
Incremental Path-Selection and Scheduling
for Time-Sensitive Networks

Abdullah Alnajim Seyedmohammad Salehi Chien-Chung Shen
Department of Computer and Information Sciences, University of Delaware, USA

{alnajim,salehi,cshen}@udel.edu

Abstract—Industrial real-time applications demand their
communication networks be robust and deterministic so that
packets are delivered with bounded delay and jitter. The IEEE
Time-Sensitive Networking (TSN) Task Group has amended the
standards of IEEE 802.3 Ethernet to support time-triggered
flows of real-time applications. However, the issues of routing
and scheduling are left as open problems. Specifically, majority
of the state-of-the-art scheduling efforts make certain assump-
tions, such as assuming that the routing information is known a
priori to focus on the scheduling problem or assuming that the
information of flows is known in advance. Other studies that
avoided these assumptions ignore certain valuable information
that could be taken advantage of to make better routing
decisions, such as the residual bandwidth. In this paper, we first
propose an incremental QoS-aware path selection algorithm that
uses QoS measurement to route TSN flows. Then, we introduce
multiple incremental scheduling algorithms that address above
mentioned issues, and demonstrate their performance.

Index Terms—time sensitive networks, path selection, routing

I. INTRODUCTION

Time-Sensitive Networking (TSN) is a set of standards
developed by the Time-Sensitive Networking Task Group
(TSN TG) of the IEEE 802.1 Working Group for real-
time communication over Ethernet networks with bounded
delay and jitter [5]. TSN brings industrial-grade robustness
to Ethernet to facilitate real-time, safety critical applications
(e.g., Industry 4.0 and Cyber-Physical Systems) and to enable
the transmissions of both time-critical and best-effort traffic
over one common communication infrastructure.

Majority of the existing routing and scheduling algorithms
for TSN are executed offline for static scenarios, where the
routes or schedules are computed at the design time with
a priori knowledge of either flow or routing information,
which remain static while the network is operating online.
Although such scenarios facilitate optimal or near optimal
solutions, they become impractical with realistic deployments.
For instance, in the context of Industrial Internet of Things
(IIoT), it is inevitable to add and remove flows and/or
devices while the system is running. Moreover, given that
offline solutions are computed at the design time, their actual
execution time is not a major concern.

By exploiting the logically centralized paradigm of
software-defined networking (SDN), [3] is the first effort that
formulated the integrated problem of routing and scheduling
in Integer Linear Program (ILP) given a set of pre-defined
time-triggered flows. Subsequently, the same authors pro-
posed incremental algorithms [4] to dynamically schedule
new flows whenever they become available. However, since

Fig. 1: TSN architecture and workflow of connection setup.

they did not use the gating with Guard Band mechanism
introduced in IEEE 802.1Qbv time-aware scheduler, best-
effort traffic may cause real-time traffic to wait at egress
ports which negatively affects latency and jitter. In addition,
their use of large time-slots reduces the bandwidth available
for the high priority streams. In addition, their approaches
do not consider the variety of flow requirements; instead,
they try to bound the end-to-end delay and jitter. In practice,
some time-critical applications may have more stringent delay
requirements than the others; therefore, considering the flow
requirements to find the solution space is valuable.

In this paper, we propose one QoS-aware path-selection
algorithm and multiple scheduling algorithms to route and
schedule TSN flows incrementally, and demonstrate their
performance.

II. ARCHITECTURE AND CONNECTION WORKFLOW

Fig. 1 depicts the architecture of a TSN network. The
workflow of connection setup works as follows. When end
device A wants to send a TSN flow to device B, (1) it sends
a TSN connection request to Centralized user configuration
(CUC) using the OPC Unified Architecture (OPC UA) pro-
tocol; (2) CUC converts the TSN connection request into
TSN connection requirements and forwards them to Central
network controller (CNC) through user network interface
(UNI); (3) CNC uses the proposed incremental path-selection
and scheduling algorithms to compute both a path that satis-
fies the connection requirements and a feasible transmission
schedule to avoid interfering with existing TSN flows; (4)
If such a path and schedule exist, CNC configures all the
TSN switches along the computed path with the computed
schedule; (5) CNC sends the transmission schedule to CUC,

Fig. 2: Cyclic schedule of IEEE 802.1Qbv: (A) without and (B)
with Guard Band (GB)

Fig. 3: The scheduling solution of Guard Bands issue

which forwards it to device A; (6) device A starts transmitting
the TSN flow to device B along the selected path at the
computed transmission schedule.

