Data Structures in C++ 1

Data Structures

in C++
Chapter 7

Tim Budd

Oregon State University
Corvallis, Oregon

USA

The string data type Chapter 7

Data Structures in C++ 2

Outline — Chapter 7

The string data type
e Primitive C4++ strings
e Problems solved using Strings

— Palendrome testing

— Splitting line into words
e Operations of the standard data type

e Implementation of the string data type

The string data type Chapter 7

Data Structures in C++ 3

Characters in C++

In C++ a character is simply a form of integer.
Arithmetic and relational operations can be

performed on characters, just as on integers.

int isupper(char c)

{

// return true if ¢ is an upper case letter
return (c >= 'A') && (c <= "'Z");

char tolower(char c)

{
if (isupper(c))
return (c — 'A') + 'a';
return c;

The string data type Chapter 7

Data Structures in C++ 4

Primitive C++ strings

In C++ a literal string is simply a pointer to a
sequence of characters. No movement of
characters is performed in the following, only an

assignment of pointers.

char * p;
p = "hello world!";

hello world!

The string data type Chapter 7

Data Structures in C++ 5

Pointers can be subscripted

Like all pointers, pointers to characters can be

subscripted, and thus literals can be modified.

p[0] = "y";
p[5] = p[6];
plo] = " *;
pl8] = '1i";
p[10] = "\?7";

Changes the text array into yellow 0il?!.
Not checks are made on the validity of pointer

subscripts. Can even be negative!

The string data type Chapter 7

Data Structures in C++ 6

Null Character Termination

Strings are terminated with a null character, a

character with value zero.

char * p;
p = "hello world!";

The literal contains 13 characters. 12 printing
characters and one null character. The
programmer must remember the null character,

and make sure space is allocated to hold it.

h € 1 1 0 W | O T 1 d ' null

The string data type Chapter 7

Data Structures in C++ 7

Low level string routines

The standard C++ library string.h defines a
number of simple routines to manipulate

null-terminated character strings.

e strlen(str) — length (number of characters

in string)
e strcpy(to, from) — duplicate string value

e strcmp(strl, str2) — compare strings,

returning negative, 0 or positive

The string data type Chapter 7

Data Structures in C++ 8

The string data abstraction

Here are some ways in which the string data
type 1s an improvement over viewing strings just

as an array of characters:

e Bounds checking on subscription, copys, and

catenation.
e Assignments which result in copies.

e Comparisons performed using relational

operators.

e High level operations such as substrings,

pattern matching.

The string data type Chapter 7

Data Structures in C++ 9

Example Problem —
Palendrome testing

The following functions are intended to illustrate
e Use of the string data type
e String member functions and operations
e Generic algorithms that are useful with strings

Problem is to tell if a string represents a
palendrome — reading the same forward and
backward.

First type of palendrome is a simple word, such

as “madam”.

The string data type Chapter 7

Data Structures in C++ 10

Palindrome Type 1

bool palindrome_typel (string & aString)
// test aString is a type 1 palindrome

string temp; // declare temporary

temp = aString; // duplicate argument
reverse (temp.begin(), temp.end()); // reverse
return temp == aString; // test for equality

Three step process:
e Duplicate string (uses assignment)
e Reverse duplicate (uses generic algorithm)

e Tests for equality (uses relational operator)

The string data type Chapter 7

Data Structures in C++ 11

A Palendrome that is not
type 1
Won'’t work for

Rats Live on No Evil Star
ratS livE oN no evili staR

Solution, first translate all characters to lower

case, then test.

The string data type Chapter 7

Data Structures in C++ 12

Palendrome Type 2

bool palindrome_type2 (string & aString)
// test if aString is a type 2 palindrome

string allLow (aString);

transform (aString.begin(), aString.end(),
allLow.begin(), tolower);

return palindrome_typel (allLow);

Again, a three step process:

1. Duplicate string (this time performed using a

copy constructor)

2. Transform every character, using a generic
algorithm that applies to each character

copied the function tolower

3. Test the resulting value to see if it is a type 1

palendrome

The string data type Chapter 7

Data Structures in C++ 13

The Transform Generic
Algorithm

The transform generic algorithm looks something

like this:

void transform
(iterator start, iterator stop,
iterator to, char fun(char))

{

while (start != stop)
xto++ = fun(xstart++);

(This isn’t exactly right, but we won'’t introduce
the template mechanism, which is essential to

the real form, until the next chapter.)

