
Data Structures in C++ 1
Data Structuresin C++Chapter 6Tim BuddOregon State UniversityCorvallis, OregonUSA

Proving Correctness Chapter 6



Data Structures in C++ 2Outline { Chapter 6The Standard Library Container Classes� Variations on Containers{ Vector{ List{ Deque{ Stack{ Queue{ Priority Queue{ Set{ Map� Iterators
Proving Correctness Chapter 6



Data Structures in C++ 3Types of Collections in theStandard Library

Proving Correctness Chapter 6



Data Structures in C++ 4Addition Removal Removal InclusionStructure of new of �rst of middle testelement element elementVector O(1) or O(n) O(1) or O(n) orO(n) y O(n) y O(logn) zindexed, random access to elements, bounded sizeList O(1) O(1) O(1) O(n)sequential access to elements, rapid insertion and removalDeque O(1) O(1) O(n) O(n) orO(logn) zrandom access, rapid insertion to front and backStack O(1) O(1) NA NAinsertion and removal only from frontQueue O(1) O(1) NA NAinsertion only from front, removal only from backPriority Queue O(logn) O(1) or NA NAO(logn) xrapid removal of largest elementSet O(logn) O(logn) O(logn) O(logn)ordered collection, unique values, rapid insertion, removal and testa multiset allows repeated elementsMap O(logn) O(logn) O(logn) O(logn)collection of key-value pairsa multimap allows multiple elements with same keyyconstant if accessing existing position,Notes linear if inserting/removingzlogarithmic if ordered, linear if not orderedxconstant access time, logarithmic removalProving Correctness Chapter 6



Data Structures in C++ 5Vectors� Generization of array� E�cient, random access to elements� High Level operations, such as dynamicallyincreasing or decreasing in size
v[0] v[1] v[2] ... v[n�2]v[n�1]

Proving Correctness Chapter 6



Data Structures in C++ 6Strings� In one sense, a vector of character values� In another sense, an entirely di�erent highlevel data type� Lots of string speci�c operationsstring aName = "Benjamin Franklin";

Proving Correctness Chapter 6



Data Structures in C++ 7Lists� Arbitrary size, memory used e�ciently asgrows and shrinks� Sequential access only, constant access to �rstor last element� E�cient insertion or removal at any location
head - - - ... - tail

Proving Correctness Chapter 6



Data Structures in C++ 8Deque { Double EndedQueue� Grows or shrinks as necessary� E�cient insertion or removal from either end� Random access to elements
� - v[0] v[1] ... v[n�2]v[n�1]� -

Proving Correctness Chapter 6



Data Structures in C++ 9Stacks and Queues� Specialized form of deque� Stack has LIFO, Last In, First Out protocol� Queue has FIFO, First In, First Out protocol
6 ?
& - -

Proving Correctness Chapter 6



Data Structures in C++ 10Sets� Ordered collection� E�cient (logarithm) insertion, removal, andtest for inclusion� E�cient merge, union, di�erence, and otherset operations� Multiset allows more than one entry withsame value'
&

$
%'&

$
%

312147 93211 1112 6224 17

Proving Correctness Chapter 6



Data Structures in C++ 11Priority Queue� E�cient (logarithic) insertion of new values� E�cient access to largest (or smallest) value.(Constant time access, logarithmic removal)
ZZZZZZZ �������47

9
4123 3217

19
20 7 12

Proving Correctness Chapter 6



Data Structures in C++ 12Map (Dictionary)� Collection of key and value pairs� Keys can be any ordered data type (i.e.,string)� Values can be any data type� E�cient insertion, removal, test for inclusionkey1 ! value1key2 ! value2key3 ! value3...keyn ! valuen

Proving Correctness Chapter 6



Data Structures in C++ 13Selecting a Continer� How are values going to be accessed?random { vector or dequeordered { set or mapsequential { list� Is the order in which values are maintained in thecollection important?ordered { setcan be sorted { vector or dequeinsertion time dependent { stack or queue� Will the size of the structure vary widely over thecourse of execution?Yes { use a list or setNo { use a vector or deque� Is it possible to estimate the size of the collection?Yes { use a vector� Is testing to see whether a value is contained in thecollection a frequent operation?Yes { use a set� Is the collection indexed? That is, can the collectionbe viewed as a series of key/value pairs?
Proving Correctness Chapter 6



Data Structures in C++ 14Index values are integer { use a vector ordequeOtherwise use a map� Can values be related to each other?Sets require relational operatorsVectors or Lists do not� Is �nding and removing the largest value from thecollection a frequent operation?Yes { use priority queue(slightly faster than set)� At what positions are values inserted into orremoved from the structure?Insertions to middle of list are e�cientInsertions into middle of vectors are notStacks and Queues can be inserted only atend� Is a frequent operation the merging of two or moresequences into one?If ordered { use a setOtherwise { use a list and splice
Proving Correctness Chapter 6



Data Structures in C++ 15Iterators� Basic problem { how do you allow access toelements of collection, without knowing howthe collection is organized?� Solution, de�ne a new data type speci�callyfor creating loops� A large number of algorithms are provided bythe standard library, all built using iterators.

Proving Correctness Chapter 6



Data Structures in C++ 16How do you describe arange of values
card[0] card[1] card[2] ... card[50]card[51]# # # # # #cards cards+1 cards+2 cards+50cards+51cards+52

� Notice how a range of values is often describedby a starting value and a past-the-end value.� The past the end value is not part of thecollection, but just a marker.

Proving Correctness Chapter 6



Data Structures in C++ 17Begin and EndBy convention, containers return a starting valuein response to begin(), and a past-the-end valuein response to end().For example, to shu�e a vector of values:random shu�e(aVector.begin(), aVector.end(),randomInteger);

Proving Correctness Chapter 6



Data Structures in C++ 18What must iterators doTo see what iterators must do, consider a typicalalgorithm:iterator �nd(iterator �rst, iterator last, T & value)f while (�rst != last && ��rst != value)++�rst;return �rst;gCould be used to �nd values in an array, or in alist:int data[100];...int � where = �nd(data, data+100, 7);list<int>::iterator where =�nd(aList.begin(), aList.end(), 7);Proving Correctness Chapter 6



Data Structures in C++ 19Iterator Operations� An iterator can be compared for equality toanother iterator. They are equal when theypoint to the same position, and are otherwisenot equal.� An iterator can be dereferenced using the �operator, to obtain the value being denotedby the iterator. Depending upon the type ofiterator and variety of underlying container,this value can also sometimes be used as thetarget of an assignment in order to change thevalue being held by the container.� An iterator can be incremented, so that itrefers to the next element in sequence, usingthe operator ++.What makes iterators possible is that all of thesecan be overloaded.Proving Correctness Chapter 6



Data Structures in C++ 20Will make extensive use of iterators in thefollowing chapters.

Proving Correctness Chapter 6


