Data Structures in C++ 1

Data Structures

in C++
Chapter 8

Tim Budd

Oregon State University
Corvallis, Oregon

USA

Vectors Chapter 8

Data Structures in C++ 2

Outline — Chapter 8

Vectors

e [dea of vector
e Templates

— Class templates

— Function templates
e Problems solved using vectors

— Sieve of Erastosthenes
— Selection Sort
— Merge Sort

— Silly Sentence Generation
e Summary of vector operations

e The implementation of the vector data type

Vectors Chapter 8

Data Structures in C++

The Idea of a Vector

Conceptually, a vector is simply a indexed

collection of similarly typed values.

element
0

element
1

element
2

element
3

element
4

element

A matrix is a two dimensional array, again of

similar type values.

element
0,0

element
0,1

element
0,2

element
0,3

element
1,0

element
1,1

element
1,2

element
1,3

element
2,0

element
2.1

element
2.2

element
2,3

Vectors

Chapter 8

Data Structures in C++ 4

Why Build into an ADT?

The C++ language has vector and matrix values,

why build something else on top of these?

e Perform safety checkes (index bounds checks)

e Make values more “self describing” (and thus

make programs more reliable)

e Permit the implementation of operations at a
higher level of abstraction (ability to

dynamically make a vector grow, for example)

Vectors Chapter 8

Data Structures in C++ 5

Templates

One major difference between the vector ADT
and the rational number or the string ADT is
that the vector ADT does not, by itself, describe
the type of object it holds. Can have a vector of
integers, a vector of reals, a vector of strings, or
any other type.

The idea of a template allows us to parameterize
the type of object held by a class. You can think
of a template as similar to a function parameter,

only it is a data structure parameter.

Vectors Chapter 8

Data Structures in C++

The Vector Template

template<class T> class vector {
public:
typedef T x iterator;

// constructors

vector (unsigned int numberElements);

vector (unsigned int numberElements, T initialValue);

vector (const vector & source);
~vector ();

// member functions
T back ();
iterator begin ();

// operators
T & operator [] (unsigned int);

private: // data areas
unsigned int mySize;
unsigned int myCapacity
T % data;

¥

Vectors

Chapter 8

Data Structures in C++ 7

Declaring Template Types

To declare a value with a template type, a type is
provided in angle brackets following the template

class name.

vector<int> a(10);
vector<double> b(30);
vector<string> ¢(15);

Vectors Chapter 8

Data Structures in C++ 8

How a Template orks

A template works as if int replaced every

occurrence of T and the class were renamed.

class vector_int {
public:
typedef T x iterator;

// constructors
vector_int (unsigned int numberElements);
vector_int (unsigned int numberElements, T initialValue);
vector_int (const vector & source);
~vector_int ();

// member functions
int back ();
iterator begin ();

// operators
int & operator [] (unsigned int);

private: // data areas
unsigned int mySize;
unsigned int myCapacity
int data;

}

Vectors Chapter 8

Data Structures in C++ 9
[]
Naming

When the vector<T> template class is
instantiated by int, its name becomes
vector<int>.

[ts constructor is named vector<int>: :vector.
Its member functions have names like
vector<int>::size.

To provide a general implementation of a

member function, we use the syntax

template <class T>
unsigned int vector<T >::size()

{

return mySize;

}

Vectors Chapter 8

Data Structures in C++ 10

Function Templates

Functions can also be parameterized using

templates, as in the following:

template <class T> T max(T a, T b)

// return the maximum of a and b

{
if (a < b)
return b;

return a;

template <class T> void swap (T & a, T & b)
// swap the values held by a and b

{

T temp = a;
a=b;
b = temp;

Vectors Chapter 8

Data Structures in C++ 11

Example Program — Sieve
of Erastosthenes

void sieve(vector<int> & values)

{

// leave vector holding only prime numbers
unsigned int max = values.size();

// first initialize all cells
for (int i = 0; i < max; i++)
values[i] = i;

// now search for non-zero cells
for (i = 2; i*i < max; i++) {
if (values|i] = 0) {
// inv: i has no factors
for (intj=1i41i;j < max; j +=1i)
values[j] = 0;
// inv: all multiples of i have been cleared

}

// all nonzero values smaller than i are prime

}

// inv: all nonzero values are prime

Vectors Chapter 8

Data Structures in C++ 12

Another Example —

Selection Sort

template<class T>
void selectionSort(vector<T> & data)
// sort, in place, the vector argument
// into ascending order
{
unsigned int top;
for (top = data.size()—1; top > 0; top = top — 1) {
// find the position of the largest element
unsigned int largeposition = 0;
for (intj = 1; j <= top; j++) {
// inv: data[largeposition] is largest element
// in 0..j-1
if (data[largeposition] < datalj])
largeposition = |;
// inv: data[largeposition] is
// largest element in O .. j
}
if (top != largeposition)
swap(data, top, largeposition);
// inv: data[top .. n] is ordered

}

Vectors Chapter 8

Data Structures in C++ 13

Merge Sort

Unfortunately, Selection Sort is still O(n?) worst
case.
Better algorithm can be built using the idea that

two vectors can be merged in linear time.