The string data type Chapter 7

Data Structures in C++ 14

A Palendrome that is not
type 2

Won'’t work on
A man, a Plan, a Canal, Panamal!

Problem, need to remove spaces and punctuation.

The string data type Chapter 7

Data Structures in C++ 15

Palendrome Type 3

bool palindrome_type3 (string & aString)
// see if text is a type 3 palindrome

{

// remove all punctuation and space
string temp = remove all (aString, " ,.!7");

// then test resulting string
return palindrome_type2 (temp);

e remove all punctuation and space characters

e then test the result to see if it is a palindrome

of type 2

The string data type Chapter 7

Data Structures in C++ 16

Removal Routine

string remove_all (string & text, string & spaces)
// remove all instances of spaces

string result;
int textLen = text.length();
int spacesLen = spaces.length();

for (inti = 0;i < textLen; i++) {
string aChar = text.substr(i, 1);
if (spaces.find(aChar, 0) >= spaceslLen)
result += aChar;

}

return result;

Uses:
e substring — return a portion of a string
e find — see if one string is contained in another

e += — append one string to another

The string data type Chapter 7

Data Structures in C++ 17

e Returning a string as a result

The string data type Chapter 7

Data Structures in C++

Example 2 — split a line

words

void split (string & text,
string & separators, list<string> & words)

{

int n = text.length();

// find first non-separator character
unsigned int start =
text.find_first_not_of(separators, 0);
// loop as long as we have
// a non-separator character
while (start < n) {
// find end of current word
unsigned int stop =
text.find first_of(separators, start);
if (stop > n) stop = n;
// add word to list of words
words.push_back
(text.substr(start, stop — start));
// find start of next word
start =

18

into

text.find_first_not_of (separators, stop+1);

}

The string data type

Chapter 7

Data Structures in C++ 19

Using this function

void main() {

string text =
"it was the best of times, it was the
worst of times.";

string smallest = "middle";
string largest = "middle";

list<string> words;
split(text, " .,!7:", words);

list<string>::iterator start;
list<string>::iterator stop = words.end();
start = words.begin();
for (; start != stop; start++) {
if (*word < smallest)
smallest = xword;
if (+word > largest)
largest = *xword,;
}
coutk "small: "< smallest< "\n";
coutk "large: "< largest< "\n";

}

The string data type Chapter 7

Data Structures in C++ 20

String Operations

Before you can use the string data type, you must

include the header file:

include <string>

The string data type Chapter 7

Data Structures in C++ 21

String Operations

The string data type Chapter 7

Data Structures in C++

22

Constructors

string s;
string s ("text");
string s (aString);

default constructor
initialized with literal string
copy constructor

Character Access

s[i] subscript access

s.substr(pos, len) return substring starting at position of given length
Length

s.length() number of characters in string
s.resize(int, char) change size of string, padding with char
s.empty () true if string has no characters
Assignment

s = 82; assignment of string

s += 82; append second string to end of first

s + s2 new string containing s followed by s2
Iterators

string::iterator t declaration of new iterator

s.begin() starting iterator

s.end () starting iterator

Insertion, Removal, Replacement

S.insert(pos, str)
s.remove(start, length)
s.replace(start, length, str)

insert string after given position
remove length characters after start
insert string, replacing indicated characters

Comparisons
s =s82s!=282 comparisons for equality /inequality
S < 82 s <= 82 comparisons for relation

Searching Operations

s.find(str)

s.find(str, pos)

s.find first_of (str, pos)
s.find_first_not_of (str, pos)

find start of argument string in receiver string
find with explicit starting position
first position of first character from argument
first character not from argument

Input / Output Operations

stream << str
string >> str
getline(stream, str, char)

output string on stream
read word from stream
read line of input from stream

The string data type

Chapter 7

Data Structures in C++ 23

Declaration

Declaration can either provide no value, or an

initial value.

string s1;
string s2 ("a string");
string s3 = "initial value";

A copy constructor initializes a string as a copy

of another string.

