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Abstract—Influential users have great potential for accelerating
information dissemination and acquisition on Twitter. How to
measure the influence of Twitter users has attracted significant
academic and industrial attention. Existing influence measure-
ment techniques are vulnerable to sybil users that are thriving
on Twitter. Although sybil defenses for online social networks
have been extensively investigated, they commonly assume unique
mappings from human-established trust relationships to online
social associations and thus do not apply to Twitter where users
can freely follow each other. This paper presents TrueTop, the first
sybil-resilient system to measure the influence of Twitter users.
TrueTop is rooted in two observations from real Twitter datasets.
First, although non-sybil users may incautiously follow strangers,
they tend to be more careful and selective in retweeting, replying
to, and mentioning other users. Second, influential users usually
get muchmore retweets, replies, andmentions than non-influential
users. Detailed theoretical studies and synthetic simulations show
that TrueTop can generate very accurate influence measurement
results with strong resilience to sybil attacks.
Index Terms—Influence measurement, social networks, sybil

resilience, Twitter.

I. INTRODUCTION

T WITTER has become a powerful vehicle for large-scale
information dissemination. As of May 2014, Twitter has

255 million monthly active users and 500 million daily tweets.
This massive base of active users has triggered explosive uses
of Twitter in marketing, journalism, public relations, massive
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information campaigns, entertainment, and during events of
worldwide and national significance.
Influential Twitter users have great potential for accelerating

information dissemination and acquisition. For example, to
launch a viral marketing campaign for a new product via
Twitter, a known strategy is for the marketer to seed the product
with a few selected influential users who can potentially in-
fluence a disproportionately large number of others and also
quickly trigger a cascade of influence. As another example,
in the event of a national crisis, the governmental authority
can conduct a massive information campaign by disseminating
truthful information via influential users to effectively achieve
strategic goals and also counteract rumors. As the last example,
to have realtime situational awareness about a physical region
of interest, military agencies can recruit volunteers in the target
region via influential Twitter users there and then outsource the
collection of in-situ information to the volunteers.
The strong promise of influential users leads to the growing

attention on how to measure the influence of a Twitter
user [1]–[4]. There are also over 20 commercial tools available
for measuring twitterers' online influence. Common to these
research proposals [1]–[4] and commercial tools is to capture
the qualitative feature of online influence as “the ability to
cause effect, change behavior, and drive measurable outcomes
online” [5] and to quantify a twitterer's online influence based
on his/her interactions with others.
The rise of social bots [6] or sybils [7] in general on Twitter

is jeopardizing trustworthy influence measurement. In a sybil
attack, the adversary coordinates many fake accounts (also
called bots or sybil users hereafter) to unfairly overpower
non-sybil users. Despite various efforts to detect sybil users
on Twitter [8]–[13], sybil users are still thriving on Twitter.
For example, a recent study [14] revealed that at least 10%
of Twitter users are sybil users. Given the exclusive reliance
of existing influence measurement techniques on user interac-
tions, the adversary could coordinate his sybil users to create
arbitrary interactions to inflate their influence scores on Twitter.
Since influence scores are relatively defined, the adversary
could also effectively deflate the influence scores of non-sybil
Twitter users. According to our recent study [15], an adversary
controlling 1,000 sybil users can quickly generate an influence
score in the 95th percentile for any sybil user under popular
influence measurement tools such as Klout [16], Kred [17], and
Retweet Rank [18]. In a similar study [19], Messias et al.used
two social bots to successfully obtain high Klout scores.
The lack of sybil-resilient influence measurement services

on Twitter can be detrimental. Specifically, there is a growing
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market for influence measurement services with more than 20
service providers available [5]. If these service providers fail to
provide trustworthy measurement results due to sybil attacks,
they will have extreme difficulty getting customers and sur-
viving, and their customers could not achieve effective infor-
mation dissemination or acquisition as expected.
The root cause for the vulnerability of existing influence

