
function insertion-sort(A, n)
Input: Array A of length at least n.
Output: A[0]..A[n− 1] are permuted into sorted order.
if n < 2, return.
insertion-sort(A, n− 1).
insert(A, n).
return.

function insert(A, n)
Input: Array A of length at least n such that A[0..A[n− 2] are sorted.
Output: A[0]..A[n− 1] are permuted into sorted order.
if n < 2, return.
if A[n− 1] ≥ A[n− 2], return.
swap(A[n− 1], A[n− 2]).
insert(A, n− 1).
return.

Let Tin(n) be the cost of insert(A, n). Then

Tin(n) ≤ Tin(n− 1) + c, for n > 1.

Thus by the muster theorem, Tin(n) is in O(n).
Let Tis(n) be the cost of insertion-sort(A, n). Then

Tis(n) ≤ Tis(n− 1) + O(n), for n > 1.

In other words,

Tis(n) ≤ Tis(n− 1) + c ∗ n, for n > 1 and for some constant c.

Thus by the muster theorem, Tis(n) is in O(n2).
Let n be given and let Tm(n) be the number of multiplications used in modexp when the

exponent e has n bits. This Tm satisifes

Tm(n) ≤ Tm(n− 1) + 2.

Thus by the muster theorem Tm(n) is in O(n).
Let T (n) be the runtime cost of modexp(a, e, N) on n-bit inputs. If we use classical

multiplication, each multiplication costs O(n2) so T (n) is in O(n3). If we use karatsuba
multiplication (the divide and conquer approach of chapter 2.1), T (n) is in O(n2.59).

1


