
A Multi-Objective Optimization Model for a Reliable
Generalized Flow Network Design

Mina Dehghania, Vahab Vahdatb, Maghsoud Amiria, Elaheh Rabieic, Seyedmohammad
Salehid

aDepartment of Industrial Management, Allameh Tabatabai University, Tehran, Iran
bDepartment of Mechanical and Industrial Engineering, Northeastern University, Boston, USA

cUniveristy of California Los Angeles, Los Angeles, USA
dDepartment of Computer and Information Sciences, University of Delaware, USA

Abstract

Design of a reliable network in presence of flow loss has become the primary objective
of today’s network designers. However, there are other important conflicting objectives
that hinder the process of efficient network design. This study proposes a multi-objective
optimization model for reliable communication flow networks, including maximizing the
network reliability, minimizing total cost, and maximizing network flow, simultaneously.
The total cost comprises the cost of construction of network arcs and the cost of flow,
while arcs may fail to operate in full-capacity and may only function to a fraction of
their capacity. The reliability-based network-design is modeled as a mixed-integer linear
programming and solved by three metaheuristic multi-objective methods namely multi-
objective particle swarm optimization (MOPSO) and two versions of non-dominated
sorting genetic algorithm (i.e., NSGA-II and NSGA-III). In order to select the best
compromise solution from the Pareto front members, a fuzzy-based mechanism is utilized.
Finally, in order to measure the performance of the three algorithms, several numerical
examples in small and large-scale are solved. The computational results indicate that
NSGA-III is superior to MOPSO and NSGA-II in terms of convergence rate and running
time especially for large-scale problems.
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NP Non-deterministic Polynomial Time
NOM Number of Pareto Members
MID Mean Ideal Distance
HVI Hyper-Volume Indicator

MATHEMATICAL MODEL NOTATIONS

s Source node
t Sink node
qij Probability of failure for arc (i, j)
CBij Cost of building arc (i, j)
CFij Per-unit cost of flow on arc (i, j)
lij Lower bound of flow on arc (i, j)
uij Upper bound of flow on arc (i, j)
a′ij Loss factor on arc (i, j), 0 ≤ a′ij ≤ 1
aij Arc multiplier, calculated as aij = 1− a′ij
Fin Input flow
Fout Output flow

xij

Binary decision variable for Network topology
design which is 1 when there is connection between
i and j, and is 0 otherwise

fij Continuous decision variable indicating the amount
of flow on arc (i, j)

R(x) Network reliability
H(d) Jans upper bound
di Degree of node i

SOLUTION METHODS NOTATIONS

λ Lebesgue measure
H Number of reference points
nO Number of objective functions
nD Number of divisions on every objective axis
nP Population size
Pt Population at generation t
Qt Offspring population at generation t
Rt Combined Population and offspring at generation t
Mit Maximum number of iterations for each metaheuristic

algorithm

Fmin
i , Fmax

i
Minimum and the maximum value of the ith

objective function
li Distance of ith Pareto solution from the ideal point
Dl Individuals of a non-dominated solutions set
µ Compatibility level
Pm Probability of mutation
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Pc Probability of crossover
∆ Diversity metric
n Number of Pareto solutions
A Reference point
xki Position of particle ith in iteration kth

vki Velocity of particle ith in iteration kth

cl Local learning coefficient in MOPSO
cg Global learning coefficient in MOPSO
µrate Mutation rate in MOPSO
nr Number of repository in MOPSO
w Inertia weight in MOPSO
wdamp Inertia weight damping rate,

1. Introduction

In graph theory, a network is defined as a series of nodes that are connected to each
other through arcs. Networks have been widely used to design and solve problems in
different fields such as transportation, supply chain, and telecommunications with the
intention to transport commodities/information between the nodes to meet a distributed
demand-supply pattern. The topology or architecture of a network describes how the
nodes are connected by arcs. For instance, a complete graph is a fully connected network
where all nodes are interconnected by arcs.

The telecommunication industry has seen several advances in recent decades, contin-
uing to improve both in hardware and the efficiency of underlying algorithms (Mousavi
et al., 2019). Modern wireless networks have been developed based on high-speed
cellular/Wi-Fi technologies and very efficient routing/scheduling algorithms, with ca-
pabilities of transporting sophisticated services including voice, video, and data with
different quality of service (QoS) requirements (Esmailpour et al., 2013; Salehi et al.,
2018). With increasing data demand, new technological networks need to provide their
services with higher reliability. Thus, it is crucial to create efficient computational meth-
ods to estimate the reliability of the technological networks. However, even for sim-
plistic networks, it can be shown that most optimal reliable design problems are NP-
complete (Provan & Ball, 1983). Consequently, finding an optimal solution for realistic
network size in a reasonable time frame has not been achieved yet (Larsson, 2014). To
estimate the optimal solution, approaches such as graph theory, optimization, simulation
methods, and probability theory concepts are used to design the novel communication
networks.

While classical network problems assume flow preservation over the network, in many
real applications, flow is not conserved. Instead, generalized networks can incorporate
some levels of gains or losses as the flow goes along an arc. Each arc has a multiplier
to represent the amount of gains and losses. As a result, generalized network can be
applied to model flow distribution systems in which evaporation, erosion or sediment
would waste the flow in some pipes. For instance, in supply chain networks, the damage
to cargo in transit can detriment the flow. Another example can be in power generation
systems where some energy loss is unavoidable to transfer electricity from one location
to the other. In fact, the generalized network problems can be discerned as the classic
maximum flow problem with capability to model the leaking flow.
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Designing an optimal network that is both cost-efficient and reliable is emerging
as an example of well-performing network. In this study, we formulate and analyze a
multi-objective optimization model for reliable generalized flow network with respect to
the conflicting objectives, including simultaneously maximizing the network reliability,
maximizing network flow and minimizing the total cost. Since computational complexity
of the proposed model makes it impractical to be solved by exact methods, three forefront
metaheuristic algorithms namely multi-objective particle swarm optimization (MOPSO)
algorithm and non-dominated sorting genetic algorithm-II and III (NSGA-II and NSGA-
III) are utilized. The results indicate the effectiveness of the solution procedure for
solving many objective optimization problems.

The main contributions of this paper are summarized as follows:

• In order to design a realistic communication network, three conflicting objectives
are considered in the mathematical model. While maximizing the reliability of
a network is the premier objective of this research, most decisions are not made
by network reliability in solitary. In addition, minimizing the network cost and
maximizing network flow need to be considered to provide a comprehensive yet
robust solution. Unlike previous studies that utilize at most two objectives, this
research recognizes the importance of flow, cost and reliability and develops a model
to simultaneously optimize three goals in one platform. The total cost comprises the
cost of construction of network arcs and the cost of flow. The network reliability
is estimated by the Jans upper bound (Rong-Hong, 1993) which can be used in
large-scale networks where the exact methods are not feasible. Finally the flow of
the network from source node to sink node is favored to be maximized while the
arcs have different reliabilities.

• In order to decide on selecting the prior or best compromise solution from the
Pareto front, a fuzzy-based mechanism is applied. Therefore, the proposed model
leads to a final reliable generalized flow network design, which represents the desired
compromise between the different objectives from the decision-makers perspective.

The rest of the paper is organized as follows. In the following Section, we review
the state-of-the-art literature relevant to maximum flow/minimum cost problem, gen-
eralized network flow problems, and reliable network design. Also, Section 2 discusses
the application of metaheuristic approaches in solving the network problems such as
multi-objective optimization using MOPSO, NSGA-II, and NSGA-III. In Section 3, we
provide a summary of problem statement with underlying assumptions and the mathe-
matical model for reliable communication networks. In Section 4, we present a holistic
description of solution procedure for NSGA-II, NSGA-III, and MOPSO and tuning their
principal parameters. Performance of proposed solution methods are further evaluated
by numerical examples in Section 5. Strengths and limitations of the proposed model
and methods are further investigated in Section 6. Finally, Section 7 concludes the paper
and suggests future research directions.

2. Literature Review

Maximum flow problems in which the objective is transferring the maximum flow by
the means of the arcs capacity have been studied by many scholars. However, inves-
tigating the flow deterioration-effect in arcs, rather than flow preservation through the
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network, makes these models a good representation of many real-case problems, espe-
cially in electrical power networks or supply chains. Yeh (2013) presented a deterministic
multi-state flow network, considering deterioration effect. Authors evaluated the relia-
bility of the model by a path-based search algorithm. Kuipers et al. (2014) studied a
maximum-flow problem in stochastic networks and used a convex optimization-based
algorithm to solve the proposed problem. Authors utilized a log-concave probability dis-
tribution for delay and bandwidth of arcs. It is shown in Kuipers et al. (2014) that by
applying an additional delay constraint, the problem becomes NP-hard. Jane & Laih
(2017) studied a multi-state networks in which not only multi-valued capacities and as-
sociated operation probabilities were considered, but also the transit period was used for
weighting the arcs. They presented an algorithm to compute the probability distribution
of dynamic max-flow value.

A variation of maximum flow problem is to minimize the minimum cost of the flow.
The objective in minimum cost flow problem is to send a certain flow from supply to
demand nodes with smallest cost, subject to arc capacity constraints. Minimum cost flow
problems have been also studied excessively, both in application and theory. Hochbaum
(2016) explored links between the minimum cost flow problem and the time cost trade-
off (TCF) problem in project management. Their proposed approach resulted in faster
polynomial algorithms for both problems. Sherman (2017) considered an unlimited flow
with minimal cost in undirected graphs and presented a new framework for optimizing it.
In this framework, to achieve highly accurate solvers, they combined available imprecise
solvers with non-Euclidean preconditioning. Cohen & Megiddo (1994) proposed the un-
capacitated generalized transshipment problem and the generalized circulation problem,
and solved them by an iterative approximation algorithm. They also considered these
problems on bi-directed generalized networks.