// initialize s4 with value of s3
string s4 (s3);

The string data type Chapter 7

Data Structures in C++ 24

Character Access

The subscript operator provides access to

individual characters, can also be assigned to.

cout < s4[2] < endl;
s4[2] = 'x';

The substr operator provides access to portions of
a string. Arguments are starting location and

length.

cout < sé4.substr(3, 2) < endl;

The string data type Chapter 7

Data Structures in C++ 25

Extent of string

The 1length function tells how long a string is.
The resize operation makes an existing string
longer or shorter, padding with characters if

necessary.

// add tab characters at end
s7.resize(15, '\t');

// write new length
cout < s7.length() < endl;

The empty function tests if string is empty, and

is more efficient than testing length against zero.

if (s7.empty())
cout € "string is empty" < endl;

The string data type Chapter 7

Data Structures in C++ 26

Assignment and Append

Strings can be assigned another string, a literal,

or a character value:

sl = s2;
s2 = "a new value";
s3 = "'x';

The += operator appends any of these forms to

the end of a string.

s3 += "yz"; // s3is now xyz

The 4 operator forms a new value, the

catenation of the arguments

cout < s2 + s3 < endl;

The string data type Chapter 7

Data Structures in C++ 27

Iterators

The member functions begin() and end ()
return beginning and past-the-end random access
iterators. The type string: :iterator can be

used to declare an iterator value.

string::iterator itr = aString.begin();
for (; itr I= aString.end() ; itr++)

The string data type Chapter 7

Data Structures in C++ 28

Insertion, Removal and
Replacement

// insert after position 3
s3.insert (3, "abc");

// remove positions 4 and 5
s3.remove (4, 2);

// replace position 4 and 5 with "pqr”
s3.replace (4, 2, "pqr");

The string data type Chapter 7

Data Structures in C++ 29

Searching Operations

The member function find searches for the

argument in the receiver string.

sl = "It was the best of times, it was the
worst of times.";

// the following returns 19
cout < sl.find("times") < endl;

// the following returns 46
cout < sl.find("times", 20) < endl;

The functions find_first_of and
find first not_of treat argument as a set of

characters.

// find first vowel
i = s2.find first_of ("aeiou");
// next non-vowel
j = s2.find_first_not_of ("aeiou", i);

The string data type Chapter 7

Data Structures in C++ 30

Useful Generic Algorithms

reverse (iterator start, iterator stop)
reverse text in the given portion of string

count (iterator start, iterator stop, target value, int & counter)
count elements that match target value, incrementing counter

count_if (iterator start, iterator stop, unary fun, int & counter)
count elements that satisfy function, incrementing counter

transform (iterator start, iterator top, iterator destination, unary)
transform text using unary function from source, placing into destination

find (iterator start, iterator stop, value)
find value in string, returning iterator for location

find if (iterator start, iterator stop, unary function)
find value for which function is true, returning iterator for location

replace (iterator start, iterator stop, target value, replacement value)
replace target character with replacement character

replace_if (iterator start, iterator stop, unary fun, replacement value)
replace characters for which fun is true with replacement character

sort(iterator start, iterator stop)
places characters into ascending order

The string data type Chapter 7

Data Structures in C++ 31

Input / Output routines

string aString =
"Find Average Word Length\n";
cout < aString;
string aWord,;
int count = 0;
int size = 0;
while (cin > aWord) {
size += aWord.length();
count+-;

}

cout < "Average word length:"
<& (size / count) < "\n";

The string data type Chapter 7

Data Structures in C++ 32

The string class description

class string {
public:
typedef char x iterator; // define iterator type

string (); // constructors
string (char x);

string (string &);

~string (); // destructor

// member functions

iterator begin ();

bool empty ();

iterator end 0;

int find (string &, int);

int find_first_of (string &, unsigned int);
int find_first_not_of (string &, unsigned int);
void insert (unsigned int, string &);

int length 0;

string substr (unsigned int, unsigned int);
void remove (unsigned int, unsigned int);
void replace (unsigned int, unsigned int, string &);
void resize (unsigned int, char)

// operators
char & operator [| (unsigned int);
void operator = (string &);
void operator += (string &);

// friends
friend bool operator == (string &, string &);
friend bool operator != (string &, string &);
friend bool operator < (string &, string &);
friend bool operator <= (string &, string &);

The string data type Chapter 7

Data Structures in C++

friend bool operator > (string &, string &);
friend bool operator >= (string &, string &);

private: // data areas
char * buffer; // pointer to dynamic buffer

33

unsigned short int bufferLength; // length of dynamic buffer

}

The string data type

Chapter 7

Data Structures in C++ 34

Internal Buffer

The string data structure uses an internal buffer
that grows and shrinks as the operations are

performed.

