Data Structures in C++ 1

Data Structures

in C++
Chapter 6

Tim Budd

Oregon State University
Corvallis, Oregon

USA

Proving Correc tness Chapter 6

Data Structures in C++ 2

Outline — Chapter 6

The Standard Library Container Classes

e Variations on Containers

— Vector

— List

— Deque

— Stack

— Queue

— Priority Queue
— Set

— Map

e [terators

Proving Correctness Chapter 6

Data Structures in C++ 3

Types of Collections in the
Standard Library

Proving Correctness Chapter 6

Data Structures in C++ 4

Addition Removal Removal Inclusion

Structure of new of first of middle test
element element element

Vector O(1) or O(n) O(1) or O(n) or
O(n) 1 O(n)t Oflogn) t

indexed, random access to elements, bounded size

List O(1) O(1) O(1) O(n)

sequential access to elements, rapid insertion and removal

Deque O(1) O(1) O(n) O(n) or

O(logn) 1

random access, rapid insertion to front and back

Stack O(1) O(1) NA NA

insertion and removal only from front

Queue O(1) O(1) NA NA

insertion only from front, removal only from back

Priority Queue O(logn) O(1) or NA NA

O(logn) §
rapid removal of largest element
Set O(logn) O(logn) O(logn) O(logn)

ordered collection, unique values, rapid insertion, removal and test
a multiset allows repeated elements

Map O(logn) O(logn) O(logn) O(logn)
collection of key-value pairs
a multimap allows multiple elements with same key

Tconstant if accessing existing position,
Notes linear if inserting/removing

Tlogarithmic if ordered, linear if not ordered

§constant access time, logarithmic removal

Proving Correctness Chapter 6

Data Structures in C++

Vectors

e Generization of array

e Efficient, random access to elements

e High Level operations, such as dynamically

increasing or decreasing in size

v [0]

v[1]

v [2]

v[in—2]

v[in—1]

Proving Correctness

Chapter 6

Data Structures in C++ 6
Strings
e In one sense, a vector of character values

e In another sense, an entirely different high

level data type

e Lots of string specific operations

string aName = "Benjamin Franklin";

Proving Correctness Chapter 6

Data Structures in C++ 7

Lists

e Arbitrary size, memory used efficiently as

grows and shrinks

e Sequential access only, constant access to first

or last element

e Bfficient insertion or removal at any location

head — - —— tail

Proving Correctness Chapter 6

Data Structures in C++ 8

Deque — Double Ended
Queue

e Grows or shrinks as necessary
e Efficient insertion or removal from either end

e Random access to elements

v[0] | v[1] v [n—2]v[n—1]

Proving Correctness Chapter 6

Data Structures in C++ 9

Stacks and Queues
e Specialized form of deque
e Stack has LIFO, Last In, First Out protocol

e Queue has FIFO, First In, First Out protocol

Proving Correctness Chapter 6

Data Structures in C++ 10

Sets

e Ordered collection

e Efficient (logarithm) insertion, removal, and

test for inclusion

e Efficient merge, union, difference, and other

set operations

e Multiset allows more than one entry with

same value
3 7 29
14 11
12 9

Proving Correctness Chapter 6

Data Structures in C++

Priority Queue

11

e Efficient (logarithic) insertion of new values

e Efficient access to largest (or smallest) value.

(Constant time access, logarithmic removal)

41

Proving Correctness

19
32

17

47

20

12

Chapter 6

Data Structures in C++ 12

Map (Dictionary)
e Collection of key and value pairs

e Keys can be any ordered data type (i.e.,
string)

e Values can be any data type

e Bfficient insertion, removal, test for inclusion

keyr — wvalue;
keys — wvalues
keys — wvalues

key, — wvalue,

Proving Correctness Chapter 6

Data Structures in C++ 13

Selecting a Continer

e How are values going to be accessed?

random — vector or deque
ordered — set or map
sequential — list

Is the order in which values are maintained in the

collection important?

ordered — set
can be sorted — vector or deque
insertion time dependent — stack or queue

Will the size of the structure vary widely over the
course of execution?

Yes — use a list or set
No — use a vector or deque

Is it possible to estimate the size of the collection?

Yes — use a vector

Is testing to see whether a value is contained in the
collection a frequent operation?

Yes — use a set

Is the collection indexed? That is, can the collection
be viewed as a series of key/value pairs?

Proving Correctness Chapter 6

Data Structures in C++ 14

Index values are integer — use a vector or
deque
Otherwise use a map

e (Can wvalues be related to each other?

Sets require relational operators
Vectors or Lists do not

e [s finding and remowving the largest value from the
collection a frequent operation?

Yes — use priority queue
(slightly faster than set)

e At what positions are values inserted into or
removed from the structure?

Insertions to middle of list are efficient

Insertions into middle of vectors are not

Stacks and Queues can be inserted only at
end

e [s a frequent operation the merging of two or more
sequences into one?

If ordered — use a set
Otherwise — use a list and splice

Proving Correctness Chapter 6

Data Structures in C++ 15

Iterators

e Basic problem — how do you allow access to
elements of collection, without knowing how

the collection is organized?

e Solution, define a new data type specifically

for creating loops

e A large number of algorithms are provided by

the standard library, all built using iterators.

Proving Correctness Chapter 6

Data Structures in C++ 16

How do you describe a
range of values

cirds caids+1 caids+2 carids+50c:ar¢ds+51carids+52

card[0] | card[1] | card[2] ce card [50]|card[51]

e Notice how a range of values is often described

by a starting value and a past-the-end value.

e The past the end value is not part of the

collection, but just a marker.

Proving Correctness Chapter 6

Data Structures in C++ 17

Begin and End

By convention, containers return a starting value
in response to begin(), and a past-the-end value
in response to end ().

For example, to shuffle a vector of values:

random_shuffle
(aVector.begin(), aVector.end(),
randomInteger);

Proving Correctness Chapter 6

Data Structures in C++ 18

What must iterators do

To see what iterators must do, consider a typical

algorithm:

iterator find
(iterator first, iterator last, T & value)

{

while (first = last && xfirst |= value)
++first;
return first;

Could be used to find values in an array, or in a

list:

int data[100];
int * where = find(data, data+100, 7);

list<int>::iterator where =

find(aList.begin(), alList.end(), 7);

Proving Correctness Chapter 6

Data Structures in C++ 19

Iterator Operations

e An iterator can be compared for equality to
another iterator. They are equal when they
point to the same position, and are otherwise

not equal.

e An iterator can be dereferenced using the
operator, to obtain the value being denoted
by the iterator. Depending upon the type of
iterator and variety of underlying container,
this value can also sometimes be used as the
target of an assignment in order to change the

value being held by the container.

e An iterator can be incremented, so that it
refers to the next element in sequence, using

the operator ++.

What makes iterators possible is that all of these
can be overloaded.

Proving Correctness Chapter 6

Data Structures in C++ 20

Will make extensive use of iterators in the

following chapters.

Proving Correctness Chapter 6

