5. (2-2) What is the value returned by the following function? What is the runtime in big-O?

```c
int pesky(int n) {
    int r = 1;
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= i; ++j)
            for (int k = j; k <= j+i; ++k)
                r += 1;
    return r;
}
```

The innermost loop (indexed by \(k \)) increases \(r \) by 1 a total of \(i \) times, so the loop could be replaced by \(r += i; \). Then the second loop (indexed by \(j \)) increases \(r \) by \(i \) a total of \(i \) times, so can be replaced by \(r += i^2; \). Finally the outer loop (indexed by \(i \)) increases \(r \) by \(i^2 \) for \(i \) running from 1 to \(n \). [Remark: For the first time the body of the loop depends on the index of the loop.] This is problem 1-11 which we solved in class using induction. The loop computes \(\sum_{i=1}^{n} i^2 = n(n + 1)(2n + 1)/6 \), which is \(O(n^3) \).

The runtime has the same \(O(n^3) \) complexity since the total number of steps is proportional to the number of times 1 is added to \(r \). To be pedantic about it, the loop index \(k \) is compared and incremented for each increment of \(r \), thus directly in proportion. The other loop index steps occur less often. QED.

7. Show \(n^2 \) is \(O(2^n) \).

We all sort of know that \(2^n \) grows much faster than \(n^2 \) (exponential vs quadratic growth). How can we show it using only elementary algebra?

I suggest using proof by induction (but depending on the \(n/2 \) case, not the \(n - 1 \) case in the inductive step).

I’ll show that \(n^2 \leq 2^n \) (ie. I’ll use \(C = 1 \)).

Base cases:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n^2)</th>
<th>(2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>128</td>
</tr>
</tbody>
</table>

We see that the assertion is true for \(n = 4 \) through 7. My plan is that the inductive step for \(n \) will be based on a previous case of \(n/2 \) or \((n + 1)/2 \), whichever is an integer. Thus we’ll have a basis for induction starting at \(n = 8 \) and using the inequality starting at \(k = 4 \).

Inductive step: Suppose \(n = 2k \) is even. Then
\[
n^2 = 4 \times k^2 \leq 4 \times 2^k \quad \text{(using inductive hyp.)}
\]
\[
= 2^{k+2}
\]
\[
< 2^{2k}, \text{ if } k \geq 2. \text{ Done with the even } n \text{ case.}
\]

Now suppose \(n \) is odd, \(n = 2k - 1 \).
\[
n^2 = 4k^2 - 4k + 1 \leq 4 \times 2^k - 4k + 1 \quad \text{(by inductive hyp.)}
\]
\[
< 2^{k+2} \quad \text{(using that } 4k-1 \text{ is pos for pos integer } k.)
\]
\[
< 2^{2k-1}, \text{ if } k \geq 3. \text{ Done with the odd } n \text{ case.}
\]
QED.