— \

Besause the size of the buffer cannot be predicted

when the string is created, it must use dynamic

memory allocation.

The string data type Chapter 7

Data Structures in C++ 35

One of THE most
important rules in
developing software
components

The following rule should become second nature:
Wherever possible, seek out repeated or
common operations, and factor the code
performing these operations into their
own routines.

In the case of the string abstraction, the common
operation will be allocating a buffer of a given
size, as performed by the resize () member

function.

The string data type Chapter 7

Data Structures in C++ 36

Constructors

string::string ()
// default constructor, length zero
{
buffer = 0;
// allocate buffer of length zero
resize (0, ' ');

}

string::string (char * cp)
// initialize string from literal string
{
buffer = 0;
// allocate buffer of correct size
resize (strlen(cp), ' ');

// then fill with values
strcpy (buffer, cp);

The string data type Chapter 7

Data Structures in C++ 37

Copy Constructor

A copy constructor is simply a constructor that
duplicates a value of the same type, taking the

original as argument.

string::string (string & str)
// initialize string from argument string

{
buffer = 0:

// allocate buffer of correct size
resize (str.length());

// then fill with values
strcpy (buffer, str.buffer);

}

[t is good practice to always create copy

constructors.

The string data type Chapter 7

Data Structures in C++ 38

Assignment
Assignment is, not surprizingly, very similar to
initialization.

void string::operator = (string & str)
// reassign string to the argument value

resize (str.length());
strcpy (buffer, str.buffer);

}

The string data type Chapter 7

Data Structures in C++ 39

Functions or Methods

When do you want to make a binary into a
member function (such as assignment) and when
do you want to make it into an ordinary function

(such as <<) 7

e An ordinary function is normally not
permitted access to the private portions of the
class, whereas a member function is allowed
such access. (The phrase “normally” is used,
since we will later describe a mechanism to

override this restriction).

e Implicit conversions, say from integer to float
or integer to rational, will be performed for
both right and left argument if the operator is
defined in functional form, but only for the
right argument if the operator is defined as a

member function.

The string data type Chapter 7

Data Structures in C++ 40

Destructor

A destructor is called implicitly when a value is
about to be deleted. Needs to do whatever
“housecleaning” is necessary before termination.
For strings, it must simply return the memory

associated with the buffer.

string::~string()
// called implicitly when a string
// is about to be deleted
/] free the memory associated

// with the buffer

{
delete [| buffer;

}

The string data type Chapter 7

Data Structures in C++ 41

Resize the buffer

void string::resize (unsigned int newLength, char pd)
{ inti

// if no current buffer, length is zero
if (buffer == 0)
bufferLength = 0;
// case 1, getting smaller
if (newLength < bufferLength) {
// just add new null character
newbuffer[newLength] = '\0"';
}
else { // case 2, getting larger
// allocate new buffer,
// allow space for null character
char * newbuffer = new char[newlLength + 1];
assert (newbuffer 1= 0);
// first copy existing characters
for (i = 0; i < bufferLength && buffer[i] != '"\0";
i++)
newbuffer[i] = buffer][i];
// then add pad characters
for (; i < newlLength; i++)
newbuffer[i] = pad;
// add terminating null character
newbuffer[i] = '\0"';

// free up old area, assign new

The string data type Chapter 7

Data Structures in C++ 42

if (buffer 1= 0)

delete [] buffer;
buffer = newbuffer;
bufferLength = newlLength;

t
}

The string data type Chapter 7

Data Structures in C++ 43

Computing Length

int string::length ()
// return number of characters in string
{
for (int i = 0; i < bufferLength; i++)
if (buffer[ij == '\0")
return i;
return bufferLength;

bool string::empty ()
// see if string is empty

{
}

return buffer[0] == '\0";

The string data type Chapter 7

Data Structures in C++ 44

Character Access

char & string::operator [] (unsigned int index)
// return reference to character at location

{

assert (index <= bufferLength); // not req by
standard

return buffer[index];

Note that this returns a reference to an existing
character, can therefore be used as the target of
an assignment.

Can only return references when the object being
referenced will continue to exist even after the

function returns.