In Step (3) above, when CNC receives the connection
requirements from CUC, it will use them to select a set
of candidate paths between the source and destination that
satisfy these requirements, from a set of k precomputed paths.
If the candidate path set is empty, the process terminates,
and the connection request is rejected. Otherwise, CNC will
use the current QoS measurements to choose a path with
the highest QoS compound value out of the set of candidate
paths. Then, the flow’s requirements and the chosen path will
be sent to the scheduler. If the scheduler is able to schedule
the flow, CNC will configure all the switches along the path
and send the transmission start time to the sender. Otherwise,
the next best path will be selected and the process repeats.

Inside each TSN switch, there exist additional mechanisms
to isolate best-effort traffic from TSN flows. Based on IEEE
802.1Qbv (time-aware scheduler), in front of each egress port
queue, there is a gate that controls the transmission from the
queue. A queue can transmit only if its gate is open, and
if there is more than one queue with an open gate, the one
with the highest priority will transmit. From a queue with
an open gate, choosing which flow to transmit is based on
the Transmission Selection Algorithm (TSA). The open and
close of gates are controlled by a Gate Control List (GCL)
of multiple entries, where each entry consists of a timestamp
and a bit-mask field controlling the open and close of gates.

The length of GCL is equal to the base-period of a cycle,
which will be repeated to generate a cyclic schedule shown
in Fig. 2(A). In this figure, however, even though gates are
used, at Cycle 1, a best-effort frame may start transmission
just before its gate is scheduled to be closed, so that it
may continue transmitting even when the TSN flow period
has started, which causes a delay for the scheduled TSN

flow(s). To address this issue, Guard Bands (GBs) are used
before each TSN gate opening event as shown in Fig. 2(B).
Although GBs help to isolate TSN traffic from best-effort
traffic, when a best-effort frame finished transmission just
after a GB has started, the rest of the GB would be wasted.
To mitigate this issue, there is the hardware-based frame
preemption mechanism detailed in IEEE 802.1Qbu. Another
solution is a scheduling-based method proposed by [2], which
tries to reduce the number of GBs by reducing the number
of TSN gate opening events. This method does so by sending
as many TSN flows as possible whenever the gate is open.
The resulted schedule is similar to the right side of Fig. 3
compared to the left side of the same figure.

III. QOS-AWARE PATH-SELECTION

A. Problem Formulation

The main objective of QoS-aware path selection is to incre-
mentally find an appropriate route for a TSN flow based on
the flow requirements and a set of QoS matrices. Therefore,
the factors that need to be considered by this problem are the
network topology, the set of TSN flows, and the set of QoS
measurements.

The network topology of a TSN is represented as a direct
graph G = (V,E), where V is the set of nodes and E is
the set of edges. V ≡ (S ∪ H), where S is the set of TSN
switches, and H is the set of end hosts. E is a set of 2-tuples
that represent the links in the network, such that E ≡ {(i, j)
| i, j ∈ V, i 6= j and there is a link between i and j}. Each
TSN flow F is represented as a 3-tuple F ≡ (s, d, fd), where
s ∈ H is the flow source, d ∈ H is the flow destination, and
fd ∈ R+ is the maximum end-to-end delay in µsec.

Associated with each link (i, j) ∈ E is a list of measure-
ments represented by tuple (b, ld, t), where b ∈ R+ is the
residual bandwidth of link (i, j) in Mbps, ld ∈ R+ is the link
delay in µsec which is composed of the processing delay in
i, the transmission delay of i, and the propagation delay of
the link (i, j), t ∈ Z+ is the number of TSN flows traversing
link (i, j). Note that, ld is bounded [3], and the main goal of
the scheduling problem in Section IV is to avoid the queuing
delay or make it predictable. Moreover, the transmission delay
is the amount of time required to push an MTU-sized packet
into the wire by node i. The QoS measurements are updated
both periodically, and before and after routing a flow, to
reflect the up-to-date status of the network. For instance,
after routing a flow through a path, the t value of all links
belonging to that path will be incremented by one.

