Data Structures in C++ 1

Data Structures

in C++
Chapter 2

Tim Budd

Oregon State University
Corvallis, Oregon
USA

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 2

Classes and Object-Oriented
Programming

Purpose of this chapter
e Introduce classes
e Introduce idea of object-oriented programming
e Programming using software components
e Characterising software by behavior

We will introduce these by means of an extended example program.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 3
The Card game War

player 1 player 2
ace 7 3 8 ace king
deck
spade |heart| |club club| spadg |heart

During each round both players select one of their three cards, and

places it face up. If ranks are the same, then both players retain
their cards (setting them aside). Otherwise, player with largest
ranking card keeps both cards. Each player draws one card from
the deck to replace the card just played. The game ends when the

deck is exhausted, and the player with the most cards wins.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++

Nouns and Verbs

The nouns in the problem description identify the components of

the game, the verbs identify what they do.

Components:

e Card — know its rank and suit
e Deck — shuffle, draw, know when empty

e Player — draw card from hand, keep own score

Will make software component for each.

Classes and Object-Oriented Programming

Chapter 2

Data Structures in C++ 5

The Class Card

enum suits {diamond, club, heart, spade};

class Card {
public:
// constructors
Card ()
Card (suits, int);

// data fields
int rank;
suits suit;

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 6

Constructors

A special type of function, used to combine creation and
inatialization, thereby ensuring that every object is properly

initialized. Invoked automatically when object is declared.

Card::Card ()
// initialize a new Card
// default value is the ace of spades

{

rank = 1;
suit = spades;

Card::Card (suits sv, int rv)
// initialize a new Card using the argument values

{

rank = rv;

suit = sv;

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 7

Overloaded Names

A function with more than one name is said to be overloaded.
Note how constructor is overloaded.
Each version of an overloaded function must have unique argument

types.

Other overloaded function we have seen — operator <<.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 8

Test our Abstraction

void main() {
Card cardOne;
Card cardTwo(diamond, 7);

cout < "Card one\n";
cout < cardOne.rank < "\n";
cout € "Card two\n";
cout < cardTwo.rank < "\n";

Not very nice, aces and face cards are numbers, not text, and can’t

print suits. Should be able to do better.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++

Output operator for Card

ostream & operator < (ostream & out, Card & aCard)
// output a textual representation of a Card
{
switch (aCard.rank) { // first output rank
case 1:
out < "Ace";
break;
case 11:
out < "Jack";
break;
case 12:
out < "Queen';
break;
case 13:
out < "King";
break;
default: // output number
out < aCard.rank;
break;

Classes and Object-Oriented Programming

Chapter 2

Data Structures in C++ 10

switch (aCard.suit) { // then output suit

case diamond:
out < " of Diamonds";
break;

case spade:
out < " of Spades";
break;

case heart:
out < " of Hearts";
break;

case club:
out < " of Clubs";
break;

}

return out;

We have overloaded the >> operator by providing a new meaning

for printing when using Cards.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++

New Test Program

void main() {
Card cardOne;
Card cardTwo(diamond, 7);

cout <€ "Card One:" < cardOne < "\n";
cout < "Card Two:" < cardTwo < "\n";

Much nicer output.

Classes and Object-Oriented Programming

11

Chapter 2

Data Structures in C++ 12

Pass-by-Reference

Note use of ampersand in declaration — signifies pass-by-reference.
Used when passing large structures (such as streams) that are
modifed in the function.

Alternative, if nothing specified, is pass-by-value, which creates a
copy of the argument.

Use pass-by-reference when you don’t want to make a copy of the
argument. (unless argument is integer, float, pointer, or something

else trivial to copy).

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 13

The Class Deck

e A deck must maintain a collection of cards
e The deck must be able to shuffle the cards it holds
e The deck must be able to tell the user whether or not it is empty

e The user of the deck must be able to draw a card (assuming the

deck is nonempty)

class Deck {
public:
// constructor
Deck();

// operations on a deck
void shuffle ();
bool isEmpty ();
Card draw ();

protected:
Card cards[52];
int topCard;

¥

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 14

Protected and Public

Protected are things that can be accessed only by functions
associated with the class.

Public features can be accessed outside of the class.

We have “hidden” the direct access to the data fields — this is a

good idea.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 15

Arrays and Initialization

class Deck {
public:
// constructor

Deck();

// operations on a deck
void shuffle ();
bool isEmpty ();
Card draw ();

protected:
Card cards[52];
int topCard;

b

Elements of the array are initialized using no-argument constructor
(termed the default constructor).

Will be given other values by the constructor for Deck.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 16

Deck Constructor

Deck::Deck ()
// initialize a deck by creating all 52 cards
1
topCard = 0;
for (inti=1;i <= 13; i++) {
Card cl(diamond, i), c2(spade, i), c3(heart, i), c4(club, i);
cards[topCard++] = cI;
cards[topCard++] = ¢2;
cards[topCard++] = ¢3;
cards[topCard++] = c4;

}

Note use of local variables.

increment /subscript idiom — very common in C and C++ programs.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 17

To Shuffle, Need Random Numbers

To shuffle, need a source of random numbers. C++ run-time
library provides one function, but not exactly what we need. But
we can build what we need. First problem, rand() returns an
arbitrary integer. How would we convert this into a value between

larger than or equal to zero and smaller than max?