Another important network design property is the reliability of networks that inves-
tigate the failure probability of networks’ components. Malinowski (2016) provides a
survey of reliability in computer networks, water distribution network, pipeline systems,
and electricity distribution networks. Zuev et al. (2015) presented a quantitative evalu-
ation for the reliability of network service in a stochastic environment. They presented
a model for a general network reliability problem and used subset simulation models for
calculating the service reliability. Then, small failure probabilities of complex dynamic
systems were computed using Markov Chain Monte Carlo technique. Lin & Chang (2013)
evaluated the performance of a stochastic-flow manufacturing network considering the
failure rates of stations. Due to the station failure, not all demands were met, and the
probability of demand realization was considered as a performance indicator. Therefore,
authors constructed a manufacturing system considering the uncertain capacities with
probabilistic distributions and the multi-fold production lines. Elshqeirat et al. (2015)
form a communication network with the goal of minimizing the cost satisfying a pre-
conditioned reliability constraint. For solving the problem, authors applied a dynamic
programming approach. Since the problem was demonstrated to be NP-hard, they also
proposed three greedy heuristics. A flow network with inflow points, transit-only nodes,
and outflow points was considered by Malinowski (2016). In their network, arcs were
directed, and components were repairable with constant failure and repair rates. The
performance indicator was defined as the ratio of the total satisfied demand to the total
desired demand at all outflow points.

The problem of designing a network that takes reliability into account is NP-hard
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(Provan & Ball, 1983), and the current literature advocates that exact methods were
only able to solve small network design problems with 15 or less arcs. In turn, approx-
imate methods and heuristics have been generally utilized for solving reliable network
design problems. Yeh (2015) developed an approximate algorithm based on depth first
search (DFS) to solve a multi-state flow network such that the net flow into and out of a
node was set to zero. This algorithm found all minimal paths and removed all infeasible
candidates of the minimal path reliability problem. Srivaree-ratana et al. (2002) esti-
mated all-terminal network reliability using artificial neural network. They developed
and trained neural networks based on the all-terminal reliability of network topologies
and arc reliabilities.

For larger networks, metaheuristic techniques have been utilized. Metaheuristics are
high-level searching procedures that provide sufficiently good solution approximations
to large-scale optimization problems. Examples of metaheuristics applied to reliability
in network designs are genetic algorithms (Deeter & Smith, 1997), simulated annealing
(Suman, 2003), tabu search (Beltrán & Skorin-Kapov, 1994), and ant colony algorithms
(Watcharasitthiwat & Wardkein, 2009). The design of reliable communication networks
with the goal of minimizing the cost with bidirectional arcs was first considered by Dengiz
& Smith (2000). They used genetic algorithm focusing on the costs and reliability of
the arcs. To form a reliable telecommunication network with two-node connectivity
Konak & Smith (2011) developed a bi-objective genetic algorithm, which encompassed
three methods of an exact method for calculating reliability, a Monte Carlo estimation
technique, and an upper bound for the all-terminal reliability of networks with optional
arc reliabilities. Deb et al. (2000) developed the non-dominated sorting genetic algorithm-
II (NSGA-II) and later, they utilized a fast non-dominated sorting genetic algorithm in
Deb et al. (2002) that prevents losing good solutions while being efficient in terms of
convergence rate and diversity. In 2014, an extended version of NSGA-II algorithm
(called NSGA-III) is proposed by Deb & Jain (2014), capable of solving problems with
many objectives efficiently. Some examples of this method in the field of reliability
application can be found in (Li et al., 2016; Mobin et al., 2017).

Multi-objective bi-level particle swarm optimization was used by Xu et al. (2012) to
solve a minimum cost network flow problem using a nonlinear multi-objective bi-level
model. The upper level minimizes both direct and transportation time costs and the
lower level minimizes transportation costs. Pant et al. (2015) proposed a reliability
optimization problem with two conflicting objectives of maximizing the reliability of
system while also minimizing the associated costs. To solve the model, they developed
a multi-objective evolutionary algorithm, namely a particle swarm optimization that
considers crowding distance for selecting frontier solutions.

In order to better classify the most recent literature pertaining to network reliability
optimization problems and demonstrate the gap filled by this research, Table 1 is pro-
vided. Previous studies are classified based on reliability assessment methods and types,
modeling of network flow, cost considerations, network types, objective functions, and
solution methodologies. Since arcs are more vulnerable to failure than the nodes, the
majority of the reviewed literature, similar to this research, considered source-sink relia-
bility and the failure to be occurred on the arcs. Popular network reliability assessment
methods are: approximation methods, quickest-path reliability, and upper-lower bounds.
In terms of flow types, both deterministic and stochastic flows have been studied in
previous research, however, this research utilizes transmission in the deterministic flow

6



model that allows a fraction of arcs capacity to transmit the flow.
In terms of the cost, few studies simultaneously considered both cost of flow (variable

costs) and cost of network construction (fixed costs), while both costs are important in
strategic and tactical decisions of any network. The above literature review indicates
that no studies have been carried out to design communication networks that consider
cost, flow, and reliability simultaneously, and subsequently, an effective optimization al-
gorithm, such as NSGA-III has not been customized for this purpose. The objectives
and other features of the model has resulted a generic model which can be used for dif-
ferent classes of networks such as telecommunication networks, transportation networks,
mechanical networks (Lin & Yeh, 2015; Guo et al., 2018; Jian et al., 2018), and electrical
power networks (power grids).

3. Problem Description

Three important criteria in designing sustainable networks are reliability, cost, and
the amount of flow to transport. The importance of designing reliable networks is more
explicit for infrastructure networks such as computer networks, traffic, and energy net-
works (Namin et al., 2019). Similarly, disruptions to supply chain networks such as
pharmaceutical chains may threaten lives of many patients in need (Azghandi et al.,
2018). Any disruption or failure in the infrastructure networks can lead to unpredicted
catastrophic events, both during the disruption and after the network recovery. In many
of these networks, stability and sustainability of the network are consistently assessed
and with the assist of preventive maintenance, the reliability of network is sustained in
a high level.

Depending on the network reliability importance, in general two main criteria for
reliable networks are considered, namely all-terminal and source-sink. All-terminal re-
liability focuses on the ability of communications among all nodes of the network via
some unidentified paths. Source-sink reliability is focused on the ability of a predefined
source node to communicate with a predefined sink node via some unidentified paths.
This paper considers only source-sink reliability, since it is more generalizable to large
scale networks. One application of such networks is computer networks, where a user
(source node) is interested to connect to a server (sink node). While there is no need for
all internal nodes to communicate with other nodes, while an undefined path between
source and sink nodes should be available.

A significant area of research in network design problem is estimating the network
reliability. In general, four widely-used methods for assessing network reliability are: (1)
Exact assessment using analytic methods (single and parallel process) (Nguyen et al.,
2016), (2) Estimation using approximation methods such as Monte Carlo simulation
(Gertsbakh & Shpungin, 2016; Praks et al., 2017; Chen, 2017), (3) Finding upper or
lower bounds (Jan et al., 1993; Srivaree-ratana et al., 2002), and (4) Finding a crude
substitute(Konak & Smith, 2006; Dubourg et al., 2013). In this research, Jans upper
bound method (Rong-Hong, 1993) is used to estimate the network reliability.

3.1. Mathematical Model Formulation

In this paper, reliable generalized flow network design problem is modeled as a multi-
objective mixed-integer linear mathematical model. The proposed model determines
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Table 1: A review of literature related to network reliability models
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an optimal network design considering gains and losses of the flow through the given
network with respect to the conflicting objectives i.e., minimizing the total system cost,
and maximizing flow and reliability.

The following assumptions are made in the proposed mathematical model: (1) The
probability of each arc’s failure is independent of other arcs failures. (2) The costs
and probability of failure of arcs are known and deterministic. (3) Arcs are active and
operational if they are not failed, and the repairing option is not considered in the model.
(4) In an optimal network, the flow will only pass through optimal arcs, therefore, there
might be arcs with no flow. (5) The loss and transmission factors of different arcs are
statistically independent random variables and are real positive numbers.

Given a directed graph G(N,A) where N = {1, . . . , n} denotes the set of nodes
including source (s) and sink node (t), and A denotes the set of possible arcs. Each arc
(i, j) ∈ A has a probability of failure 0 ≤ qij ≤ 1. We assumed that the probability
of failure for all arcs are similar during each scenario, hence q is used instead of qij for
easier interpretation. Let CBij > 0 denotes the cost of building arc (i, j). Examples
of such cost are material costs, connection and terminal costs, installation costs such
as peeling and embankment and leveling, land or right of way costs inherent with the
cabling. Since most of these items are unit costs, the total cost of an arc can be estimated
by the length of the arc. However, for the sake of simplicity, CBij is assumed fixed per
arc in this model. CFij > 0 indicates the per-unit cost of flow through the arc (i, j).
The allowable amount of flow along (i, j) must be at least equal to the flow lower bound
(lij) and at most equal to upper bound (uij). Here, the lower bounds on all arc flows
are zero. Additionally, let a′ij denotes loss factor on (i, j) ∈ A. Then, the arc multiplier,
represented by aij = 1 − a′ij is the fraction of arcs capacity that can transmit the flow,
which we call transmission factor.