A cycle-free path p between two distinct nodes is a finite
sequence of nodes p ≡ < v0, v1, ..., vn >, such that ∀i ∈
[0, n − 1] ⇒ (vi, vi+1) ∈ E. A path p(i, j) between i and
j is valid if the length of the path is less than or equal to
eight hops (as recommended by IEEE 802.1D) and all these
nodes are distinct; i.e., it is a cycle-free path with a length
less than eight hops. We denote the set of all valid paths
between i and j as ℘(i, j). Each path p(i, j) has its own
QoS indicators (HC, B, D, T) that could be derived from
its links’ QoS indicators, where HC ∈ Z+ represents the
number of hops between i and j if a flow goes through this

path, B ∈ R+ denotes the residual bandwidth of the path
p(i, j) in Mbps, D ∈ R+ is the end-to-end delay of p(i, j)
in µsec, and T ∈ Z+ is the number of TSN flows over p(i, j).
We follow the formulas of [6], with certain modifications, to
derive B and D from the measurements of the links that
compose path p. The number of hops HC of path p is equal
to the number of the intermediate nodes, which equals the
nodes of path p except the source and the destination, which
can be formally defined as follows.

p.HC = len(p)− 2 (1)

The residual bandwidth B of path p is equal to the
minimum residual bandwidth among all of its component
links, and is formally defined as follows.

p.B = min
len(p)−3
i=1 (p[i], p[i+ 1]).b (2)

The end-to-end delay D of path p is equal to the summation
of the delays of its links, and it can be formalized as follows.

p.D =

len(p)−2∑
i=0

(p[i], p[i+ 1]).ld (3)

Finally, the number of TSN flows T in path p is equal to
the maximum number of TSN flows t among all of its links:

p.T = max
len(p)−3
i=1 (p[i], p[i+ 1]).t (4)

For a flow f with a source s and a destination d, the
value of D is used to choose a set of candidate paths ψ(s, d)
that satisfy flow f ’s requirements out of a set of all valid
paths ℘(s, d). Then, for each path pi(s, d) ∈ ψ(s, d), where
i ∈ (1, 2, · · · , |ψ|), function ∆(HC,B, T) is used to map the
other QoS indicators to a single value between zero and one,
∆ : (Z+,R+,Z+) → [0, 1]. Out of all the candidate paths
ψ(s, d), the path with the highest ∆ is chosen as a route for
f . For a path pi(s, d) ∈ ψ(s, d), ∆ is formulated as follows.

pi(s, d).∆(HC,B, T) = ω1
HCmin

HC
+ ω2

B

Bmax
+ ω3F (T),

(5)
where

∑3
j=1 ωj = 1; Bmax is the maximum B among all

pi(s, d) ∈ ψ(s, d); HCmin is the minimum HC among
all pi(s, d) ∈ ψ(s, d). Semantically, maximizing ∆ means
minimizing the number of hops, minimizing the number of
TSN flows, and maximizing the residual bandwidth. Function
F (T) is defined as follows.

F (T) =

{
1, if T = 0
Tmin

T , if T > 0
(6)

where Tmin is the minimum T among all pi(s, d) ∈ ψ(s, d).
Other QoS measurements could be added into this formula,

such as the path cost in the DetNet networks and the end-to-
end delay D. We choose not to include D because we used it
for filtering in the candidate-path selection phase. Mainly, the
route with a higher B, lower HC, and lower T that satisfies
the flow requirements would be chosen. The main goal of ∆
is to find such a path. Choosing a path with a higher B means
sparing other paths having lower residual bandwidth for future
TSN and best-effort flows. Since the gate mechanism prevents

best-effort traffic from transmitting when a TSN flow arrives,
routing many TSN flows through an overloaded link will
degrade the performance of best-effort traffic, where some
of the packets of these streams may be delayed or dropped
before they are re-routed through another path. Therefore,
to mitigate this issue, a path with a congested link should be
avoided, whenever it is possible, to avoid creating a bottleneck
link in terms of bandwidth. Taking the ratio of pi.B to the
highest B among all candidate paths ψ(s, d) normalizes the
value between zero and one. Otherwise, it would have the
most significant effect out of all the other indicators and
negatively affect the performance.