measurement techniques to sybil attacks lies in the incautious
use of user interactions. Specifically, Twitter permits four
types of publicly visible user interactions, including follow,
retweet, reply, and mention. The interactions about any user
can be further classified into incoming interactions towards
him and outgoing interactions from him. Since a sybil user
can freely follow, retweet, reply to, and mention other sybil
or non-sybil users, extensive outgoing interactions are fairly
easy to create and thus unsuitable for sybil-resilient influence
measurement. In addition, since sybil users could easily get
many legitimate followers [20]–[22], the number of followers
each user has should also be ruled out. In contrast, we observe
from real Twitter data that non-sybil users tend to be more
selective in retweeting, replying to, and mentioning other users.
This observation is in line with the real-life scenario: one may
exchange business cards with many strangers but will be more
cautious in choosing whom to further interact with. This means
that incoming retweets, replies, and mentions are much more
trustworthy information for measuring user influence. Existing
influence measurement techniques, however, use all incoming
and outgoing interactions in a non-discriminative way.
We propose TrueTop, a novel sybil-resilient influence mea-

surement system based on the incoming retweets, replies, and
mentions each Twitter user has. TrueTop provides on-demand
influence measurement services to various customers such as
business companies and government agencies. Given a target
set of Twitter users (e.g., those in a geographic area of interest),
TrueTop outputs a ranked list of top- influential users for a
desirable integer . TrueTop is designed to be sybil-re-
silient and also accurate, which means that the TrueTop output
contains bounded sybil users and the true top- non-sybil users
with overwhelming probability, respectively.
The main design challenge for TrueTop is that sybil users

can arbitrarily interact among themselves, so it is not sybil-re-
silient to evaluate a user's influence directly based on his total
incoming retweets, replies, and mentions. We propose the fol-
lowing method to tackle this challenge. Given the target set of
users, we first construct a weighted directed interaction graph,
in which every vertex corresponds to a unique user in the target
set. An edge from vertex to vertex exists if user has ever
retweeted, replied to, or mentioned user , and the edge weight
is proportional to the number of retweets, replies, and men-
tions from to . Imagine that the interaction graph consists
of a virtual non-sybil region with all non-sybil users and a vir-
tual sybil region with all sybil users. Given our previous obser-
vations, both the number of edges and the total edge weights
from the non-sybil region to the sybil region should be much
smaller than those in the reverse direction. Then we seed some
carefully chosen vertices (or users) in the non-sybil region with
some credits and let every vertex in the whole graph allocate
its current credits to its direct successors proportionally to the

corresponding edge weights in every iteration. After sufficient
iterations, the top- influential non-sybil users are very likely
to stand out, as they can accumulate many credits due to their
abundant incoming retweets, replies, and mentions. In contrast,
the total credits flowing into the sybil region can be very lim-
ited, so even the sybil users with many incoming interactions
from other sybil users may end up with few credits. We can thus
achieve sybil-resilient influence measurement by counting the
final credits at every vertex.
This paper makes the following contributions.
• We motivate and formulate the problem of sybil-resilient
influence measurement on Twitter.

• We propose TrueTop, a novel influence measurement
system that can identify the top- influential users in
a target set of Twitter users with high accuracy in the
presence of sybil attacks by exploiting the selectivity of
non-sybil users in interacting with other users.

• We confirm the high accuracy and sybil-resilience of
TrueTop by detailed theoretical analysis and extensive
experiments on real datasets.

The rest of this paper is organized as follows. Section II sur-
veys the related work. Section III introduces Twitter basics,
our system and threat models, and our design objectives.
Section IV illustrates the TrueTop design. Section V theoret-
ically analyzes the accuracy and sybil resilience of TrueTop.
Section VI evaluates the performance of TrueTop by detailed
experiments. Section VII concludes the paper.

II. RELATED WORK

There is significant effort to explore social networks for
effective sybil defenses in various distributed systems, such
as SybilGuard [23] and SybilLimit [24] for P2P networks,
SumUp [25] for online voting systems, and SybilInfer [26],
SybilDefense [27], and SybilRank [28] for online social net-
works. A common assumption is that each node can be mapped
into one in an undirected social network graph where every edge
corresponds to a human-established trust relation. Although the
attacker can create many sybil accounts, he cannot establish an
arbitrarily large number of social trust relations with non-sybil
users. Moreover, all schemes assume that the honest region is
fast mixing and separate from the sybil region. Built upon these
two key insights, these schemes conduct varying community
detection methods [29] to limit the number of sybil users
admitted into or their impact in various application scenarios.
Recent measurement studies have questioned these two as-