Note that if aij is equal to 1, a pure or conventional network formulation exists;
if aij > 1, the flow is augmented (gain); and if aij < 1, the flow is decreased (loss).
In addition, in this problem, Fin and Fout denote the input flow and the output flow,
respectively. Note that flow conservation may not achieve in this model, since Fin is not
necessarily equal to Fout. This is due to flow adjustments caused by the transmission
factor. Finally, xij and fij are binary and continuous decision variables, respectively.
If arc (i, j) is included in the optimal design, xij is equal to 1, and 0 otherwise. The
amount of flow along arc (i, j) is indicated by fij ∈ R+. X is the arc topology of
x12, · · · , xij , · · · , xN−1,N and R(x) is the reliability of X. The multi-objective mixed-
integer linear programming model can be formulated as follows:
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max R(X) (1a)

max Fout =
∑
i

∑
j

fij (1b)

min
∑
i

∑
j

CBijxij +
∑
i

∑
j

CFijfij (1c)

subject to∑
j

fsj −
∑
j

ajsfjs ≤ Fin (1d)

∑
j

fij −
∑
j

ajifji = 0, ∀i, i 6= {s, t} (1e)

∑
j

ftj −
∑
j

ajtfjt = −Fout (1f)

Lij ≤ fij ≤ Uijxij , ∀(i, j) (1g)∑
j

xij +
∑
j

xji = di ∀i = {1, · · · , n}, i 6= j (1h)

R(X) ≤
[
H(d) ∼= 1−

[∑
i

qdi ×
mi∏
k=1

(
1− qdk−1

)
×

i−1∏
k=mi+1

(
1− qdk

)]]
(1i)

fij ∈ R+

xij ∈ {0, 1}
di,mi ∈ Z+

To design a network by choosing a subset of the potential arcs, the network reliability,
denoted in (1a), and the output flow (the real amount of flow from s to t), denoted in eq.
(1b), need to be maximized. At the same time, the total cost including total building
costs and total costs of flow, denoted in (1a), should be minimized. However, these
objectives are in conflict with each other; cost and reliability are the two conflicting
objectives and the trade-off between them is not linear. Here, we assume that reliability
comes at the price of higher cost with a range from 0 to 1 representing the spectrum
between a non-operational state and a fully reliable state. Furthermore, assuming cost for
a flow, maximum flow is more costly to transport through the network. In this research,
the Pareto optimal solutions are obtained from the set of optimal trade-offs between the
conflicting objectives.Pareto optimal solutions are the set of solutions in which none of
the objectives can be improved without degrading at least one of the other objectives.

To show possible imbalances between the amount of flows entering and exiting an arc,
the flows of a generalized network are multiplied by gain/loss factors in the constraint set
(1d, 1e and 1f). The flow on each arc cannot exceed the specified lower and upper bounds
implied by the scenario as defined in constraint (1g). It also ensures that for non-selected
arcs, the flow remains zero. Eq. (1h) computes the degree of each node i, denoted as di,
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which is the number of incoming and outgoing arcs connected to each node. Utilizing
degree of nodes, constraint (1i) shows the Jans upper bound that is used to estimate
the network reliability where q is the unreliability of links, and mi = min(di, i − 1).
Finding network reliability upper bound can be transformed to find a network with
degree sequence (d1, d2, . . . , dn) such that H(d) is maximal and

∑n
i=1 di = 21 holds where

l denotes total number of arcs in the network. In other words, each network can also
be associated with a unique sequence of degree called its degree sequence. For example,
Fig. 1 shows the degree sequence for a sample graph. To use the Jans upper bound
method, two conditions are required for the network: (1) The graph must be connected
i.e., the network is not divided into several parts. (2) Each node must be associated
with at least two other nodes (two-connectivity condition) so that in case of failure of
an edge, the node is not isolated and can maintain its connection to the network. These
two conditions are considered at the reliability objective function as a penalty function.
The pseudo-code related to this requirement are included in Appendix A.

s

1

4

6

2

3

5

t

s

1

4

6

2

3

5

t

Figure 1: Sample graph with 8 nodes representing the studied problem. Note that s represents the source
node and t denotes the sink node. The solid lines represents selected arcs (xij = 1). Degree sequence
for each network is different. The degree sequence is {2, 2, 4, 2, 3, 2, 2, 3} and {3, 2, 3, 3, 2, 2, 3, 2} for the
left and right graph, respectively.

4. Solution Procedure

Computational complexity has been a barrier to many large scale problems. Many
real-world optimization problems belong to the class of NP-hard and when the size of
problem increases, there is no exact analytical method to solve them in efficient time.
Therefore, metaheuristic algorithms are applied as efficient tools to optimize this class
of problems. The network design reliability problem is an NP-hard combinatorial op-
timization problem (Garey, 1979; Provan & Ball, 1983). Therefore, the metaheuristic
algorithms are good candidates to tackle such problems. While there are several meta-
heuristic methods that can be applied to multi-objective problems, we have utilized and
compared three algorithms namely MOPSO, NSGA-II, NSGA-III. The differences be-
tween these methods and their strength in dealing with multi-objective problems led to
selection of these methods. While both NSGA and MOPSO methods are population-
based metaheuristics, the difference is on selecting and ranking Pareto front solutions
procedures. More specifically, NSGA-III utilizes reference points for ranking the solu-
tions, while MOPSO use probabilistic mechanisms such as roulette wheel selection. Thus,
the two metaheuristic procedures are distinct and can provide further insights in compu-
tational results. Meanwhile, based on the existing literature, MOPSO has been shown to
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be an efficient and fast method for solving large-scale mixed-integer programming prob-
lems(Bagherinejad & Dehghani, 2016; Pasandideh et al., 2013). PSO embodies swarm
intelligence that leverages the accuracy and speed of converging to best solutions. In
swarm intelligence, not only the experience of each particle involves in finding next solu-
tion, but also social behavior of all other particles simulates in this procedure. Also, PSO
is a metaheuristic as it makes few or no assumptions about the problem being optimized
and can search very large spaces of candidate solutions.

4.1. NSGA Description

Genetic Algorithm (GA) is a population-based search algorithm that has been widely
used to solve large-scale optimization problems in different domains. However, it can only
be utilized for single-objective optimization problems. An extension to GA algorithm for
multi-objective optimization problems is called NSGA-II, or The Non-dominated Sorting
Genetic Algorithm-II. It has been first proposed by Deb et al. (2000, 2002), where set of
Pareto front solutions are efficiently selected, constrained by multiple objective functions.
For this purpose, NSGA-II, similar to GA, employs set of bio-inspired operators with
surrogates including selection, crossover, and mutation. In this paper, each member
of the population in NSGA-II is a structure array that carry the members’ Position,
solution, Cost, Ranking, Domination Set, Dominated Count, and Crowding Distance.
The Position is a zero/one N ×N adjacency matrix, which demonstrates the connection
between each pair of nodes, where N is the number of nodes. The Cost includes three
objective function values, i.e., reliability(1a), total cost(1b), and maximum flow(1c). The
Solution contains the flow matrix, the violations, and whether the solution is feasible or
not. The Ranking indicates the rating of the solution. The Domination Set includes the
set of population members, dominated by the solution. The Dominated Count retains the
frequency of times that the solution has dominated by other solution during the search
process. As a result, for the Pareto optimal solution, the Dominated Count should
be zero. The last component presents the crowding distance that measures population
density around a solution by the average distance of the solution with two neighboring
solutions (Konak et al., 2006). In NSGA-II, the crowding distance is used in a selection
technique called the crowded tournament, where selection operator use dominance and
crowding distance as primary and secondary selection criteria.

Simultaneous encounter with many objectives (more than two) is one of the prominent
features of the NSGA-III. This algorithm was proposed by Deb & Jain (2014) by changing
selection operators of NSGA-II, in which one or a set of pre-specified points are considered
as reference points. The steps in the algorithm are as follows (Bhesdadiya et al., 2016):

4.1.1. Designation of Reference Points on a Hyper-plane for NSGA-III

An approach to ensure the diversity (∆) of the generated solutions is to determine a
set of reference points. In NSGA-III, several points are placed on a normalized hyper-
plane where they have identical direction in all of axes. The number of reference points
(H) is calculated by:

H =

(
nO + nD − 1

nD

)
, (2)

where nO is the number of objective functions, and nD is the number of divisions to
consider on every objective axis (e.g., for a problem with three-objective functions and
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five divisions, 21 reference points are required). The Pareto members will be associated
with the generated reference points on the hyper-plane.

4.1.2. Genetic Operators

Using cross-over and mutation, new solutions (i.e., children) are generated in each
iteration of NSGA-III. For making equal significance among all of the population mem-
bers, population size (nP) is considered close to the number of reference points (H).
Thus, at a generation t, all population members (Pt) convert in non-dominated solutions
using the same sorting method of NSGA-II. After that, each Pt generates new children
population (Qt) by mutations and recombination operators in which every population
member associated with each reference point and any selection operator will authorize
a competition to be set among various reference points. Then, a combined population
(Rt = Pt ∪ Qt) is organized and the non-dominated sorting mechanism is performed to
select new generation.