// rand() returns a random integer
// take remainder when divided by max
// to produce value in desired range
unsigned int rval = rand();
return rval % max;

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 18

Function Objects

Now the next part is a bit tricky. The library function we want to
call requires an OBJECT that ACTS like a function. But function
calling is an operator in this language, so we can write this as

follows:

class randomlnteger {
public:
unsigned int operator () (unsigned int);

¥

An object that can be used like a function is called a function

object.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 19

Body of the randomlInteger class

Note carefully the various parts of the random integer object.

unsigned int randomlnteger::operator () (unsigned int max)
{
// rand return random integer
// convert to unsigned to make positive
// take remainder to put in range
unsigned int rval = rand();
return rval % max;

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 20

The old Shuffle routine

randomlInteger randomizer; // global variable randomizer object

void Deck::shuffle ()
// randomly shuffle the cards array,
// using the generic algorithm random_ shuffle

{
}

random _shuffle (cards, cards+52, randomizer);

Uses a generic algorithm provided by the standard C++ library.
This algorithm needs a pointer to the front and back of the array,
as well as the function object that can be used as the random

number generator.

cirds caids+1 cai'ds+2 callds+50 caﬂds+51 ca11ds+52

card[0]

card[1] | card[2] card[50] [card[51]

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 21

Qualified Names

void Deck::shuffle ()
// randomly shuffle the cards array,

Note the name of the function being defined.

A qualified name describes both the class name and the member
function name — neither by itself is sufficient to fully identify the
function.

Similar to the way we use first names and last names to identify

people.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 22

Draw a Card

Card Deck::draw ()
// return one card from the end of the deck

{
if (! isEmpty())
return cards[——topCard];

else { // otherwise return ace of spades
Card spadeAce(spade, 1);
return spadeAce;

}

Note defensive programming — always assume if somebody can use
your software component incorrectly, they will.

Note call on isEmpty — asking “am I empty?”

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++

Testing to see if Deck is Empty

bool Deck::isEmpty ()
// return true if the deck has no cards

{
}

return topCard <= 0;

Classes and Object-Oriented Programming

23

Chapter 2

Data Structures in C++ 24

In-line Function Definitions

class Deck {
public:
// constructor

Deck ();

// operations
void shuffle ()

{ random shuffle (cards, cards+52, randomizer); }
bool isEmpty ()

{ return topCard < 0; }
Card draw ();

protected:
Card cards[52];
int topCard;

¥

Should be used only for very short function bodies.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++

The class Player

class Player {
public:
// constructor
Player (Deck &);

// operations

Card draw ();
void addPoints (int);

int score ();

void replaceCard (Deck &);

protected:
Card cards[3];
int myScore;
int removedCard;

¥

Classes and Object-Oriented Programming

25

Chapter 2

Data Structures in C++

Constructor for Player

Player::Player (Deck & aDeck)
// initialize the data fields for a player

{

myScore = 0;

for (inti=0; i< 3; i++)
cards[i] = aDeck.draw();

removedCard = 0;

Classes and Object-Oriented Programming

26

Chapter 2

Data Structures in C++ 27

Draw a Card from Hand

Card Player::draw ()
// return a random card from our hand

{

removedCard = randomizer(3);
return cards[removedCard];

}

Note this function is same name as one in Deck, but no confusion
can arise (at least to the computer, won’t talk about the

programmer).

void Player::replaceCard (Deck & aDeck)
// replace last card played with new card

{

cards[removedCard] = aDeck.draw();

}

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 28

Keeping Score

void Player::addPoints (int howMany)
// add the given number of points to the current score

{

myScore += howMany;

int Player::score ()
// return the current score

{

return myScore;

Functions to access or update a data field are called accessor

functions and mutators.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 29

The Big Game

void main() {
Deck theDeck; // create and shuffle the deck
theDeck.shuffle();

Player playerl(theDeck); // create the two
Player player2(theDeck); // players

while (! theDeck.isEmpty()) {
Card cardl = playerl.draw();
cout < "Player 1 plays " < cardl < "\n";
Card card2 = player2.draw();
cout < "Player 2 plays " < card2 < "\n'";

if (cardl.rank == card2.rank) { // tie
playerl.addPoints(1);
player2.addPoints(1);
cout < "Players tie\n'";
}

else if (cardl.rank > card2.rank) {
playerl.addPoints(2);
cout < "Player 1 wins round\n";

}

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 30

else {
player2.addPoints(2);
cout < "Player 2 wins round\n";

}
}

cout < "Player 1 score " < playerl.score() < "\n";
cout < "Player 2 score " < player2.score() < "\n";

}

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++

An Interactive Game

Wouldn't it be better if the game were interactive?

You current hold in your hand:
a) Ace of spades

b) 3 of clubs

c) seven of diamonds

which one do you want to play? b
Human plays 3 of clubs

Computer plays 7 of spades
Computer wins round

You currently hold in your hand:
a) Ace of spades

b) 4 of diamonds

c) seven of diamonds

which one do you want to play?

Classes and Object-Oriented Programming

31

Chapter 2

Data Structures in C++ 32

The Human Player class

Make a class called HumanPlayer, that is exactly the same as the
class Player, only the draw method does something different.
Simply replace the first declaration of Player in our game with
HumanPlayer, and keep everything else the same.

[llustrates the great advantage of programming using components,

called encapsulation.

Classes and Object-Oriented Programming Chapter 2

Data Structures in C++ 33

The Human Player Draw routine

Card HumanPlayer::draw ()

// draw one card from the current hand

cout < "You currently hold in your hand:\n";
cout € "a) " < cards[0] < "\n";

cout € "b) " < cards[l] < "\n";

cout € "¢) " < cards[2] < "\n";

cout < "Which one do you want to play? ",
char answer[80];

removedCard = —1;

while (removedCard == —1) {

cin > answer; // read response

if (answer[0] == 'a')
removedCard = 0;

else if (answer[0] == 'b"')
removedCard = 1;

else if (answer[0] == 'c"')

removedCard = 2;
if (removedCard != —1)
return cards[removedCard];

cout K "please specify a, b or c\n";

}

Classes and Object-Oriented Programming Chapter 2