B. Pre-Routing and Candidate-Path Selection Phases

The primary purpose of the pre-routing phase is to find
the first k paths Φ(s, d) between s and d, for all s, d ∈ H
and s 6= d ordered ascendingly based on their end-to-end
delays D. To find these paths, there are several existing search
algorithms, such as the Yen’s K-shortest paths algorithm.
Then, the first k paths Φ(s, d) are passed to the next phase
as input. If the k value is small, the running time of the
routing phase will be small. However, the performance of the
entire operation might be compromised. So, choosing the k
value is a trade-off between running time and performance.
The inputs of this phase are the network topology and k, and
the outputs are sets of ordered k paths Φ(s, d). The worst-
case running time of this phase is O(SKV 3), where S is the
number of TSN end devices, K is the number of chosen paths,
and V is the number of nodes. Although the running time is
relatively large when the size of the network is extremely
large, it will not cause a problem for the system since it
will take place while the network is off-line. In other words,
this phase is done once, before starting to exchange flows,
and remains unchanged while the network is online. That is,
no change in the topology will be allowed until the network
becomes off-line. Otherwise, it has to be re-executed again.
When a new end device is connected to the TSN network,
only the first K paths to/from this device is calculated leading
to a running time equal to O(KV 3). Moreover, parallelism
and multithreading could be used to reduce the running time
of this phase by making each thread to find the K paths
of a subset S ⊂ S. In addition, using the Fibonacci heap
data structure along with Dijkstra’s shortest path algorithm
to implement Yen’s K-shortest paths algorithm will reduce
the running time of this phase to O(SKV (E + V logV)),
where S is the number of elements in the subset handled by
each thread, and E is the number of links in the network.
Finally, even without these optimization steps, the running
time of this phase is in order of seconds for TSN networks
with practical sizes, as we will see in the evaluation.

C. Candidate-Path and Path-Selection Phase

Each time CNC receives a TSN connection requirements
from CUC, it uses s and d to retrieve the set Φ(s, d) of k paths
that connect s and d. Then, the Candidate-Path Selection
Phase is used to extract a set of candidate paths ψ(s, d) out
of Φ(s, d) that satisfy the flow delay requirement fd.

Since the problem of finding a path that satisfies constraints
involving two or more additive or multiplicative metrices had
been proven to be NP-complete [6], for an algorithm to find
such a path in polynomial time, we need to convert all these
metrices into a single value (∆). After receiving a TSN flow
(f) as an input, this phase calculates the best route, based
on ∆, and returns it as an output. The worst case running
time for this phase is O(K), where K is the number of paths
computed in Section III-B. The resulted route, in addition
to the TSN flow (f), will then be sent to the scheduler to
determine the appropriate transmission time.

IV. INCREMENTAL SCHEDULING

The primary goal of the scheduling algorithm is to ensure
that a new flow f will not intervene, i.e., share the same egress
port at the same time, with any existing flows. Moreover,
while scheduling f , the scheduler should not make any
modification to the existing, scheduled flows. Since TSN
flows send their data periodically, the computed schedule
will be cyclical. Following [2] and [3], we assume that the
transmission periods for all flows are integral multiples of the
cycle length. In static scheduling where the information of the
flows is known a priori, this assumption could be relaxed by
making the cycle length of the schedule to be equal to the
least common multiple (LCM) of all the flows’ transmission
periods. However, in incremental scheduling, this solution
cannot be applied because the new flows’ information is not
known a priori.

The computed schedule will be a list of flows and their
start times, so that the gate opening times will be computed
based on such information. For instance, the gate opening
time for the TSN queue in egress port pi of switch swj , in
which TSN flow f will go through, is the additive value of
the propagation delays of all the links in the selected path that
proceed swj , the transmission delays of the network interface
card (NIC) of the source and all the switches in the chosen
path that proceed swj , and the processing delays of all the
switches in the path up to swj .

A. Scheduling Without Time-Slots - As Early As Possible
(SWOTS-AEAP)

In this approach, we adapt the time-tabling problem [2]
to schedule flows incrementally. The inputs of this approach
are the new flow (f) and the schedule (s) which is a list
of scheduled flows and their transmission start times. The
output is a boolean value that determines whether the flow is
scheduled successfully or not. Specifically, in this approach,
we set the transmission start time of the new flow to be zero,
and then increase it to make its arrival time at the egress ports
just after the existing overlapped scheduled flows finish their
transmissions.