4.1.3. Normalization of the Population Members

For determining an ideal point of the current population, the minimum of each objec-
tive function (Fmin

i , i = {1, 2, · · · ,nO}) must be identified. Then, each objective function
will be moved by subtracting zmin

i = (Fmin
1 , Fmin

2 , · · · , Fmin
nO

) to the objective fi. Then,
a hyper-plane can be created by the steps presented in Xu et al. (2012). Since the objec-
tive functions have different scales in this problem, they are required to be normalized.

4.1.4. Association Between Reference Points and Population Members

At this stage, there must be an association between the members of the population
and the reference points. Here, a reference line is drawn by connecting the reference point
and the origin point. Next, the perpendicular distance between each solution and each
reference line is computed. Finally, the reference point which has the shortest distance
to the reference line from a population member is associated with this solution.

4.1.5. Niche-preserving Process

Using the perpendicular distance from the reference line, the solution that has least
distance from reference point, must be kept. Fig. 2 shows a graphical representation of
NSGA-III steps. To utilize NSGA-III in this problem, each member of the population
is an array structure with these associated information: Position, Cost, Solution, Rank,
Domination Set, Dominated Count, Normalized Cost, Associated Ref, Distance To As-
sociated Ref. Definition of Position, Cost, Solution, Domination Set, and Domination
count is similar to description provided for NSGA-II. A Rank is defined for each front
level based on its non-domination level. The solution that is not dominated by any of the
chromosomes, is assigned to level 1. Level 2, is the secondary level in which the chromo-
some is dominated by some chromosomes only in level 1, and so on. Note that while both
NSGA-II and NSGA-III utilize ranking, the function and underlying outcome is different.
The Normalized Cost includes normalized objective function values (see (Deb & Jain,
2014)). After normalizing each objective, each population member is associated with a
reference point. For this purpose, a reference line is defined by connecting each reference
point on the hyper-plane with the origin. Then, the perpendicular distance (Distance To
Associated Ref ) of each population member from each of the reference lines is calculated.

13



Define initial
variables

Start

Calculate total 
reference point as H

Generate initial
population

Apply non-dominated
sorting mechanism

Apply selection, crossover,
and mutation

Re-apply non-dominated 
sorting mechanism

Apply Normalization on 
population members

Report final population
and Pareto front

End

Keep the niche obtained
solutions for the
next generation

Apply the niche
preservation

Find out reference points
and solutions with

associated members

Is the 
stop criterion

(iteration number)
reached?

Yes

No

Figure 2: Graphical representation of NSGA-III.

The reference point with shortest distance of its reference line to a solution is associated
with the solution (Associated Ref ).

4.2. Multi-objective Particle Swarm Optimization (MOPSO)

Similar to GA, Particle Swarm Optimization (PSO) algorithm is another population-
based single-objective metaheuristic algorithm that had been widely used for problems
with continuous-space solution domain (Kennedy & Eberhart, 1995). In PSO, a popula-
tion of candidate solutions is called “particle” where each particle flies over the solution
space by carrying five individual properties: (1) current position, (2) current velocity,
(3) objective function value corresponding to the position, (4) the best position that has
been reached by the particle (best local solution), and (5) the objective function value
corresponding to the best position of the particle. The velocity and the position for each
particle will be updated in each iteration, influenced by the best local solution for each
particle and the best global solution among all particles.

An extension to PSO to comply with multi-objectives problems is called MOPSO
(Multi-objective PSO). MOSPO has a repository (Coello et al., 2004) as an external
archive of solutions including the non-dominated solutions. The repository members
provide an approximation of real Pareto front of the optimization problem. The pseu-
docode of MOPSO is illustrated in Algorithm 1.

4.2.1. MOPSO Refinement

Most particle swarm optimization algorithms are designed for continuous search space
domain. In this research, since the assignment variables xij ∈ {0, 1} are discrete, particle
velocity and position limits converts the set of solutions from the continuous domain to
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Algorithm 1 Pseudocode of MOPSO Steps

Initialize the swarm containing nP particles
Evaluate particles
Specify non-dominated solutions and store them in repository
while stop conditions are not satisfied do

for every particle in the swarm do
Select the leader for the selected particles
Update the velocity according to the velocity update rule
Update the position according to the position update rule
Evaluate the objective functions for the particle
Apply mutation
Update best position based on new position:
if new position dominates previous best then

replace the best
else if new position is dominated by previous best then

keep the best
else

randomly choose one of them as the best
end if

end for
Add the non-dominated particles to repository
Remove dominated members of repository

end while

discrete values. This conversion applies in each iteration, before these values are used
for updating the location of next particle’s solution.

Each member of the population is modeled as a structure array with fields: Position,
Solution, Velocity, Cost, Best solution, Dominated(T/F), Grid Index, and Grid Sub
Index. The Position, Cost, and Solution definitions are similar to description provided
for NSGA-II. The Best solution keeps the best position and its objective value explored
so far by the particle. If a particle is dominated by other particles, Dominated flag will
be true, otherwise it remains false. In the MOPSO algorithm, the objective space is
tabulated, so that the two properties, Grid Index and Grid Sub Index, are used to locate
each particle. If a single number is in the table houses, it is shown with a Grid Index
and if two numbers are in table houses, the row and column number, Grid Sub Index
is used. For example, in a two-dimensional objective space , GridIndex can be reached
through the number of rows and columns (GridSubIndex) with the (m(i−1)+j) mapping
equation in which, m is the number of rows, i and j are counters of rows and columns.

4.3. Parameter Tuning

The efficiency and computational convergence speed of metaheuristic methods are
highly dependent on the accurate tuning of the components and parameters within these
method (Tatsis & Parsopoulos, 2019). However, it has been shown that there are no
set of generic parameters that can be utilized for any of metaheuristic methods (Talbi,
2009).

The majority of methods for tuning of the parameters within metaheuristic algorithms
can be classified into the online and offline methods (Fallahi et al., 2014). In the online
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approach the parameters are dynamically or adaptively updated during the execution of
the metaheuristic (Akbaripour & Masehian, 2013). This method is efficient when the
number of tuning parameters are very limited. In the offline parameter tuning, for each
parameter a set of values are indicated from the literature or empirical experiments.
Correspondingly, the metaheuristic is executed with the fixed-values for the parameters
and the outcomes are compared to find the best set of parameters. In most of the
offline methods, the metaheuristic designer tunes each parameter individually, also called
sequential optimization strategy. Correspondingly, the potential interactions between the
parameters are overlooked and finding the optimal or near optimal settings cannot be
reached.

Design of Experiment (DOE) is one of the well studied statistical approaches to
evaluate the interactions between parameters (Ozkan et al., 2019). Once the number of
tuning parameters and their associated value levels becomes large, DOE methods are
no longer able to provide best tuned parameters’ value in timely manner. As a result,
in this study, Taguchi method, also called orthogonal array (Roy, 2001), an alternative
to full-experimental design in DOE, are utilized for parameter tuning in offline mode.
Taguchi design requires much fewer number of experiments compared to DOE, and find
best solutions without loss of generality.

4.3.1. Taguchi Design for Parameter Tuning

For each of the implemented metaheuristic algorithm, several parameters are required
to be fully calibrated prior to final execution. For this purpose, three initial values for
each unknown parameters are extracted from the literature.Using Minitab software, the
Taguchi method is utilized to build an associated design, corresponding to number of
parameters that need to simultaneously tuned and number of levels for each parame-
ter. Utilizing set of proposed parameters levels in each design, results of metaheuristic
methods, are calculated and then combined using Relative Percent Deviation(RPD), as
a measure of precision. As a result, best set of parameters are derived and utilized
for solving our problem. More specifically, for each NSGA-II and NSGA-III, a L9(34)
Taguchi design is used, correspond to four parameters each with three levels. In these
algorithms both genetic-related parameters and termination condition parameters are
investigated. The four parameters that are tuned are probability of mutation (Pm), prob-
ability of crossover (Pc), maximum number of iterations (Mit), and population size (nP ).
Table 2 shows the initial and the finalized value for calibrated parameters in NSGA-II
and NSGA-III.

Regarding other parameters of NSGA-III, for a three-objectives problem, developers
of MOEA/D suggest the number of divisions (nD) over each objective to be nD = 18
(Bhesdadiya et al., 2016), and as a result, the number of reference points (H) can be
calculated using Eq. (2) with H = 190.

For MOPSO metaheuristic algorithm, 7 parameters are calibrated, Similar to NSGA
parameter tuning, three levels of value for each parameter has been obtained from the
literature. As a result, a L27(37) Taguchi design is utilized to tune the parameters. The
parameters of interest are: (1) size of the particle population (nP ); (2) maximum number
of search iterations (Mit) before algorithm termination; (3) number of repository (nr); (4)
mutation rate for each particle (µrate); (5) inertia weight (w); (6) local learning coefficient
(cl), and (7) global learning coefficients (cg) for updating velocity of the particles.
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Table 2: Parameter tuning for NSGA-II, NSGA-III, and MOPSO. For each parameter, three levels are
considered and the interaction among the parameters are evaluated using Taguchi method. The final
parameter values are indicated in bold

NSGA-II NSGA-III MOPSO

Parameters
low
level

base
level

high
level

low
level

base
level

high
level

low
level

base
level

High
level

population size (nP ) 150 250 350 150 200 250 150 200 250
Maximum iterations (Mit) 200 500 1000 200 500 1000 200 500 1000
Probability of crossover (Pc) 0.7 0.8 0.9 0.7 0.8 0.9 – – –
Probability of mutation (Pm) 0.1 0.2 0.3 0.1 0.2 0.3 – – –
Number of repository (nr) – – – – – – 100 150 200
Mutation rate (µrate) – – – – – – 0.2 0.3 0.5
Local learning coefficient (cl) – – – – – – 0.5 1.5 2
Global learning coefficient (cg) – – – – – – 0.5 1.5 2
Inertia weight (w) – – – – – – 0.4 0.7 0.9

Note that, only the initial value of w is calibrated while it will be decreased at the
end of each iteration by:

w = w × wdamp, (3)

where wdamp is an inertia weight damping rate, (e.g., wdamp = 0.99).

