Data Structures in C++

Data Structures

in C++
Chapter 1

Tim Budd

Oregon State University
Corvallis, Oregon
USA

Language Fundamentals

Chapter 1



Data Structures in C++ 2

Language Features

The purpose of this chapter is to quickly review all those features of
C++ that you should already have encountered and be familiar
with.

Even if you have learned programming in another language (Pascal,
for example) you should be able to quickly get up to speed with the

features described here.

Language Fundamentals Chapter 1



Data Structures in C++ 3
Comments
There are two forms of comments in C++

// from slashes to end of line

[x
comments that span
multiple lines

¥/

Comments should be used extensively for documentation.

Language Fundamentals Chapter 1



Data Structures in C++ 4

Constants

There are various types of constants:
e integer — 1, 12, —37
e octal integers — 014
e hexadecimal integers OXFF 0XC
e floating point — 3.14159 2.7e14
e character — 'a’ '\n’

e string — "abc

Suffixes can be applied to integer constants (U for unsigned, L for
long)

Several other special backslash characters

Language Fundamentals Chapter 1



Data Structures in C++ 5

Variables, Types, Values and
Declarations

A wvariable is a named location that can hold values of a certain

type.
Variables are created using a declaration statement, which also

describes the associated type.

int a, b, ¢ // declare three integer variables

Declarations can be combined with initialization:

double pi = 3.1415926;

Language Fundamentals Chapter 1



Data Structures in C++ 6

Fundamental Data Types
The fundamental data types:
e integer — int
e floating point — double, float
e character — char
Modifiers that can be used with funamental types
e signed, unsigned — positive and negative, or positive only

e short, long — (possibly) shorter or longer than standard

Language Fundamentals Chapter 1



Data Structures in C++ 7

More Data Types

Boolean (bool) variables are true/false.

Enumerated values are defined by providing an explicit range

enum months {January, February, March, April, May, June, July,
August, September, October, November, December};

months workingMonth, vacationMonth;
months summerMonth = August;

Language Fundamentals Chapter 1



Data Structures in C++ 8

Variables and Assignment

Variables are modified by assignment statments, which assign an

expression to a variable.

double f, ¢; // Fahrenheit and Celsius temperature

c = 43;
f=(c*9.0) /5.0 + 32

Binary operators can be combined with assignment:

has the same meaning as the statement:
=14 5;
Other short-hand notations:

i+

has the effect of incrementing the variable i by one.

Language Fundamentals Chapter 1



Data Structures in C++

Lots of Operators

Unary Operators

increment, decrement
negation
bit-wise inverse

i, +H, i——, ——i

—1

~ 1

Arithmetic Operations

addition, subtraction
multiplication, division
remainder after division

a-+b a—b
axb a/b
a%b

Shift Operations (also stream 1/0O)

left shift (also stream output) a <<b
right shift (also stream input) a>>b
Relational Operations
less than, less than or equal < <=
equal, not equal ===
greater than, greater than or equal > >=
Logical Operations
and x && y
or x ||y
logical negation L
Miscellaneous Operations

function call f(a,b,c)
conditional expression c?a:b

Language Fundamentals

Chapter 1



Data Structures in C++ 10

Stream I/0

The left and right shift operators are given different meanings when
used with stream values. The most common stream is associated

with “console input and output”.

cout < "the Fahrenheit equivalent of " < ¢ K
" iS " << f<< "\Il";

cin > c; // get a new value of ¢
cout < "the Fahrenheit equivalent of " < ¢ K
nm4g " < f<< "\Il";

Operator >> works by side effect, changing the right hand
expression. Result can be converted into a boolean, to test if input

was successful.

int sum = 0;

int value;

while (cin > value) {
sum += value;

}

cout € "sumis " <K€ sum <K "\n";

Language Fundamentals Chapter 1



Data Structures in C++ 11

Pointers

A pointer is a variable that maintains the address of another

location in memory.

s ‘

Pointers can be used in the following ways:

e Pointers can be subscripted, (works best if they point to an

array, but isn’t checked).
e Pointers can be dereferenced, using the * operator.
e Can combine dereference and field access, using — > operator.

e Can use addition, p+1i is address of p[i].

Language Fundamentals Chapter 1



Data Structures in C++ 12

Conditional Statements

Normal sequential control can be modified using a conditional

statment:

month aMonth;

if ((aMonth >= June) && (aMonth <= August))
isSummer = true;

else
isSummer = false;

Else part is optional.

