1 21 points

Write the value of each of the following lisp expressions. If the expression is an ill formed lisp expression, write "error".

_____ (- (* 8 3) (/ 12 4))
_____ (+ (* (- 9 7) 2 5) 4)
_____ (* (- (+ 4 5) 3) 2))

 (define a 3)
 (define b (- a 1))

_____ (> a b)
_____ (and (= a b) (/ b (- a 3)))
_____ (or (= a b) (+ 1 1) (< b a))
_____ (if (and (< b a) (< a (* b b))) a b)

2 12 points

Testing your scoping knowledge. Assume we first make these definitions

(define x 2)
(define y (* 2 x))
(define z (+ x y))
(define (fun1 x y)
 (+ z y z))
(define (fun2 a b)
 (let ((x (+ a b))
 (y (* 2 x))
 (+ x y z)))

Now evaluate the following Scheme expressions: (Hint: if uncertain about scope rules for the let, first re-express it using lambda.)

_____ (fun1 2 3)
_____ (fun1 x 3)
_____ (fun2 3 4)
3 15 points

Procedures that return procedures. We can “smooth” a continuous function by changing the value of the function at each point to be the average of the values at nearby points. Assume we have a function $f(x)$, and a “nearby” distance d. Then define

$$\text{smooth}(x) = \frac{f(x - d) + f(x) + f(x + d)}{3}.$$

Part A. Write smoother in Scheme. The inputs are a function f of one argument and a distance d. The output is a new function of one argument, x, defined as the smooth above. Hint: use lambda to create this new function. Here is a start:

```
(define smoother
  (lambda (f d) ; the 2 arguments to smoother are a function and a distance.
    ; body which creates a function of x
    ...
  )
)
```

Part B. Show what you would type in the Scheme interpreter to find the smoothed value of $(\sin x)$ at $x = 2$, for distance 0.01. You don’t have to show the result the interpreter would produce!
Consider the function

\[
\text{(define } f \\
\text{ (lambda (n))} \\
\quad \text{(if (< n 1)} \\
\quad \quad 0 \\
\quad \quad (+ 1 (f (quotient n 2)))))
\]

Part A. What is

___ (f 4)
___ (f 6)
___ (f 8)
___ (f (expt 2 100))
___ (f (- (expt 2 100) 1))

Part B. Write an iterative version of \(f \). Your helper function may be defined inside or outside your definition of \(f \). Hint: Remember that the main body of \(f \) merely provides the initial values to the helper function.
5 12 points

The C++ function sums below is designed to return the number of ways a positive integer \(n \) can be written as a sum of positive integers. In counting the number of ways, the order of writing the terms is considered irrelevant, so for example \(7 + 2 + 1 \) is the same way as \(1 + 7 + 2 \). Thus \(\text{sums}(4) \) is 5 because the ways are \(1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, \) and \(4 \). Notice that just writing \(4 \) is counted as a sum (it is considered a sum of one term).

\[
\text{int sums(int } n)\{ \text{return sums_with_max}(n, n); \}
\]

// \(n \) is the number whose sums to compute. \(m \) is the max term to use.
// Requiring \(0 < m \leq n \).
int sums_with_max(int n, int m)
{
 if (n == 0 || k == 1) return 1;
 else
 return sums_with_max(n, m-1) + sums_with_max(n-m, min(m, n-m)); // for the sums using at least 1 m.
}

Part A. Write \(\text{sums} \) (and \(\text{sums_with_max} \)) in Scheme.

Part B. Which is true, circle it, of the process generated by \(\text{sum} \).
It is: iterative, linear-recursive (but not iterative), or tree recursive.
6 20 points

Exercise on speed of fast and slow exponentiation.

(define (expt-v1 b e)
 (if (zero? e)
 1
 (* b (expt-v1 b (- e 1)))))

(define (expt-v2 b e)
 (cond ((zero? e) 1)
 ((even? e) (square (expt-v2 b (quotient e 2))))
 ((odd? e) (* b (expt-v2 b (- e 1))))))

Part A. (Remark: 1024 is (expt 2 10) and 1048576 = 1024² = (expt 2 20).) Answers which are correct to within a factor of 2 will be counted as correct.

____ If (expt-v1 1.01 1024) takes one second, about how long do you expect (expt-v1 1.01 2048) to take?

____ If (expt-v1 1.01 1024) takes one second, about how long do you expect (expt-v1 1.01 1048576) to take?

____ If (expt-v2 1.01 1024) takes one second, about how long do you expect (expt-v2 1.001 2048) to take?

____ If (expt-v2 1.01 1024) takes one second, about how long do you expect (expt-v2 1.001 1048576) to take?

____ If (expt-v1 1.01 1024) takes one second on computer X, about how long do you expect (expt-v2 1.01 1024) to take on computer X?

Part B. Write a definition of expt-v1 which uses cond rather than if.
Part C. Write a definition of `expt-v2` which uses `if(s)` rather than `cond`.

Gee-whiz question about compound interest (This is not part of the test): If you invest 1 dollar at 1% interest per month, after 100 years, what do you have? Answer: (expt 1.01 1200), which is 153337 dollars, a 5 orders of magnitude increase!