4.4. Best Compromise Solution

The main feature of Pareto optimal solutions is that these solutions are incapable of
improving one of the objectives without sacrificing other objectives. However, in practice,
we are interested to select one solution from Pareto optimal set of solutions, also called
coordinated solution. Finding coordinated solution becomes harder when the objective
functions are measured by different unit scales. (Niimura & Nakashima, 2003). In order
to develop a solution method that presents a good compromise between the objectives,
we apply a fuzzy mechanism. As shown in the following, a simple linear membership
function is considered for each of the objective functions:

µi(Fi) =


0 Fi ≤ Fmin

i
Fmax

i −Fi

Fmax
i −Fmin

i
Fmin
i < Fi < Fmax

i

1 Fi ≥ Fmax
i

(4)

Fmin
i and Fmax

i indicate the least and most satisfactory solutions for the ith objective
function among Pareto front, respectively. The range for the membership function µ is
between 0 and 1, where µ = 0 denotes the incompatibility of the solution and µ = 1
donates full compatibility. The reliability and flow maximization objective functions are
equivalently analysed as minimizing the negative value for reliability and flow. As a
result, all objectives correspond to the smaller, the better by the degrees measured in
Eq. (4). The normalized membership function µk for each Pareto member k is computed
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based on:

µk =

nO∑
i=1

µk
i

M∑
k=1

nO∑
i=1

µk
i

, (5)

where M is the number of Pareto members and nO is the number of objective functions.
The function µk can be realized as the membership function for non-dominated solutions
in a fuzzy set. In that case, the best compromise solution is the solution with the
maximum membership, following the fuzzy decision process provided by Zimmermann
(2011).

Maximize min
i=1,...,k

{ωiµi(fi(x))} (6)

subject to same constraints as of the original problem, where k denotes the number
of objective functions and ωi is the weight factor (0 ≤ ωi ≤ 1) corresponding to each
objective function.

4.5. Comparison Criteria for Pareto Optimal Solutions

Among several commonly used performance metrics for multi-objective problems (Ta-
vana et al., 2016), five highly-reported metrics are used to assess the convergence rate and
the diversity of Pareto optimal solutions for each of the algorithms: (1) average number
of Pareto members (NOM), (2) Diversity (∆) (Zitzler, 1999), (3) mean ideal distance
(MID) (Karimi et al., 2010), (4) hyper-volume indicator (HVI) and (5) CPU time for
achieving the final solutions.

Average number of Pareto members (NOM) shows capability of an algorithm to
provide diverse compromised solutions. Note that, the number of Pareto members cannot
exceed the population size (np) of an algorithm.

The Diversity (∆) metric is formulated as follows:

∆ =

√√√√ nO∑
j=1

(max
n

f jn −min
n
f jn)2 (7)

where in Eq. (7), nO represents the number of objective functions and n represents the
number of Pareto solutions. ∆ demonstrate the difference between the best and the
worst solution for each objective function among all Pareto optimal solutions.

Another metric to compare the diversity of solution is called MID and is formulated
as follows:

MID =

n∑
i=1

li
n
, (8)

Similarly, in Eq. (8), n is representing the number of Pareto solutions and li forms the
Euclidean distance of ith Pareto solution from the ideal point for each objective function.
The ideal point for maximizing reliability, the first objective as shown in eq. 1a is {1},
describing a fully-reliable network. The ideal point for minimizing cost, as shown in eq.
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1c, can be considered {0}, albeit unrealistic. However, for maximizing the flow, eq. 1b,
an ideal solution is not intuitively available and (max(z3)) is used for the calculations.

Hypervolume (HV), also known as S metric, is a measure to quantify the amount of
objective-space which is being dominated by the obtained Pareto front. HV has been
a favored performance metric in multi-objective literature since it captures both the
relative distance of the solutions to the optimal set and the spread of the solutions across
objective space using a single scalar (While et al., 2006).

Considering a reference point (A) as the anti-ideal or the worst solution within the
space of the objective function, the volume that is delimited by anti-ideal point and an
Pareto optimal points forms the hypervolume. One limitation of HV metric is objective
function values must be normalized prior to determining the hyper-volume (Ciro et al.,
2016).
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Figure 3: a) HV surface for a problem with two objective functions, b) HV volume for a problem with
three-objective functions and multiple Pareto front solutions.

In Fig. 3.a, the calculation for hyper-volume of a problem with two minimization
objective functions is a surface provided by aggregating the rectangles created by the
reference point (A) and the Pareto front solution (in this example, y1, y2, y3, and y4).
In a three-objective problem, the hypervolume realization create a volume as shown in
Fig. 3.b

In order to calculate hypervolume indicator, denoted as HVI, for a Pareto optimal
solution set X, bounded with a reference point A = (a1, . . . , ak) ∈ Rk, the following
formulation can be utilized:

HVI(X) = λ

( ⋃
a∈A

[f1(x), a1]× [f2(x), a2]× · · · × [fk(x), ak]

)
, (9)

where, λ(S) is the Lebesgue measure of a set S and [f1(x), a1]×[f2(x), a2]×· · ·×[fk(x), ak]
is the k-dimensional hypercuboid that consists all non-dominated points compared to
the reference point. In recent years, both exact and approximate methods are used
to calculate HVI(Zitzler et al., 2007; Jaszkiewicz, 2018; Oliveira et al., 2019). In this
research, the hypervolume is approximated using Monte-Carlo (MC) method, as proposed
by Kruisselbrink (2015).
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5. Results and Performance Comparison of Solution Methods

As previously elaborated with details, the multi-objective optimization problem (in-
troduced in eq. 1) has been solved by three metaheuristic algorithms, namely NSGA-II,
NSGA-III, and MOPSO and the results are compared. All algorithms are implemented
in MATLAB R2010a and solved on a Core 2 Duo/2.66 GHz processor and 2GB of RAM
memory. Twelve numerical instances for the small-scale and twelve numerical instances
for the large-scale are randomly generated to compare the performance of these algo-
rithms. The scale of the instances is defined as a function of decision variables and the
constraints. With an increase in the size of the network, number of nodes (n), and num-
ber of associated arcs

(
2 ×

(
n
2

))
also increase. Previous studies suggest that a problem

can be referred to large-scale, once the size of the problem exceeds 1000 (Benson et al.,
2003). Hence, the increment in number of decision variables and constraints render the
problem intractable and provide good candidates to compare the solution methods for
more realistic instances.

Table 3: Comparison between results of different metaheuristic algorithms in small-scale and large-scale
problems (P = Problem, N = Nodes, R = Reliability, uij = Upperbound for flows, NOM = Number of
Pareto members, MID = Mean Ideal Distance, ∆ = Diversity, HVI =Hyper-Volume index)

Scenario properties
MOPSO with 1000 iterations

and nP = 250

NSGA-II with 200 iterations

and nP = 250

NSGA-III with 500 iterations

and nP = 200

P N R uij
NOM

(avg)
MID ∆ HVI

Time

(min)

NOM

(avg)
MID ∆ HVI

Time

(min)

NOM

(avg)
MID ∆ HVI

Time

(min)

S1 6 0.75 [50,600] 203 1.26E+06 1.36E+06 1.13E+08 31.6 249 1.38E+06 2.88E+06 1.89E+08 11.1 200 7.33E+05 3.64E+07 2.81E+08 10.9

S2 6 0.75 [2k,6k] 195 3.65E+07 5.62E+07 3.79E+08 31.9 217 5.98E+07 7.94E+06 4.23E+08 12.3 197 1.38E+07 9.06E+06 6.76E+08 9.8

S3 6 0.85 [50,600] 165 1.34E+06 3.11E+06 9.16E+07 31.1 250 1.43E+06 3.00E+06 8.73E+07 11.8 200 9.59E+05 4.88E+06 9.84E+07 9.7

S4 6 0.85 [2k,6k] 172 3.21E+07 6.53E+07 9.88E+07 32.0 198 5.25E+07 7.94E+06 1.85E+08 11.9 196 1.85E+07 9.48E+06 2.53E+08 11.0

S5 6 0.95 [50,600] 177 1.95E+06 2.44E+06 9.60E+06 31.4 246 2.89E+06 5.02E+06 1.10E+07 11.0 198 1.06E+06 2.85E+07 9.89E+06 10.8

S6 6 0.95 [2k,6k] 185 3.68E+07 5.04E+06 2.07E+07 32.5 198 7.23E+07 7.94E+06 1.37E+07 11.8 197 2.25E+07 8.90E+06 4.51E+07 11.2

S7 10 0.75 [50,600] 176 4.18E+06 7.29E+06 7.55E+08 39.2 246 3.93E+06 8.47E+06 1.27E+09 12.9 176 1.44E+06 7.56E+06 8.84E+08 16.9

S8 10 0.75 [2k,6k] 210 4.50E+07 5.08E+07 2.44E+09 39.9 192 5.48E+07 7.22E+07 5.85E+09 14.1 196 2.87E+07 9.12E+07 7.30E+09 17.6