sumptions. Yang et al. [30] showed that sybil users on the Face-
book-like Renren network can have their friend requests ac-
cepted by many non-sybil users. A similar result targeting Face-
book was reported in [31]. Blending sybil users into the non-
sybil community would reduce the effectiveness of the existing
sybil defenses [32]. In addition, the work in [6], [15], [19], [20],
[33] showed that sybil users successfully acquired a number of
followings from non-sybil users on Twitter. All these findings
indicate that neither bidirectional friendships in Fackbook-like
OSNs nor unidirectional followings in Twitter-like microblog-
ging systems can be used as the trustable mirroring of real so-
cial relations. Moreover, it has been shown in [34], [35] that
the mixing time of many practical and directed social graphs is
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much longer than previously expected. Since neither of the two
key assumptions underlying the schemes in [23]–[29] holds in
directed networks such as Twitter, they are not directly appli-
cable to our targeted scenario. Our TrueTop system does not
rely on either assumption.
As a special kind of sybil users, spammers in Twitter has at-

tracted considerable attention in recent years. A common ap-
proach adopted by existing work [8]–[13], [36], [37] is to de-
tect spammers by measuring the behavioral difference between
spammers and legitimate users. Spammers are a special type of
sybil users, and the detection of general sybil users on Twitter
remains an open challenge.
There is a rich literature for influence measurement on

Twitter. Cha et al. [1] found that the numbers of retweets and
mentions serve as better metrics than the number of followers
in measuring user influence. Bakshy et al. [4] proposed to
measure user influence based on his ability to post the tweets
that generate a cascade of retweets. TwitterRank [3] combines
link structure and topical similarity between Twitter users and
uses a modified PageRank algorithm to calculate user influence.
Pal and Counts [38] also proposed a framework to identify
topical authorities in microblogging systems. All these schemes
are vulnerable to sybil users who can forge arbitrary informa-
tion employed by these schemes for influence measurement.
Moreover, many metrics used by these schemes have been
incorporated into commercial influence measurement tools [5],
and the vulnerability of representative tools to sybil attacks has
been experimentally verified in [15].
Also related is the research on modelling, measuring, and an-

alyzing the interactions in OSNs, e.g., [39]–[43]. Our work is
the first to build a weighted directed interaction graph from his-
torical incoming retweets, replies, and mentions on Twitter and
use it for identifying influential users.

III. PRELIMINARIES

A. Twitter Basics
We illustrate the basic operations on Twitter to help under-

stand our design. The social relationships on Twitter are unidi-
rectional by users following others. If user follows user ,
is 's follower, and is 's followee. A user usually needs

no prior consent from his followees. Twitter also allows each
user to approve/deny every following request, but this option
is relatively rarely used. A user can send text-based messages
of up to 140 characters, known as tweets, which can be read
by all his followers. Tweets can be visible to anyone with or
without a Twitter account, and they can also be protected and
are only visible to approved followers. There are three special
kinds of tweets corresponding to three operations. A retweet is
a re-posting of someone else's tweet, a reply corresponds to a
response to a tweet, and a mention refers to inserting “@user-
name” in a tweet to ensure that the specified user can see this
tweet. Finally, each user has a timeline which shows all the
latest tweets (including original tweets, retweets, replies, and
mentions) of his followees. Also note that Twitter allows direct
messages to be sent between users. Since those direct messages
are not publicly visible, they cannot be used to measure user
influence.

B. System Model
TrueTop is run by a service provider (SP) offering on-de-

mand influence measurement services to customers such as viral
marketers, government/military agencies, or even individuals.
Given a measurement request, the TrueTop SP first determines
the target set of Twitter users to evaluate, denoted by . The
users in can be directly given by the customer or identified
by the TrueTop SP according to some common features spec-
ified by the customer. For example, the customer can specify
a target geographic region, a target age group, a target topic
(e.g., music), etc. As said, TrueTop relies on incoming interac-
tions among the users in , i.e., the retweets, replies, and men-
tions each user in has received from all the other users in .
So we assume that the SP has a reliable way to obtain the in-
coming interaction data needed, e.g., directly from Twitter, via
crawling, or from some third-party providers of social media
data. For example, Gnip (http://gnip.com/) is an authorized re-
seller of Twitter data. TrueTop is designed to output a ranked
list of top- influential users in , where denotes a cus-
tomer-specified integer.