Vectors Chapter 8

Data Structures in C++ 14

In-Place Merge

An in place merge can be performed for adjacent

vector ranges:

input
stﬁ'rt ceriter e?d
213[5|7]912[3]6]|8]9]14
result
stj}rt eﬁd

21313|5(6]7[8]9]9|12]14

Provided by generic function

inplace_merge
(iterator start, iterator center, iterator end);

Vectors Chapter 8

Data Structures in C++ 15

How to build a Sorting
Algorithm

First, break things apart, until you reach a single

element

-
W
Wy
DO
O
W
(@)
\'[
—
(N

OJ\OJ
M/M

Vectors Chapter 8

Data Structures in C++ 16

Then Put Together

Then merge adjacent ranges as you come back

out of the sequence of recursive calls.

3 7
A\ / \/
213 1]7

Vectors Chapter 8

Data Structures in C++ 17

The Merge Sort Algorithm

template <class ltr>
void m_sort(ltr start, unsigned low, unsigned high)
{
if (low + 1 < high) {

unsigned int center = (high + low) / 2;

m_sort (start, low, center);

m_sort (start, center, high);

inplace_merge

(start + low, start + center,
start + high);

template <class T>
void mergeSort(vector<T> & s)

1
t

m_sort(s.begin(), 0, s.size());

Vectors Chapter 8

Data Structures in C++ 18

hat is the Asympototic
Complexity?

e Complexity is work at each level times

number of levels of call.
e Work at each level is linear
e Number of recursive calls in logn
e Total amount of work is O(nlogn)!

e Much better than bubble sort or insertion sort

Vectors Chapter 8

Data Structures in C++ 19

Picture of Complexity

n elements wide

3|]2 711
\/ \/
T30 12(3[19][3]]6]]|1]7]]2
\ \ logn
317 21319 316 1127 calls
' \ deep
2133|719 1121367
\ '}V
112(2]3(3|3|6]7]|7|9

Vectors Chapter 8

Data Structures in C++ 20

Example Problem — Silly
Sentence Generation

Generate a sequence of silly sentences.
Each sentence has form subject - verb - object.
First, allocate three vectors, with initially empty

size.

vector<string> subject, verb, object;

Vectors Chapter 8

Data Structures in C++ 21

Dynamically Extending the
Size of Vectors

Next, push values on to the end of the vectors.

Vectors are automatically resized as necessary.

// add subjects
subject.push_back("alice and fred");
subject.push_back("cats");
("people");
subject.push_back("teachers");

subject.push_back

// add verbs

verb.push_back("1love");
verb.push_back("hate");
verb.push_back("eat");
("h

verb.push_back("hassle");

// add objects
object.push_back("dogs");
"cats");

(‘
(
("people");
object.push_back("donuts");

object.push_back
object.push_back

Vectors Chapter 8

Data Structures in C++ 22

Generating Sentences

Use size to compute size, randomInteger to

get a random subscript.

for (int i =0;i < 10; i++)
cout < subject[randomIinteger(subject.size())]

<
<
<
<
<

verb[randomInteger(verb.size())]

object[randomInteger(object.size())]
"\Il"

Example Output

alice and fred hate dogs

teachers hassle cats

alice and fred love cats

people hassle donuts

people hate dogs

Vectors

Chapter 8

Data Structures in C++ 23

Matrices

Can even build vectors whos elements are
themselves vectors — this is a reasonable

approximation to a matrix.
vector< vector<int> > mat(5);

Initially each row has zero elements. Must be

resized to correct limit.

for (inti=0;i<5;i++)
mat[i].resize(6);

Vectors Chapter 8

Data Structures in C++ 24

Vector Operations

Vectors Chapter 8

Data Structures in C++

25

Constructors

vector<T> v;
vector<T> v (int);
vector<T> v (int, T);
vector<T> v (aVector);

default constructor
initialized with explicit size
size and initial value

copy constructor

Element Access

v[il subscript access
v.front () first value in collection
v.back () last value in collection
Insertion

v.push back (T)
v.insert(iterator, T)
v.swap (vector<T>)

push element on to back of vector
insert new element after iterator
swap values with another vector

Removal

v.pop_back ()
v.erase(iterator)
v.erase(iterator, iterator)

pop element from back of vector
remove single element
remove range of values

Size

v.capacity ()

v.size ()

v.resize (unsigned, T)
v.reserve (unsigned)
v.empty ()

number of elements buffer can hold
number of elements currently held

change to size, padding with value

set physical buffer size

true if vector is empty

Iterators

vector<T>::iterator itr

declare a new iterator

v.begin () starting iterator
v.end () ending iterator
Vectors Chapter 8

Data Structures in C++ 26

Sizes of Vector

Vectors will maintain an internal buffer. Like the
string, the physical size of the buffer need not be

the same as the logical size.

