function insertion-sort(A, n)
Input: Array A of length at least n.
Output: A[0]..A[n - 1] are permuted into sorted order.
if n < 2, return.
insertion-sort(A, n - 1).
insert(A, n).
return.

function insert(A, n)
Input: Array A of length at least n such that A[0]..A[n - 2] are sorted.
Output: A[0]..A[n - 1] are permuted into sorted order.
if n < 2, return.
swap(A[n - 1], A[n - 2]).
insert(A, n - 1).
return.

Let $T_{in}(n)$ be the cost of insert(A, n). Then

$$T_{in}(n) \leq T_{in}(n - 1) + c, \text{ for } n > 1.$$

Thus by the muster theorem, $T_{in}(n)$ is in $O(n)$.

Let $T_{is}(n)$ be the cost of insertion-sort(A, n). Then

$$T_{is}(n) \leq T_{is}(n - 1) + O(n), \text{ for } n > 1.$$

In other words,

$$T_{is}(n) \leq T_{is}(n - 1) + c * n, \text{ for } n > 1 \text{ and for some constant } c.$$

Thus by the muster theorem, $T_{is}(n)$ is in $O(n^2)$.

Let n be given and let $T_m(n)$ be the number of multiplications used in modexp when the exponent e has n bits. This T_m satisifes

$$T_m(n) \leq T_m(n - 1) + 2.$$

Thus by the muster theorem $T_m(n)$ is in $O(n)$.

Let $T(n)$ be the runtime cost of modexp(a, e, N) on n-bit inputs. If we use classical multiplication, each multiplication costs $O(n^2)$ so $T(n)$ is in $O(n^3)$. If we use karatsuba multiplication (the divide and conquer approach of chapter 2.1), $T(n)$ is in $O(n^{2.59})$.

1