The worst case running time to schedule one flow is
O(KNM), where K is the number of transmission operations
of the new flow, N is the number of scheduled flows, and
M is the average number of transmission operations for each
scheduled flow. Since the number of operations for each flow
is ≤ 16, i.e. bounded, the resulting running time is O(N).

B. Scheduling Without Time-Slots - As Soon As Possible
(SWOTS-ASAP)

In comparison to SWOTS-AEAP, which schedules the new
flow with respect to the beginning of each cycle, SWOTS-
ASAP schedules the new flow based on its arrival time.
With this flexibility, SWOTS-ASAP could be adapted easily to
schedule flows in a specific time required by their applications
by changing the startTime variable to indicate that specific
instance. In addition, since SWOTS-ASAP allows a new flow
to be scheduled before some of the scheduled flows that have
overlapping transmission operations, it outperforms SWOTS-
AEAP in terms of the number of scheduled flows, but with
longer running time.

C. Scheduling With Time-Slots (SWTS)

This approach divides the cycle into multiple time-slots
similar to the one introduced in [4]. Each time-slot is long
enough to safely transmit an MTU-sized frame through the
longest path, in terms of end-to-end delay, in the network.
Each time-slot has an unique ID and a list of |E| boolean
values indexed by i. The value of index i indicates whether
any of the assigned flows will traverse link i. The new
flow will be assigned to the soonest time-slot that does not
have any scheduled flow which shares links with this new
flow. Clearly, SWTS is less complicated than the SWOTS
approaches, and incurs less computation time with the worst
case running time of O(S), where S is the number of time-
slots. However, the performance of SWOTS approaches, in
terms of the number of TSN flows that could be scheduled,
is always better than SWTS. So, there is a trade-off between
speed and performance.

D. SWOTS With Stop (SWOTS-WS)

The SWOTS approaches are designed to eliminate queuing
delay completely. Allowing queuing delays, as long as the
flows’ maximum delay requirements are satisfied, helps to im-
prove the schedulability in terms of the number of TSN flows
that could be scheduled. Therefore, we designed modified
versions of SWOTS, termed SWOTS-AEAP-WS and SWOTS-
ASAP-WS.

In these new approaches, instead of shifting the start time
whenever an overlap occurs, they keep track of these shifts by
adding them to a list of queuing delays incurred at switches
for each flow. When the sum of these queuing delays, in
addition to the cumulative delay of the last operation of
the new flow exceeds the maximum end-to-end delay, the
startTime will be shifted to reduce the queuing delays. When
the new flow has been scheduled, the new schedule and the
associated per hop queuing delays of that flow are returned.
With this relaxation, the SWOTS-WS schemes will be able to
schedule more TSN flows without violating their end-to-end
delay requirements.

V. EVALUATION

The proposed algorithms are evaluated in terms of per-
formance and running time, and in terms of scalability
with different network sizes and different numbers of TSN
flows. The TSN flows and their requirements are generated

randomly. Among the system configurations discussed in
[1], our systems assume to be {v(e+s), 〈8, 1, 7〉}, depicting a
fully scheduled system (end devices and switches) with eight
queues in each egress port (one for TSN flows, and the others
for best-effort traffic).

A. Performance

Fig. 4a compares the scheduling algorithms in terms of
the percentage of scheduled flows out of routed flows. The
parameters used are as follows: the number of selected paths
by the pre-routing phase (k) 30, the number of switches (n)
20, the probability of having a link between any two nodes (p)
0.3, the number of time-slots 5. Furthermore, we used equal
weights for the QoS parameters in the routing algorithm.
Then, by varying the number of TSN flows from 100 to 1000
with an increment of 100, the average results of five runs
are shown. In the case of 1000 TSN flows, SWOTS-ASAP
and SWOTS-ASAP-WS yielded the best results, capable of
scheduling five times more TSN flows than SWTS and almost
two times more than SWOTS-AEAP. Moreover, allowing a
predictable queuing delay improves SWOTS-AEAP in some
cases by 41.3%

Furthermore, we measured the percentage of reduction in
the number of GBs required by the computed schedules of
all the SWOTS algorithms against the total number of GBs
required by schedules that do not allow sending more than
one TSN flow consecutively in an egress port, such as the
SWTS approach. As shown in [2], reducing the number of
TSN gate opening events reduces the number of required GBs
by the scheduler, which mitigates the wasted bandwidth issue
resulting from GBs. We fixed the parameters to values similar
to the ones mentioned above and varied the number of TSN
flows between 800 and 1500. The percentages of the reduced
amount for all the SWOTS approaches are shown in Figure
4b. With the increase of the number of TSN flows, there is an
increase in the percentage of reduction for both SWOTS-ASAP
and SWOTS-ASAP-WS. The best performance in terms of the
reduced GBs is achieved by SWOTS-AEAP-WS, in which it
needed 63% less GBs.