C. Threat Model
Let denote all possible sybil users in . We assume that the

SP knows neither which user in is a sybil user nor how many
sybil users there are; otherwise, the identified sybil users can
be simply removed from . Based on the recent measurement
study [20], we assume that each sybil user may have followed
and also been followed by some non-sybil and sybil users in .
There may be a single attacker controlling or multiple inde-
pendent ones with each controlling an exclusive subset of .
TrueTop can deal with both cases without modification, so we
focus on the more challenging former case hereafter. The goal
of the attacker is to gain high influence scores for his sybil users
and maximize the number of users in the TrueTop output.

D. Design Objectives
Let and denote the top- non-sybil influential users

in and the TrueTop output, respectively. We have two major
design objectives.
• Accuracy: TrueTop should identify the true top- non-
sybil users, which means the difference between and

should be very small.
• Sybil resilience: TrueTop should not identify sybil users as
top- users, i.e., the the intersection should be
very small.

IV. TRUETOP DESIGN

A. Overview
TrueTop is motivated by the observation that incoming

retweets, replies, and mentions are more trustworthy for mea-
suring user influence than outgoing interactions. So our first
step is to construct an interaction graph, in which every vertex
corresponds to a unique user in the target set , and every
directed edge indicates totally non-zero retweets, replies, and
mentions from the tail user to the head user. In addition, the
weight of every edge is a non-decreasing function of related
retweets, replies, and mentions.
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The next step is to choose a suitable metric to quantify the in-
fluence of every user (vertex) in the interaction graph. TrueTop
adopts weighted eigenvector centrality (WEC for short) [44],
the de facto metric for measuring the influence of a node in a
weighted directed graph. Specifically, the WEC score of every
user corresponds to his influence score, which depends on the
weights of his incoming edges, the number of his direct prede-
cessors, and their influence scores which are further determined
by their respective incoming edges and direct predecessors. The
WEC score reflects an intuition that the influence of a user is
better indicated by the interactions from influential users than
those from less influential users.
We uses iterative credit distribution for the convenience to de-

scribe and understand our method. Specifically, we select some
random users (called seeds) in the interaction graph and seed
each with some credits. In each iteration, we allocate all the
credits each user received in the last iteration to his direct suc-
cessors proportionally to individual edge weights. The credits
each user receives in one iteration are expected to stabilize after
sufficient iterations and be proportional to his WEC score. It can
be easily shown that iterative credit distribution is equivalent to
power iteration [45], a standard technique for computing WEC
scores. Since sybil users can create arbitrary interactions among
themselves, some of them may gain enough credits to appear in
the top- list. TrueTop achieves high sybil resilience by care-
fully choosing the initial seeds and also early terminating itera-
tive credit distribution.
In what follows, we first illustrate the construction of the

interaction graph in Section IV-B. Next, we present an iter-
ative credit distribution scheme over the interaction graph in
Section IV-C. Finally, we introduce how to achieve sybil-re-
silient iterative credit distribution in Section IV-D.

B. Interaction Graph Construction

Given the target users and their interaction data, TrueTop
first builds a weighted directed interaction graph denoted by

, where is abused to denote the vertex set, and
every edge is directed and indicates that
there are some retweets, replies, and/or mentions from user
to . The major challenge here is to determine the weight
of every edge . As shown in Fig. 1, can be divided into
a virtual sybil region including all the sybil users and a vir-
tual non-sybil region including all the non-sybil users. The
sybil-resilience requirement for TrueTop requires that the sum
of the edge weights from the non-sybil region to the sybil re-
gion is small, while the accuracy requirement for TrueTop de-
mands that the weight reflects the true influence of user
on in the target period. Let denote the set of time-indexed
retweets, replies, and mentions from user to . We consider the
following two methods for defining the edge weights.
• Sum-based. In this method, equals . Sum-based
edge weights satisfy the sybil-resilient requirement, as the
total edge weights from the non-sybil region to the sybil
region are as limited as the number of retweets, replies,
and mentions from non-sybil users to sybil users. They
also partially satisfy the accuracy requirement, as the more
interactions from to , the more influence likely has