S9 10 0.85 [50,600] 209 3.71E+06 5.90E+06 2.23E+08 39.0 138 4.63E+06 7.33E+06 3.14E+08 12.2 190 1.97E+06 8.71E+06 5.24E+08 16.8

S10 10 0.85 [2k,6k] 235 5.93E+07 3.08E+07 8.10E+08 30.1 236 7.44E+07 3.96E+07 9.16E+08 13.7 197 3.78E+07 6.77E+07 1.06E+09 17.7

S11 10 0.95 [50,600] 241 5.01E+06 5.34E+06 5.19E+07 38.9 210 6.30E+06 4.94E+06 3.54E+07 12.6 194 2.37E+06 6.88E+06 6.68E+07 17.0

S12 10 0.95 [2k,6k] 226 6.23E+07 7.75E+07 4.86E+08 39.8 203 8.19E+07 8.25E+07 3.00E+08 13.9 199 4.13E+07 1.15E+08 7.11E+08 17.1

Average 199.5 2.41E+07 2.59E+07 4.57E+07 34.78 195.58 3.47E+07 2.08E+07 8.00E+08 12.44 195 1.43E+07 3.29E+07 1.5E+09 13.83

L1 30 0.75 [100,800] 223 6.75E+06 8.91E+06 2.61E+07 120.8 234 3.73E+06 5.86E+07 6.93E+07 32.4 196 1.08E+06 4.73E+07 3.31E+08 55.3

L2 30 0.75 [3k,7k] 217 7.67E+07 3.24E+06 8.90E+07 122.2 223 6.66E+07 3.13E+07 3.21E+08 34.1 193 2.16E+07 5.18E+06 4.15E+08 57.2

L3 30 0.85 [100,800] 197 7.08E+06 1.02E+06 1.76E+07 120.5 217 4.47E+06 6.44E+05 2.77E+07 31.9 197 1.14E+06 8.31E+05 3.60E+07 56.1

L4 30 0.85 [3k,7k] 242 7.83E+07 2.35E+07 2.25E+08 122.0 250 6.93E+07 7.51E+06 8.58E+07 34.3 200 2.23E+07 9.09E+06 5.35E+08 58.4

L5 30 0.95 [100,800] 203 6.54E+06 6.59E+07 6.64E+08 119.9 222 4.32E+06 8.43E+08 9.72E+08 30.8 200 1.18E+06 7.34E+08 2.19E+09 55.8

L6 30 0.95 [3k,7k] 227 6.63E+07 4.70E+06 1.11E+08 121.8 236 5.88E+07 7.29E+06 6.34E+07 34.5 182 2.72E+07 6.93E+06 5.08E+08 57.9

L7 40 0.75 [100,800] 187 7.68E+06 9.87E+05 8.87E+07 133.7 196 8.40E+06 8.04E+06 2.06E+08 49.0 200 2.22E+06 1.65E+07 4.91E+08 68.3

L8 40 0.75 [3k,7k] 175 7.89E+07 2.46E+07 3.22E+08 135.4 188 5.12E+07 2.76E+07 5.85E+08 50.6 194 4.48E+07 4.80E+07 3.62E+09 72.3

L9 40 0.85 [100,800] 218 7.94E+06 2.89E+06 3.74E+07 134.3 223 6.05E+06 8.68E+05 4.12E+07 47.8 200 2.27E+06 9.77E+05 7.24E+07 69.7

L10 40 0.85 [3k,7k] 176 8.27E+07 6.77E+06 5.71E+08 137.7 197 8.14E+07 7.66E+06 8.39E+08 50.3 189 5.33E+07 1.18E+07 3.41E+09 72.0

L11 40 0.95 [100,800] 215 7.71E+06 8.69E+07 9.79E+08 133.4 217 4.79E+06 5.37E+08 2.76E+09 49.2 190 2.51E+06 2.08E+08 4.68E+09 71.3

L12 40 0.95 [3k,7k] 199 10.9E+07 9.57E+08 6.19E+08 135.0 195 8.5E+07 8.40E+07 7.95E+08 49.9 191 6.09E+07 3.21E+09 1.88E+09 71.7

Average 206.5 4.46E+07 9.89E+07 3.12E+08 128.05 236.32 3.7E+07 1.34E+08 5.64E+08 41.23 194.2 2.0E+07 3.58E+08 1.51E+09 63.83

overall Average 203 3.4E+07 6.2E+07 3.8E+08 81.4 215.8 3.6E+07 7.8E+07 6.8E+08 26.84 194.6 1.7E+07 2.0E+08 1.3E+09 38.85

The numerical instances are introduced in Table 3, where the number of nodes (N),
the arc reliability (R), and upper-bound of flow (uij) vary among instances. Number of
nodes for small-scale and large-scale problems are defined as (6 and 10) and (30 and 40),
respectively. Arc reliability (R ∈ {0.75, 0.85, 0.95}) is defined as an inverse of probability
of arcs failure (1−q). Correspondingly transmission factor (aij) for each arc is randomly
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generated in form of N × N matrices in an acceptable interval. For all
(
n
2

)
arcs of a

complete graph, the upper-bound flow of arc ij, (uij), are randomly generated from a
Uniform distribution. In small-scale problems, the random variable is chosen such that
uij ∼ U(50, 600) and uij ∼ U(2000, 6000). Similarly, the upper bound for large-scale
problems are randomly generated by the uniform distributions with the range such that
uij ∼ U(100, 800) and uij ∼ U(3000, 7000). Since cost of flow (CFij) depends directly on
the amount of flow (fij), the per-unit cost of flow through the arcs and cost of building
arcs (CBij) are defined as a random fraction of uij in a predefined interval.

Each instance is solved by all metaheuristic methods with the calibrated parameters
values as previously shown in Section 4.3.1. Correspondingly, all performance metrics,
reported in Section 4.5, are calculated. As shown in Table 3, the performance met-
rics provide an accurate platform to compare the efficiency and diversity of candidate
solutions provided by the solution algorithms.

As shown in Table 3, the scales of instances have significant impact on the CPU time
and Hypervolume index (HVI). For example, the required time to run the algorithm,
or the CPU time, vary from 12.44 to 34.78 minutes for small-scale instances, while for
large-scale instances the range is escalated to be between 41.23 and 128.05 minutes. MID
performance metric has shown to be more robust in terms of the scale of the instances
where the value has not significantly changed once the size of the problems increased.
the values for average NOM, diversity(∆), HVI, and CPU time for NSGA-II, NSGA-III
and MOPSO vary based on the size and property of instances. Comparing the overall
performance of the three metaheuristic, the percentage of NOM, or ratio of number
of Pareto members compared to population size (np) is 82.6%, 86.6%, and 97.3% for
MOPSO, NSGA-II, and NSGA-III respectively. The trend is consistent for both small
large-scale problems.

Table 4: Statistical Comparison of performance metrics using Kruskal-Wallis test with (α = 0.05)

Kruskal-Wallis Test

Small-scale instances large-scale instances

Performance Metrics P-Value Results P-Value Results

NOM ratio 0.004 NSGA-III is preferred 0.000 NSGA-III is preferred

Diversity (∆) ratio 0.073 There is no significant difference 0.054 There is no significant difference

MID ratio 0.049 NSGA-III & MOPSO are preferred 0.040 NSGA-III & MOPSO are preferred

HVI ratio 0.061 There is no significant difference 0.003 NSGA-II & NSGA-III are preferred

CPU time ratio 0.000 NSGA-III & MOPSO are preferred 0.000 NSGA-III & MOPSO are preferred

In order to compare the performance of three methods statistically, Kruskal-Wallis
test which is a non-parametric test to determine whether the median of two or more
groups of independent variables are statistically significantly different is utilized. Kruskal-
Wallis test can efficiently rank the sample data and show whether samples are originated
from the same distribution.

Since the value of some of the performance metrics are dependent to the properties
of metaheuristic method that are individually calibrated (e.g. number metaheuristic
iterations (Mit) and population size (np)), the results are normalized prior to perform-
ing Kruskal-Wallis test. The normalized values of performance metrics result in a fair
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and unbiased comparison among the three metaheuristic algorithm. The results of the
Kruskal-Wallis test for each performance metric is presented in Table 4.

60

70

80

90

100

MOPSO NSGA−II NSGA−III

N
O

M

0e+00

1e+05

2e+05

3e+05

4e+05

MOPSO NSGA−II NSGA−III

M
ID

0.0e+00

5.0e+06

1.0e+07

1.5e+07

MOPSO NSGA−II NSGA−III
metaheuristic

H
V

I

0.05

0.10

0.15

0.20

0.25

MOPSO NSGA−II NSGA−III
metaheuristic

T
im

e

0e+00

1e+05

2e+05

3e+05

4e+05

MOPSO NSGA−II NSGA−III
metaheuristic

D
IV scale

large−scale

small−scale

Figure 4: Statistical analysis of performance comparison metrics using Box Plot.

The test findings indicate that NSGA-III is majorly in favor compared to both NSGA-
II and MOPSO in the viewpoint of providing higher Pareto members(NOM). NSGA-
III and MOPSO share the best performance regarding CPU time ratio and MID ratio
analysis. However, NSGA-II and NSGA-III outperforms MOPSO in terms of achieving
higher hyper-volume for large-scale problems.There is no significant difference in the
distribution of solutions for the Diversity (∆) performance metric and HVI in small-scale
instances.