To show the effect of weights in Eq. (5), we tested different
combinations of weights defined as a 3-tuple (x, y, z), where
x represents the weight of the number of hops, y represents
the weight of TSN flows, and z represents the weight of
the residual bandwidth. Fig. 4c shows the percentage of
the scheduled flows out of the total routed flows for all
the scheduling algorithms using different combinations of
weights. Based on the results, (0.5, 0.5, 0) leads to the highest
percentage for all schedules, out of the tested combinations,
with an improvement of at least 5% over the combination
of (1, 0, 0) which represents the shortest path. Finding
an optimal combination that maximizes the number of the
scheduled TSN flows and minimizes the impact on best-effort
traffics is beyond the scope of this paper. Finally, we measured
the time a TSN sender has to wait before transmission,
starting from the time it receives the schedule. On average, a
TSN end device has to wait 13 and 2.4 µsecs, respectively,
when SWOTS-ASAP and SWOTS-ASAP-WS schedulers are
used, compared to 1.5, 7.5 and 8.4 milliseconds when SWTS,

SWOTS-AEAP and SWOTS-AEAP-WS are used, respectively.
The main reason is that SWOTS-AEAP and SWOTS-AEAP-
WS schedule the arrived flows at the beginning of the cycles
whenever it is possible, regardless of their arrival time. On the
other hand, the flows that arrived in the middle of a time-slot
in SWTS have to be scheduled in the next time-slot, whenever
it is possible, and the senders have to wait until then.

B. Running time

For each algorithm, we measured the average running time
of different scenarios by varying the system parameters (e.g.,
number of time-slots and k values).

First, we tried different numbers of TSN flows between 100
and 1000, and measured the average running time to route
and schedule a flow using different scheduling algorithms.
The computed running times for all the algorithms are shown
in Fig. 4d. Overall, as expected, only the SWOTS scheduling
algorithms are affected by the increase of the number of TSN
flows, since the increase in the number of flows means an
increase in the number of the scheduled flows. The running
time of ASAP-based algorithms increased rapidly with a
highest running time of 165 milliseconds, while the running
time of AEAP-based algorithms increased linearly with a
highest running time of 23.5 milliseconds. This increase, in
both cases, will continue until the schedule saturated for a
long time, then, it will become constant. The routing and
SWTS are not affected in any way by the increase in the
number of TSN flows, and their running times are in orders of
hundreds and tens of µsecs, respectively. The average running
times of the pre-routing are measured in multiple runs, and
they were in the orders of multiple seconds without any effect
from the increase in the number of TSN flows.

SWTS and the routing algorithms are affected by the num-
ber of time-slots and the k values, respectively. To measure
the effect of an increase in the number of time-slots on the
average running time of SWTS , we varied the number of
time-slots between 5 and 70 with an increment of 5 time-slots.
We noticed that with an increment of 5 time-slots, there was
an increase between 5 to 10 µsecs on average in the running
time of SWTS, and that was due to traversing all the time-slots
looking for any available one when the schedule is saturated.
The routing algorithm, on the other hand, is affected by the k
value of the pre-routing phase as discussed in Section III-C.
To measure this effect, we varied the k value between 5 and
70 with an increment of 5. The results show an increase in
the running time of the routing algorithm by 80 µsecs on
average, for each increment by 5 on the k value.