Fig. 1. The interaction graph with a virtual non-sybil region and a virtual
sybil region .

on , and the higher . Sum-based edge weights, how-
ever, fail to catch the temporal aspect of interactions. For
example, consider another direct predecessor of , say ,
where . Assume that the interactions in
occurred in the last few days in the target period, while
those in were spread more evenly. It may be natural
to say that has stronger influence from user than from
user , but we have for sum-based methods.

• Entropy-based. In this method, we divide the target pe-
riod into equal-length epochs for some system parameter

and denote the total number of retweets, replies, and
mentions from user to in the th epoch by , where

. Then we define the edge weight
. The more con-

sistent the interactions from to in time, the higher ,
and vice versa. When all the interactions happen in a single
epoch, the weight is identical to sum-based . Entropy-
based edge weights can also satisfy the sybil-resilience
requirement, as non-sybil users unlikely have consistent
interactions to sybil users so that the total edge weight
from the non-sybil region to the sybil region can be ex-
pectedly small. In contrast to sum-based edge weights, en-
tropy-based edge weights successfully catch the temporal
information in the interactions while failing to reflect the
volume of the interactions. So they partially satisfy the ac-
curacy requirement as well.

The effects of the above methods are compared in Section VI.
There may be other ways to define the edge weights. For
example, we can let equal a linear combination of the
edge weights derived under sum-based and entropy-based
methods, respectively; we can also assign different weights to
retweets, replies, and mentions according to slightly different
effort and/or social implication related to performing these
interactions. A further study on such issues is left as future
work due to space constraints.
Note that we only consider retweets, replies, and mentions in

the weight definitions because they are representative on Twitter
and have been used in all the existing influence measurement
techniques. Some other factors could also impact the user in-
fluence, such as following connections and favorites. As stated
before, since sybil users could easily get many legitimate fol-
lowers [20]–[22], the following connections fail to achieve the
sybil resilience and hence should be ruled out for the influence
measurement. On Twitter, a user could favor the tweets from
other users, but there is no public Twitter API which can return
the favorite user list for any given tweet. Should a public Twitter



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: TRUETOP: SYBIL-RESILIENT SYSTEM FOR USER INFLUENCE MEASUREMENT ON TWITTER 5

API for retrieving favorites become available, we can easily in-
corporate favorites into TrueTop.

C. Credit Distribution
TrueTop uses the WEC score of every user in as

his influence score. Specifically, let denote the WEC score
of user in and denote the normalized weighted
adjacency matrix of . The vector is the
dominant eigenvector of , i.e., the solution to the equation

according to [44].
Power iteration [45]is a common technique to compute the

WEC vector . Let be a random vector composed of non-
negative elements totalling one. In power iteration, is com-
puted in an iterative fashion as

(1)

where with the initial . If
is strongly connected, exists, is unique, and is unrelated
to . In practice, power iteration normally terminates if

for some acceptable error threshold
(e.g., ).
The WEC vector only exists in a strongly connected

graph [44], in which every vertex is reachable from every
other vertex. Although itself may be not strongly connected
in practice, it usually has a giant strongly connected com-
ponent (GSCC) which includes the majority of the vertexes
and edges and is dramatically larger than all other strongly
connected components (SCCs). Since the most influential users
should have intensive interactions with other users, the top-
influential users should be in the GSCC with overwhelming
probability. Our subsequent operations thus apply to the GSCC
only. The verification of the existence of GSCC in real datasets
is deferred to Section VI.
TrueTop uses iterative credit distribution instead to compute
to facilitate the presentation. Initially, we randomly select a

few users (called seeds) in and initialize each with the same
number of notional credits totalling one. At every iteration, we
allocate the credits each user received in the last iteration to
his direct successors proportionally to the corresponding edge
weights. Let denote the number of credits at any user
after iterations, which are proportional to his influence score
measured after iterations. is a real number in general and
can be computed as

