In this case, only the sub array consisting of (e-b) elements is copied at each step. Hence f (n) = ( (n / 2) = ( (n)

Recurrence form: T (n) = T (n / 2) + ( (n)
Here a = 1, b= 2 and f (n) = ((n)

n logba  =  n log21 = n 0 = 1

Also f (n) = ( (n log21+() = ( (n0+() where ( =1

Case 3 of master theorem applies if we can show the regularity condition holds for f (n). For sufficiently large n,

a f (n / b) ≤ c f(n) ⇒ f (n/2) = c f (n)  ½ ≤ c <1 , hence  we get

T (n) = ((n).
d) The average depth of recursion for a binary search is about log2 (n). The original algorithm did two value comparisons at each recursion step (one for 

(*p = *b) and one for (*p < *m) ) leading to a total of (2 log n) value comparisons. 

In modified algorithm there are (log n) (*p < * m) and one (*p = *b) [at last step] comparison leading to a total of just (log n+1) value comparisons. This indicates that the modified algorithm will run about twice as fast in terms of value comparisons than the original algorithm.
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