function modexp(a, e, N)
Input: n-bit positive integers a, e, N.
Output: $a^e \mod N$.
Basic idea: repeated squaring
if $e = 1$, return a
$b = \text{modexp}(a, \lfloor e/2 \rfloor, n)$
$b = b \times b \mod N$
if e is odd,
\[b = b \times a \mod N \]
return b

By definition, an n-bit number, e, has binary expansion $e = \sum_{i=0}^{n-1} e_i2^i$, where each e_i is a bit with value 0 or 1. Let us say that the length of a number e is the minimum n such that e is a n-bit number. In other words, if k is the largest index such that the e_k bit in the binary expansion of e is a 1, then the length of e is $k + 1$. Put yet another way, the length of e, $\text{len}(e)$, is the least exponent m such that $e \leq 2^m$.

We have observed that if $\text{len}(e)$ is m, then the number of squarings mod N is $m - 1$ and the number of multiplications $b \times a$ in the else clause is $k - 1$, where k is the number of 1-bits in the binary expansion of e. Thus we know that the number of multiplications modulo N done in modexp() is $O(n)$ and more precisely, for $\text{len}(e) = m$, is at most $2m - 2$ and at least $m - 1$. Question: Is modexp optimal? That is, might there be an algorithm using fewer multiplications for some exponent e?

Consider the sequence of powers of a computed as successive values of b in the algorithm\(^1\). For instance, when $b = 11 = 1011_2$, the sequence of values of b is $(a^1, a^2, a^4, a^5, a^{10}, a^{11})$. For short, let’s list just the sequence of exponents of a, $(1, 2, 4, 5, 10, 11)$. Note that each entry in th sequence is either double a previous entry or one more than a previous value. More generally, an addition chain for e is a sequence of integers such that the first is 1, and each succeeding entry is either the sum of two previous or double a previous one, and the last entry is e. So our optimality question can be converted to this: ”is there an exponent e which has a shorter addition chain for it than the one generated by modexp?”

The answer is yes, and one example is $e = 31$. Our modexp builds the length 9 addition chain $(1, 2, 3, 6, 7, 14, 15, 30, 31)$. But e also has the chain $(1, 2, 3, 6, 12, 24, 30, 31)$ of length 8.

Addition chains have been studied at considerable length, but no systematic patterns have emerged of general use for algorithm design yielding anything that is a real improvement over modexp. And of course, modexp is optimal up to big-O. This is basically because no addition chain can have an i-th entry larger than 2^i.

Postscript: There is no shorter addition chain for $e = 11$ than the one produced by modexp.

\(^1\)Strictly speaking, b is a local variable in each each recursive call to modexp, but since each local b is first set as the result of a call and is the returned value of that call, there is no ambiguity in considering all of the local b’s as being one variable.