(2)

where and denote the direct predecessors of user
and the direct successors of user in , respectively. Simi-
larly, we can terminate credit distribution when

for some acceptable error threshold (e.g., ).
We can easily show that iterative credit distribution above

is equivalent to power iteration. In particular, assume that
seeds are chosen in iterative credit distribution, each having
credits initially. We further select for power iteration such
that the th element equals if user is a seed and zero oth-
erwise. Then (2) is apparently the element-wise expression of

. Since power iteration does not depend on
a specific , we have for any user after
iterations.
Iterative credit distribution described above is still subject to

sybil attacks. To see this, consider Fig. 1 where the interaction
graph is divided into a virtual non-sybil region and a vir-
tual sybil region . We denote the total edge weights within ,
within , from to , and from to by , , , and

, respectively, where . Although the adversary has
no control over and , he can easily manipulate and
to make very small. Even if all the seeds are chosen from
in the best scenario, more and more credits will flow into and

stay in as time goes by. We have the following proposition
about the vulnerability of iterative credit distribution to sybil
attacks.
Proposition 1: Assume that the total edge weights from the

non-sybil region to the sybil region and from to are
and fractions of the total edge weights in and , respec-

tively. The total credits in increase monotonically with the
iteration and asymptotically approach to .
We give the proof of Proposition 1 in Appendix I-A in the

supplementary file. Since the adversary can well control the
topology within , most credits in can go to a few sybil users
who may eventually appear in the top- influential users.

D. Sybil-Resilient Credit Distribution
TrueTop adopts the following two defenses against sybil at-

tacks such that most credits can stay in the non-sybil region for
sufficient iterations.
The first defense is to use non-sybil seeds only so that credit

distribution can start from the non-sybil region . We propose
to use verified Twitter users as seeds by three reasons. First,
Twitter has certified their authenticity. Each verified user has a
blue verified badge on his profile page and is followed by the of-
ficial Twitter account@verified. Second, there aremany verified
users available as candidate seeds. As of April 2014, Twitter has
verified more than 88,600 accounts among 255 million monthly
active users and keeps verifying more. Since can be expected
to contain many users in practice, there should be at least one
verified user in with very high probability. Finally, since ver-
ified users are usually public figures such as politicians, celebri-
ties, or business leaders, we can trust them to be very cautious
in whom to retweet, reply to, and mention. This implies that the
immediate successors of verified users on the interaction graph
are very likely to be non-sybil users as well, so are the succes-

sors' immediate successors. If we start credit distribution from
verified users, most credits can be expected to stay inside after
many iterations.
Howmany seeds should we choose? Some verified users may

be very close to the sybil region, but we cannot tell who they are.
Ideally speaking, we should choose the verified users far from
the sybil region. On the one hand, if a verified user is randomly
chosen as the sole seed, he may be too close to the sybil region.
On the other hand, if we use all the verified users in as the
seeds, it is very likely that some of them are close to the sybil
region. In addition, the number of seeds affects the convergence
of iterative credit distribution: the more seeds, the faster the al-
gorithm converges. It is impossible to specify the decisive rules
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for seed selection, so we randomly choose seeds from
the verified users in and experimentally evaluate the impact
of seed selection in Section VI.
How should we assign the initial credits among the seeds?

We propose two methods as follows.
• Basic method. The total credits are evenly assigned to the
seeds. This straightforward method assumes that each seed
has the same importance for credit distribution.

• Reverse-WEC. Since the credits flow out from the seeds,
we can assign more initial credits to the seeds who can
quickly reach more users to speed up the algorithm con-
vergence. For this purpose, we conduct the credit distribu-
tion introduced in Section IV-C over an inverse interaction
graph generated from by reversing the directions of all
the edges and also setting all the edge weights to one. The
final credits at each user naturally reflects his connectivity
in . So we select the verified users with the top- highest
credits as the seeds and then assign to each of them the ini-
tial credits proportional to their credits obtained via reverse
credit distribution.