The string data type Chapter 7

Data Structures in C++ 45

Creating a substring

string string::substr
(unsigned int start, unsigned int len)

assert (start + len <= length());
string sub; // create new value

/] resize appropriately
sub.resize (len, ' ');
for (inti=0;i < len; i++)

// copy characters

sub[i] = buffer[start + i];

return sub;

The string data type Chapter 7

Data Structures in C++ 46

Iterators

Can use use pointers for iterators (later we will
see some iterators that are not simple pointers).
A typedef in the class allows us to hide this fact

from casual users.

class string {
public:
// define iterator type
typedef char * iterator;

Allows users to declare iterators without knowing

their representation:

string::iterator start = aString.begin();
string::iterator stop = aString.end();

for (; start != stop; start++)

The string data type Chapter 7

Data Structures in C++ 47

Begin and End

Begin and end simply return pointers to the start

and end of the internal buffer.

string::iterator string::begin ()
// return starting iterator
// just use pointer to buffer

{

return buffer;

string::iterator string::end ()
// return ending iterator

{

return buffer + length();

The string data type Chapter 7

Data Structures in C++ 48

Removal

Simply slide characters over.

void string::remove
(unsigned int start, unsigned int len)
// remove characters from given location
{
// compute end of deleted run,
// make sure it is in range
int stop = start + len;
assert (stop <= length());

// move characters into place
while (buffer[stop] != '\0")
buffer[start++] = buffer[stop++];

// make sure string is null terminated
buffer[start] = '\0"';

The string data type Chapter 7

Data Structures in C++

Insert

49

Insert is more complex, as we have to open up

space before we copy values into position.

void string::insert
(unsigned int position, string & newText)
// insert text, starting at position

int len = length(); // current length
int ntLen = newText.length(); // additional
int newLen = len + ntlLen; // new length

// if necessary, resize buffer
resize(newlLen, '\0"');

// move existing characters over
for (int i = len; i > position; i——)
buffer[i + ntLen] = buffer[i];

// insert new characters

for (int i = 0; i < ntlLen; i++)
buffer[position + i] = newText][i];

The string data type

Chapter 7

Data Structures in C++ 50

Replace and Append

[llustrate idea of reusing previously defined

operations:

void string::replace
(unsigned start, unsigned len,
string & newText)
// replace start to start + len
// with new text

remove (start, len);
insert (start, new Text);

void string::operator += (string & right)
// append argument string to end
// of current string

1
t

insert (length(), right);

The string data type Chapter 7

Data Structures in C++ 51

Catenation

Catenation is combination of duplication and

append.

string operator + (string & left, string & right)
{

string clone(left); // copy left argument

// append right argument
clone += right;

return clone; // return result

The string data type Chapter 7

Data Structures in C++ 52

Comparisons

Comparisons can all be related to a common

routine, which is defined as follows:

int strcmp (char * p, char x q)

{
while ((p != '\0") && (xp == xq))

{ p++; q++; }
return xp — *q;

Returns negative when first is less than second, 0
if equal, and positive when first is larger than

second.

The string data type Chapter 7

Data Structures in C++ 53

Defining the Relational
Operators

All six relationals are easily defined using strcmp.

int operator < (string & left, string & right)
// test if left string is lexicographically
// less than right string

{
}

return strcmp(left.buffer, right.buffer) < 0;

The string data type Chapter 7

Data Structures in C++ 54

Problem

The problem is, the buffers are private. Solution,
declare that these six functions are somehow
special, namely “friends”.

Friends are allowed to look at the private parts of
a class.

Notice that friendship is something that the class

gives away, not something that can be taken.
class string {

public:

// friends
friend bool operator == (string &, string &);
friend bool operator != (string &, string &);
friend bool operator < (string &, string &);
friend bool operator <= (string &, string &);
friend bool operator > (string &, string &);
friend bool operator >= (string &, string &);

The string data type Chapter 7

Data Structures in C++ 55

Substring matching

int string::find (string & target, unsigned int start)
// search for target string as a substring

int targetLength = target.length();
// stop is last possible starting position
int stop = length() — targetLength;

for (int i = start; i <= stop; i++)
if (substr(i, targetLength) == target)
return I;

// no match found
// return out of bound index
return bufferLength;

Uses the equality testing operator, as well as

substr operator.

The string data type Chapter 7