Based on the theoretical analysis of the worst case running
time for the pre-routing phase in Section III-B, the main
parameters that affect the running time of the pre-routing
phase are: the k value, the number of switches, the number
of hosts, and the number of links. We evaluated the effect of
each one by varying one value while fixing the values of the
other parameters. Fig. 4e shows the relationship between the
increase in the average running time of the pre-routing phase,
and the increase of these parameters’ values. Each run in the
graph corresponds to an increment of 5 in k value, number
of switches, and number of hosts, and an increment of 0.1

(a) Relationship between the number of TSN
flows and the percentage of scheduled flows

(b) Relationship between the number of TSN
flows and percentage of GB reduction

(c) Effect of different combinations of
weights on scheduling performance

(d) The relationship between the number of
TSN flows and the average running time

(e) Effect of different parameters on running
time of pre-routing phase

Fig. 4: Evaluation results

in the probability of having a link between any two nodes in
the network (p) from the previous run. Overall, the number
of TSN switches has the most effect on the running time of
the pre-routing phase, and the k value has the least effect.

C. Scalability
To evaluate the scalability of the proposed algorithms, we

used TSN networks of three different sizes (small, medium,
and large) each with different numbers of TSN flows, and
measured the average running time of the entire process, i.e.,
the time required by the system to route, schedule, and re-
route and re-schedule a flow, if necessary, which is specified
in Section II and the running time of the pre-routing phase
described in Section III-B. Note that the measured running
time does not include the time taken by the sender to send the
connection request to the controller and the time taken by the
controller to configure the switches and send the schedules
back to the sender.

The small, medium and large TSN networks, respectively,
consist of 10, 25, and 50 TSN switches, 30, 75, and 150
hosts, 500, 1000, and 1500 TSN flows, and have 10, 20, and
30 as k values, and 0.3, 0.4, and 0.5 as p values. In general,
a sender may send to multiple end devices (receivers), and
a receiver may receive from multiple end devices (senders).
To evaluate scalability, we considered the extreme case,
where all end devices are both senders and receivers, and
they could send/receive TSN packets from all the other end
devices. Thus, the pre-routing phase has to find the paths from
each end device to all the other end devices. The average
running time of the pre-routing phase from multiple runs
are 0.93 seconds, 136 seconds, and 45.3 minutes for the
small, medium, and large TSN networks, respectively. To
measure the runtime of the entire operation (except the pre-
routing phase), we use the SWOTS-ASAP-WS scheduler since

it has the worst running time. The averages running times
for the entire operation in the small, medium, and large TSN
networks are 46, 61, and 88 milliseconds, respectively.

VI. CONCLUSION

To increase the number of scheduled TSN flows for higher
link utilization, this paper proposed (1) an incremental QoS-
aware path-selection algorithm that selects the paths with
higher residual bandwidth and lower number of hops and
TSN flows, to spare the bottleneck links for any future
flows, and (2) multiple incremental scheduling algorithms
to schedule the flows over the chosen routes. Based on the
evaluation, SWOTS-ASAP and SWOTS-ASAP-WS yielded the
best performance in terms of the number of scheduled flows,
while SWOTS-AEAP-WS yielded the best performance in
terms of wasted bandwidth introduced by the gate opening
events and Guard Bands.

REFERENCES

[1] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelı́k, and Wilfried
Steiner. Scheduling Real-Time Communication in IEEE 802.1Qbv Time
Sensitive Networks. In Proceedings of the 24th International Conference
on Real-TimeNetworks and Systems, pages 183–192, 2016.

[2] Frank Dürr and Naresh Ganesh Nayak. No-wait Packet Scheduling
for IEEE Time-sensitive Networks (TSN). In Proceedings of the 24th
International Conference on Real-Time Networks and Systems - RTNS
’16, pages 203–212, New York, New York, USA, 2016. ACM Press.

[3] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. Time-sensitive
Software-defined Network (TSSDN) for Real-time Applications. Pro-
ceedings of the 24th International Conference on Real-Time Networks
and Systems - RTNS ’16, pages 193–202, 2016.

[4] Naresh Ganesh Nayak, Frank Durr, and Kurt Rothermel. Incremental
flow scheduling and routing in time-sensitive software-defined networks.
IEEE Transactions on Industrial Informatics, 14(5):2066–2075, 2018.

[5] Time-Sensitive Networking Task Group. IEEE 802.1 Time-Sensitive
Networking Task Group, 2017.

[6] Zheng Wang and Jon Crowcroft. Quality-of-service routing for sup-
porting multimedia applications. IEEE Journal on Selected Areas in
Communications, 14(7):1228–1234, 1996.