Language Fundamentals Chapter 1



Data Structures in C++

Switch Statements

Switch statements can select one of many alternatives:

switch (aMonth) {

case January:

highTemp = 20;
lowTemp = 0;
break;

case February:
highTemp = 30;
lowTemp = 10;
break;

case July:
highTemp = 120;
low Temp = 50;
break;

default:
highTemp = 60;
low Temp = 20;

Language Fundamentals

13

Chapter 1



Data Structures in C++ 14
Loops

Loops are used to execute statements repeatedly until a condition is

satisfied.

c = 0;
while (¢ <= 100) {
cout < "Celsius " < ¢ K " is Fahrenheit " K
((9.0 xc) /5.0 + 32) < "\n";
¢ += 10;

}

Language Fundamentals Chapter 1



Data Structures in C++ 15

For statements

For statements combine in one statement initialization, termination

test, and update.

for (c = 0; ¢ <= 100; ¢ += 10) {
cout < "Celsius " < ¢ K " is Fahrenheit " <K
((9.0 xc) /5.0 +32) < "\n";

}

Declaration of new variables can be combined with loop.

for (inti=0;i < 12; i++) {
cout € "i: "< i< "1isquared " K ixi < "\n'";

}

Language Fundamentals Chapter 1



Data Structures in C++ 16

Array

An array is a fixed sized collection of similarly-typed values. Array
elements are accessed using subscripts, range is zero to one less

than array size.

// declare an array of twelve integer values
int Temperatures[12];
// now assign all values
Temperatures[0] = 0;
Temperatures[1] = 10;
Temperatures[2] = Temperatures[1] + 15;

Arrays can be initialized:

string MonthNames[12] = {"January", "February",
"MarCh", llAprilll’ Hmay"’ llJunell,
"July", "August", "September", "October",
"November", "December" };

Language Fundamentals Chapter 1



Data Structures in C++ 17

Multidimensional Arrays

Arrays of more than one dimension can be created by giving the

extent along each axis.

double matrix[10][20];

Creates a double precision array of ten rows and twenty columns.

Elements accessed by giving subscript for each dimension:

matrix [i][j] = matrix [i—1][j+1] + 1;

Language Fundamentals Chapter 1



Data Structures in C++ 18

Arrays and Pointers

Close relationship between arrays and pointers.

Array name is in fact treated just like a pointer.

Pointers can be subscripted, as if they were arrays (even if they
aren’t!)

MonthNames + 3 is legal, means address of MonthNames [3].

Language Fundamentals Chapter 1



Data Structures in C++

Arrays as Arguments

When used as an argument, size need not be specified:

int arraySum (int values| ], int n)
// compute sum of array values[0] .. values[n-1]

{

int result = 0;
for (inti=0;i<n;i++){
result += valuesi]

}

return result;

Language Fundamentals

19

Chapter 1



Data Structures in C++ 20

Structures

A structure is a collection of fields, which need not have the same
type.
struct person {
string name;

int age;
enum {male, female} sex;

};
Fields are accessed using dot notation.

person employee;

employee.name = "sam smith";
employee.age++;
if (employee.sex == male)

We actually won’t use structures, will use more general mechanism

called class (Described in chapter 2).

Language Fundamentals Chapter 1



Data Structures in C++ 21

Functions

Functions encapsulate a set of actions, so that later we can refer to

the sequence of actions by name alone:

int Fahrenheit(int cTemp)

1
}

return (cTemp * 9.0) / 5.0 + 32;

Parts:
e Header — with return type, name, and arguments

e Body — with statements to execute. Can have return statement

to end execution.

Return type can be void — no value.
A function prototype is a declaration but not a definition, just gives

name, arguments and return type.

/] prototype for Fahrenheit — definition occurs later
int Fahrenheit (int);

Language Fundamentals Chapter 1



Data Structures in C++ 22

Local Variables

Variables within a function come into existance when the function
is entered, disappear when the function exits. Execute in stack-like
fashion. Assume function A calls function B which calls function C

— can imagine variables as follows:

local variables for C

local variables for B

local variables for A

Will eventually encounter recursive functions, functions that can
call themselves. Imagine B is recursive, and has called itself once

before calling C, can envision the following:

local variables for C

local variables for B

local variables for B

local variables for A

Language Fundamentals Chapter 1



Data Structures in C++ 23

The Main Event

A program must always include a procedure named main, which is

the starting point for execution.

# include <iostream>

void main() {

// program to write table of squares
cout < "Table of Squares\n";

for (inti=0; i< 12; i++) {

cout € "i: "< i< "1isquared " K ixi < "\n";

}

Language Fundamentals Chapter 1



Data Structures in C++

Include Files

24

Many data structures require one to define an include file before

they can be processed.

Language Fundamentals

PUTPOSE name
stream input/output | iostream
math functions math.h
complex numbers complex
Boolean values bool.h
generic algorithms | algorithm

Chapter 1