Finally, performance metrics properties are compared via box-plots to show the de-
viation from 1st quartile, median, and 3rd quartile of the results. Fig. 4 represents the
box-plots for both small scale and large scale instances, while for DIV, some of the out-
liers are truncated for better scaling purposes. As expected, once the size of the problem
increase, the CPU time increase as well. Also, there is a direct relation between the
size of the problem and the hypervolume that NSGA approaches can achieve. By look-
ing into the number of Pareto optimal members (NOM), NSGA-III outperforms both
NSGA-II and MOPSO, not only by median value, but also by lower deviation among all
instances. The outcomes for MID is different where both NSGA-III and MOPSO provide
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better solutions. overall NSGA-III is the preferred solution approach for both small and
large-scale problems.

(a) MOPSO results for 2nd, 500th and 1000th iterations.

(b) NSGA-II results for 2nd, 100th and 200th iterations.

(c) NSGA-III results for 2nd, 250th and 500th iterations.

Figure 5: All solutions, Pareto front members and best compromise solution at first, midst, and final
iterations of problem instance S3 by a) MOPSO, b) NSGA-II, and c) NSGA-III.

In order to visualize the progression of algorithms and their strength in finding high-
quality Pareto-front members, the solutions of first, midst, and final iteration of each
metaheuristic method for problem instance S3 is illustrated in Fig. 5. In these figures, in
addition to Pareto front members and corresponding best compromised solution, Inside
layer and Boundary layer are demonstrated. Inside layer is a surface composed of refer-
ence points that intersects with the best values of the objective function, taken from the
ideal point, (Zmin

i ) on the 3D coordinate axes, and boundary layer is a surface composed
of reference points that intersects with the worst values of the objective function (Zmax

i )
(Deb & Jain, 2014). The figures demonstrate that at the very first iterations, the number
and diversity of Pareto optimal solutions are limited. As number of iterations increase,
more Pareto optimal solutions are reached, covering larger solution space. Note that
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although MOPSO iteration was set to 1000, the number of Pareto optimal solutions are
lower compared to NSGA-II and NSGA-III.

Another implication of Fig. 5 is the quality of solutions provided by NSGA-II, NSGA-
III, and MOPSO in different iterations. As the iterations advance, the distance between
the solutions and the boundary layer increase. Concurrently, the Pareto front solutions
become closer to inside layer, as an indication of higher quality results.

(a) Pair-wise comparisons of objective functions for problem S3.

(b) Pair-wise comparisons of objective functions for problem L4.

Figure 6: Pair-wise comparison of Pareto front members at the final iteration of different algorithms
for a) small-scale instance S3, and b) large-scale instance L4.

For the purpose of comparing the quality of Pareto members computed by the three
metaheuristics in one platform, Fig. 6 illustrates a pair-wise comparison of objective
functions for one small-scale (S3) and one large-scale (L4) problems. In general, NSGA-
III Pareto members are closer to the intersection of ideal points or inside layer. For
example, right subfigure of Fig. 6.b depicts the comparison between reliability and cost
where NSGA-III provides higher reliability solutions with lower cost, compared to NSGA-
II and MOPSO. Similarly, when reliability is compared against, as shown in left subfigure
of Fig. 6.b, NSGA-III outperforms NSGA-II and MOPSO. Note that, a consistent trend
in the results have been observed for both small and large-scale problems.

In addition to comparing performance evaluation among metaheuristic methods, the
best compromise solution of each sample instance, correspond to each objective function,
are shown in Table 5. In this table, bold numbers represent the best compromised so-
lution for each objective function among the three metaheuristic methods. For a more
robust comparison analysis, the percentage difference for each objective function from
the best objective function is calculated and shown. While the final compromised so-
lution of MOPSO, NSGA-II and NSGA-III differs in several instances, there are some
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cases that the solutions of one metaheuristic algorithm are completely dominated by
another algorithm. More specifically, for several large-scale instances, MOPSO is unable
to provide solutions that are not completely dominated by NSGA-II and NSGA-III.

Table 5: Best compromise solution of sample instances from each metaheuristic algorithms. (%) indicates
the difference ratio between the provided solution and the best solution among different methods (*).
(P = Problem, N = Nodes, R = Reliability)

Scenario properties MOPSO NSGA-II NSGA-III

P N R uij Reliability Cost Flow Reliability Cost Flow Reliability Cost Flow

S1 6 0.75 [50,600] 0.88(-4%) 3.20E+06(*) 9.80E+02(*) 0.92(*) 2.20E+06(-31%) 6.30E+02(-36%) 0.9(-2%) 2.40E+06(-25%) 8.10E+02(-17%)

S2 6 0.75 [2k,6k] 0.9(-1%) 8.80E+06(*) 1.40E+04(*) 0.91(*) 8.30E+06(-6%) 1.30E+04(-7%) 0.9(-1%) 8.80E+06(*) 1.40E+04(*)

S3 6 0.85 [50,600] 0.93(-2%) 3.00E+06(*) 9.40E+02(*) 0.95(*) 2.30E+06(-23%) 6.50E+02(-31%) 0.93(-2%) 3.00E+06(*) 9.40E+02(*)

S4 6 0.85 [2k,6k] 0.91(-5%) 8.90E+06(-4%) 1.40E+04(-7%) 0.96(*) 9.00E+06(-3%) 1.40E+04(-7%) 0.94(-2%) 9.30E+06(*) 1.50E+04(*)

S5 6 0.95 [50,600] 0.95(-3%) 2.40E+06(-17%) 7.80E+02(-12%) 0.98(*) 2.80E+06(-3%) 8.50E+02(-4%) 0.97(-1%) 2.90E+06(*) 8.90E+02(*)

S6 6 0.95 [2k,6k] 0.95(-2%) 9.30E+06(-2%) 1.50E+04(*) 0.96(-1%) 8.70E+06(-8%) 1.20E+04(-20%) 0.97(*) 9.50E+06(*) 1.50E+04(*)

S7 10 0.75 [50,600] 0.87(-3%) 5.20E+06(-2%) 2.30E+03(-4%) 0.89(-1%) 5.20E+06(-2%) 2.30E+03(-4%) 0.9(*) 5.30E+06(*) 2.40E+03(*)

S8 10 0.75 [2k,6k] 0.89(*) 1.40E+07(-7%) 5.20E+04(-17%) 0.86(-3%) 1.20E+07(-20%) 4.90E+04(-22%) 0.86(-3%) 1.50E+07(*) 6.30E+04(*)

S9 10 0.85 [50,600] 0.93(-3%) 6.70E+06(-1%) 2.10E+03(-5%) 0.92(-4%) 6.80E+06(*) 2.20E+03(*) 0.96(*) 6.70E+06(-1%) 2.10E+03(-5%)

S10 10 0.85 [2k,6k] 0.91(*) 1.50E+07(-25%) 6.10E+04(-27%) 0.9(-1%) 2.00E+07(*) 7.30E+04(-13%) 0.91(*) 1.90E+07(-5%) 8.40E+04(*)

S11 10 0.95 [50,600] 0.98(*) 8.10E+06(-1%) 2.50E+03(-4%) 0.97(-1%) 4.70E+06(-43%) 1.70E+03(-35%) 0.98(*) 8.20E+06(*) 2.60E+03(*)

S12 10 0.95 [2k,6k] 0.97(-1%) 1.60E+07(-27%) 5.90E+04(-23%) 0.98(*) 1.80E+07(-18%) 6.50E+04(-16%) 0.98(*) 2.20E+07(*) 7.70E+04(*)

L1 30 0.75 [100,800] 0.84(-7%) 5.70E+07(-7%) 9.30E+04(-7%) 0.88(-2%) 5.60E+07(-8%) 9.10E+04(-9%) 0.9(*) 6.10E+07(*) 1.00E+05(*)

L2 30 0.75 [3k,7k] 0.84(-1%) 9.30E+07(-1%) 2.70E+06(-7%) 0.85(*) 9.30E+07(-1%) 2.70E+06(-7%) 0.85(*) 9.40E+07(*) 2.90E+06(*)

L3 30 0.85 [100,800] 0.92(-3%) 5.10E+07(-18%) 8.80E+04(-20%) 0.94(-1%) 5.20E+07(-16%) 8.90E+04(-19%) 0.95(*) 6.20E+07(*) 1.10E+05(*)

L4 30 0.85 [3k,7k] 0.88(-3%) 9.40E+07(*) 2.80E+06(*) 0.91(*) 8.90E+07(-5%) 2.60E+06(-7%) 0.89(-2%) 9.30E+07(-1%) 2.80E+06(*)

L5 30 0.95 [100,800] 0.97(-1%) 6.30E+07(*) 9.70E+04(-12%) 0.98(*) 5.70E+07(-10%) 9.20E+04(-16%) 0.96(-2%) 6.20E+07(-2%) 1.10E+05(*)

L6 30 0.95 [3k,7k] 0.93(-1%) 9.50E+07(-1%) 2.90E+06(-6%) 0.94(*) 9.40E+07(-2%) 2.80E+06(-10%) 0.92(-2%) 9.60E+07(*) 3.10E+06(*)

L7 40 0.75 [100,800] 0.89(-1%) 7.60E+07(*) 1.70E+05(-11%) 0.9(*) 7.40E+07(-3%) 1.90E+05(*) 0.9(*) 7.50E+07(-1%) 1.90E+05(*)

L8 40 0.75 [3k,7k] 0.87(-3%) 3.40E+08(*) 4.00E+06(-9%) 0.9(*) 3.30E+08(-3%) 4.10E+06(-7%) 0.86(-4%) 3.40E+08(*) 4.40E+06(*)

L9 40 0.85 [100,800] 0.92(*) 7.80E+07(*) 2.20E+05(*) 0.91(-1%) 7.70E+07(-1%) 1.70E+05(-23%) 0.92(*) 7.80E+07(*) 2.20E+05(*)

L10 40 0.85 [3k,7k] 0.93(*) 3.10E+08(-3%) 4.20E+06(*) 0.93(*) 3.20E+08(*) 3.90E+06(-7%) 0.93(*) 3.10E+08(-3%) 4.10E+06(-2%)

L11 40 0.95 [100,800] 0.96(-2%) 7.50E+07(-4%) 1.80E+05(-10%) 0.98(*) 7.80E+07(*) 1.90E+05(-5%) 0.98(*) 7.60E+07(-3%) 2.00E+05(*)

L12 40 0.95 [3k,7k] 0.96(-1%) 3.00E+08(-9%) 4.20E+06(-5%) 0.97(*) 3.10E+08(-6%) 4.00E+06(-9%) 0.96(-1%) 3.30E+08(*) 4.40E+06(*)

(a) Maximizing reliability (b) Maximizing flow (c) Minimizing Cost

Figure 7: Comparison between 95% confidence interval for mean of each objective function.