The two sizes can be accessed or set using
member functions.
As with the string, a new buffer is allocated when

the physical size is exceeded.

Vectors Chapter 8

Data Structures in C++ 27

Useful Generic Algorithms

fill (iterator start, iterator stop, value)
fill vector with a given initial value

copy (iterator start, iterator stop, iterator destination)
copy one sequence into another

max_element (iterator start, iterator stop)
find largest value in collection

min_element (iterator start, iterator stop)
find smallest value in collection

reverse (iterator start, iterator stop)
reverse elements in the collection

count (iterator start, iterator stop, target value, counter)
count elements that match target value, incrementing counter

count_if (iterator start, iterator stop, unary fun, counter)
count elements that satisfy function, incrementing counter

transform (iterator start, iterator stop, iterator destination, unary)
transform elements using unary function from source, placing into destination

find (iterator start, iterator stop, value)
find value in collection, returning iterator for location

find if (iterator start, iterator stop, unary function)
find value for which function is true, returning iterator for location

replace (iterator start, iterator stop, target value, replacement value)
replace target element with replacement value

replace_if (iterator start, iterator stop, unary fun, replacement value)
replace lements for which fun is true with replacement value

sort (iterator start, iterator stop)
places elements into ascending order

for_each (iterator start, iterator stop, function)
execute function on each element of vector

iter_swap (iterator, iterator)
swap the values specified by two iterators

Vectors Chapter 8

Data Structures in C++ 28

Example, counting elements

vector<int>>::iterator start = aVec.begin();
vector<int>::iterator stop = aVec.end();

if (find(start, stop, 17) != stop)
// element has been found

int counter = 0;
count (start, stop, 17, counter);
if (counter != 0)
// element is in collection

Vectors Chapter 8

Data Structures in C++ 29

Vector Implementation

e Like string, the vector holds a buffer that can

dynamically grow if needed
e Maintains two sizes, physical and logical size

e Most operations have simple implementations,

can be performed inline

e (Note that this implementation is simpler
than the actual commercial implementations,

which are properitary)

Vectors Chapter 8

Data Structures in C++ 30
Inline Definitions
template <class T> class vector {
public:
typedef T x iterator;
// constructors
vector () { buffer = 0; resize(0); }
vector (unsigned int size) { buffer = 0; resize(size); }
vector (unsigned int size, T initial);
vector (vector & v);
~vector () { delete buffer; }
// member functions
T back () { assert(! empty()); return buffer[mySize — 1];}
iterator begin () { return buffer; }
int capacity () { return myCapacity; }
bool empty () { return mySize == 0; }
iterator end () { return begin() + mySize; }
T front () { assert(! empty()); return buffer[0]; }
void pop_back () { assert(! empty()); mySize——; }
void push_back (T value);
void reserve (unsigned int newCapacity);
void resize (unsigned int newSize)
{ reserve(newSize); mySize = newSize; }
int size () { return mySize; }

// operators
T & operator [] (unsigned int index)
{ assert(index < mySize); return buffer[index]; }

private:

unsigned int mySize;

unsigned int myCapacity;

T * buffer;
b

Vectors

Chapter 8

Data Structures in C++

Constructors

The constructors use generic algorithms to fill

initial values:

template <class T>

vector<T>::vector (unsigned int size, T initial)
// create vector with given size,
// initialize each element with value

buffer = 0;
resize(size);

// use fill algorithm to initialize each
fill (begin(), end(), initial);

template <class T>
vector<T>::vector (vector & v)
// create vector with given size,
// initialize elements by copying

buffer = 0;
resize(size);

// use copy algorithm to initialize
copy (v.begin(), v.end(), begin());

31

Vectors Chapter 8

Data Structures in C++ 32

Reserve — the workhorse
method

template <class T>
void vector<T>::reserve (unsigned int newCapacity)
// reserve capacity at least as large as argument
{
if (buffer == 0) {
mySize = 0;
myCapaicty = 0;
}
// don’t do anything if already large enough
if (newCapacity <= myCapacity)
return;
// allocate new buffer, make sure successful
T * newBuffer = new T [newCapacity];
assert (newBuffer);
// copy values into buffer
copy (buffer, buffer + mySize, newBuffer);
// reset data field
myCapacity = newCapacity;
// change buffer pointer
delete buffer;
buffer = newBuffer;

Vectors Chapter 8

Data Structures in C++ 33

Implementing Generic
Algorithms

Templates are also the key to the implementation

of generic algorithms.

template (class ItrType, class T)
void fill (ItrType start, ItrType stop, T value)
{
while (start != stop)
xstart+-+ = value;

template (class SourceltrType, class DestltrType)
void copy (SourceltrType start,
SourceltrType stop, DestltrType dest)
{
while (start != stop)
xdest++ = sstart-+-;

Vectors Chapter 8