NSGA-III has proven to be robustly better or equally good, in approximately 34%
of cases, compared to both MOPSO and NSGA-II in small and large-scale instances.
Majority of NSGA-III superiority is as a result of providing higher flow for the network,
in over 87% of the cases, compared to the other algorithms. The number of cases that
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NSGA-III is outperforming NSGA-II and/or MOPSO in terms of minimizing cost and
maximizing reliability objective functions are 66% and 54%, respectively.

Finally, the 95% confidence intervals for the mean value of each objective function
is shown in Figure 7. This analysis provides the opportunity to compare the confidence
interval of Pareto front solutions provided by each metaheuristic methods. The Pareto
front solutions of NSGA-II provide higher reliability, compared to MOPSO and NSGA-
III. However, in terms of the cost and flow, NSGA-III Pareto front solutions provide
more robust solutions. Note that individual standard deviations are used to calculate
the intervals.

6. Discussion

In this Section, we first provide a brief, yet holistic view of the specific gaps covered
by this research and the areas which still need to be investigated. Then, we outline the
challenges associated with the solution methods and elaborate on their computational
complexity.

6.1. Strengths and Limitations of the Proposed Model

Enhancing the reliability of networks is one of the most fundamental elements of
many physical and virtual networks such as wired, wireless, supply chain, and social
networks. However, the network reliability comes with a price. This research examined
two additional objectives of minimizing the total cost and maximizing the flow, while
designing reliable networks. Our proposed mixed integer linear model, seeks to find
the best topology and design of a network such that the three conflicting objectives
are addressed. The practicality of the model relies in taking important features of the
network design into account such as both cost of building new arcs and the cost of flow,
and transmission rates on the edges rather than nodes.

Our research, similar to other research studies, encounters several limitations that
could be further explored by the interested readers. First, assumptions in the proposed
mathematical model can be revised based on the characteristics of future problems. For
instance, reliability of all arcs are assumed to be similar. However, this assumption limits
the use of the model for complex networks. Also, in some networks, arc failure increases
as adjacent arcs are not functional. The contingency among arcs’ failure are mostly seen
in disruptive extreme events, such as earthquakes and hurricanes. Taking uncertainty
into account, the model can further expanded with stochastic probability of arc failure
and the cost of the repair. Additional exploration can consist of adding multi-period and
multi-commodity flows representing more advanced networks.

6.2. Strengths and Limitations of the Proposed Methods

The proposed mathematical model is first solved with CPLEX for a very small in-
stance and the optimal solution is verified to ensure the accuracy of the model. However,
for large-scale problems, CPLEX is either unable to solve the problem or attain an accept-
able optimality gap in a reasonable time-frame. Hence, three metahueristic methods (i.e.
MOPSO, NSGA-II, and NSGA-III) are employed and compared to solve the proposed
problem.
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Several advantages and disadvantages are associated with each of these methods.
MOPSO’s greatest advantage, compared to NSGA-II and NSGA-III is the simplicity of
its concept, ease of implementation, and good convergence rate (Coello et al., 2007).
However, MOPSO is unable to control diversity, compared to the other two metaheuris-
tic algorithms. NSGA-II is mainly criticized for exploratory capabilities and search bi-
ases when the number of objective functions increases. In the meantime, the algorithm
strength is to spread properly when a certain non-dominated region is found, providing
diverse solutions (Coello & Pulido, 2001). Overall, NSGA-III has shown major superior-
ity, compared to MOPSO and NSGA-II, in providing higher number of Pareto front and
non-dominated solutions with reasonable diversity and convergence.

While metaheuristic methods are highly utilized to solve large-scale problems, one
of their limitations is the associated computational complexity. In general, complexity
of multi-objective evolutionary algorithms is a function of number of objective functions
and the third power of population size but can vary based on the sorting algorithm and
domination rules. Specifically, computational complexity of MOPSO and NSGA-II in
each iteration is O(non

2
p) where no is the number of objective functions and np is the

population size (Tripathi et al., 2007). For NSGA-III, the overall worst-case complexity
is O(n2p logno−2 np) or O(non

2
p) whichever is larger (Deb & Jain, 2013). While the com-

putational complexity of the metaheuristic methods are in favor of lower np, the solution
method may not find near-optimal solutions once the size of population is not sufficient.
Therefore, it is important to find the best population size to balance the computational
complexity and the quality of solutions. This in turn introduces another limitation of the
proposed solution which is computationally expensive parameter tuning for these meth-
ods. Despite the fact that there are several guidelines on the best range of parameters
to be used by NSGA-II, NSGA-III, and MOPSO, these parameters need to be calibrated
for each specific problem. The tuning procedure requires additional effort to investigate
which are sometimes neglected in other research studies. As a result of the calibration
process, one realization is the capability of NSGA-III to provide higher quality solution
with lower computational complexity. In this research, the population level for NSGA-III
is 200, compared to 250 for MOPSO and NSGA-II.

7. Conclusion

Flow networks play a vital role in many industries. Moreover, the security and re-
liability of the flow networks, especially infrastructure networks, has become the major
concern for both industry managers and government policy makers. Howbeit, the net-
works’ reliability is achieved with a higher cost, and a design of the model that can
compromise among several conflicting objectives of a flow network is required.

In this paper, a three-objective mixed-integer linear mathematical model is developed
that simultaneously optimizes three goals of minimizing total cost, maximizing flow, and
maximizing reliability. The minimization of cost comprises the cost of construction of
network arcs and the cost of flow. To maximize the flow of the network, a generalized
flow network problem with positive multiplier for each arc is considered to account for
the flow loss. The network reliability is estimated by the Jans upper bound, used in
large-scale networks where calculating the network reliability with exact methods are not
feasible. Since computational complexity of the proposed model is NP-hard, three multi-
objective metaheuristic methods are used; Multi-objective Particle Swarm Optimization
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(MOPSO), and two non-dominated sorting genetic algorithms (i.e. NSGA-II and NSGA-
III). Each of the methods has shown capabilities and strengths on providing near optimal
solutions for large-scale multi-objective problems.

To decide on selecting best compromise solution from the Pareto front members, a
fuzzy-based mechanism is applied. Therefore, the proposed model leads to a final reliable
generalized flow network design which would represent the desired compromise among
the different objectives from the decision-makers perspective. To ensure the results’
quality of the metaheuristic methods, the efficiency of MOPSO, NSGA-II and NSGA-III
are compared using several performance metrics. Our results indicate that NSGA-III
outperforms MOPSO and NSGA-II in terms of convergence and run-time for both small-
scale and large-scale instances.

While the solutions of NSGA-III is promising for different instances, our analysis in-
dicates that: (1) the selection of the method to solve such large-scale complex problems
is important and (2) hybrid methods that are carefully calibrated for the specific ob-
jectives can be beneficial. For instance, MOPSO and NSGA-III have specific strengths
and a hybrid model that can utilize strengths of both these methods and overcome the
potential shortcomings of each individual method can be a direction for future research.

The proposed mathematical model can be extended in several ways to be applicable
for infrastructure networks with different properties. One recommendation is the appli-
cations of these models in the design of wireless computer networks and electric power
networks. These networks may have stochastic demand that need to be fulfilled within
each time slot. In these cases, the model can be expanded to stochastic, multi-time
period, and multi-commodity network flow problems.

Appendix A.

The pseudocode for calculating the penalty function for the reliability objective func-
tion considering fully-connected and two-connectivity conditions is shown in Algorithm
2.
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Algorithm 2 Consideration of Fully-Connected and Two-Connectivity Conditions
using Penalty Function

1: Compute VAC . All-Connectivity Violation
2: Compute graph degree sequence (d)
3: V2C ← mean(d, 2) . 2-Connectivity Violation
4: H ← 1 . H is the Jan’s Upper Bound
5: for i← 1 to V do
6: mi ← min(di, i− 1) . mi: min edges connected to i
7: dH ← qd(i) . q: probability of failure
8: if mi ≥ 1 then
9: dH ← dH ∗ (1− qdi−1)mi

10: end if
11: if i− 1 ≥ mi + 1 then
12: dH ← dH ∗ (1− qdi−1)i−1−mi

13: end if
14: H ← H − dH
15: end for
16: Reliability← H
17: Violation← VAC + V2C

18: β ← 5
19: z ← R− β ∗Violation
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