The second defense is to early terminate iterative credit dis-
tribution before it converges in the whole graph . To see the
necessity and intuition for this defense, recall that we start credit
distribution from non-sybil seeds in the non-sybil region. Since
the total edge weight from the non-sybil region to the sybil re-
gion is relatively small, we can expect credit distribution to con-
verge much faster in the non-sybil region than in the whole .
In addition, the most influential non-sybil users normally have
many incoming interactions and thus a rich number of credit
sources in . So they can quickly accumulate a lot of credits to
stand out much faster than other non-sybil users. If we early ter-
minate iterative credit distribution, most or all of the sybil users
would not get enough credits to appear in the resulting top-
influential users, so we can achieve sybil resilience. However,
if credit distribution stops too early, some true top- influential
non-sybil users may not get enough credits to be ranked in the
top- list, leading to an inaccurate result.
We design a simple but effective algorithm to tackle the

dilemma between sybil resilience and accuracy. The key idea is
to monitor the ranking change of the candidate top- users in
two consecutive iterations. Whenever the ranking change is no
larger than an acceptable threshold, we terminate the algorithm
and output the current top- users as the top- influential
users. This algorithm is directly built on our observation above.
Specifically, since the top- non-sybil influential users are
more likely to stand out much faster than both sybil users and
other non-sybil users during credit distribution, their rankings
are more likely to become stable in fewer iterations as well. We
detail the algorithm as follows and postpone its performance
analysis to Section V.
Let and denote the rankings of user in it-

erations and , respectively. We define the ranking distance
between and as

(3)

The algorithm above has two key parameters: and . The
former dictates the maximum number of iterations, and the

latter specifies the maximum ranking error tolerance. The larger
, the longer the algorithm execution time, the more accurate

the top- influential users, the more credits flowing into the
sybil region and thus the less sybil resilience, and vice versa. In
contrast, the larger , the shorter the algorithm execution time,
the less accurate the top- influential users, the fewer credits
flowing into the sybil region and thus the higher sybil resilience,
and vice versa. In practice, we can let , meaning that
each user in the current top- list has experienced a ranking
change of less than one on average in contrast to the previous
iteration.

V. PERFORMANCE ANALYSIS

In this section, we analyze the accuracy and sybil resilience
of TrueTop. Recall that denotes the true top- influential
users in the non-sybil region, denotes the TrueTop output
(i.e., the output of Alg. 1), and denotes all the sybil users in
the sybil region. So we can use and to measure
the accuracy and sybil-resilience of TrueTop, respectively.
To make the performance analysis tractable, we first assume

that Alg. 1 runs in the non-sybil region only, so we can con-
duct an upper-bound analysis about the accuracy of TrueTop
by setting the ranking error tolerance parameter and
extremely large such that Alg. 1 terminates only when a stable
top- user list is found. We then show that Alg. 1 will termi-
nate in asymptotically the same number of iterations for ,
based on which we finally estimate the number of sybil users
appearing in . As stated before, the larger , the shorter the
algorithm execution time, the less accurate the top- influential
users, the fewer credits flowing into the sybil region and thus the
higher sybil resilience, and vice versa. Hence by setting ,
we can provide the lower and upper bounds for sybil resilience
and accuracy, respectively. As for arbitrary , we unfortu-
nately cannot obtain the closed-form analytical result for sybil
resilience or accuracy and thus resort to experiments to evaluate
its impact in Section VI.
The following concepts are needed for the accuracy analysis.
Definition 1 ((Relative) Error Bound): Let denote the true

WEC vector of non-sybil users and the -ranked user refers to



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: TRUETOP: SYBIL-RESILIENT SYSTEM FOR USER INFLUENCE MEASUREMENT ON TWITTER 7

TABLE I
DATASET CHARACTERISTICS

the one with the th highest WEC score in . Let denote
theWEC score of the -ranked user after iteration . Then

is defined as the error bound for the -ranked node
after iteration , and is defined as the relative
error bound.
Definition 2 ((Relative) WEC Gap): The WEC gap for the
-ranked node is defined as , and

is the correspondingly relative WEC gap.
Lemma 1: Let denote the normalized weighted adjacency

matrix of the non-sybil region with users, among which there
are seed users. Construct for power iteration (see Eq. (1))
such that the th element equals if user is a seed and zero
otherwise. Then the relative error bound for the -ranked user
satisfies , where denotes 's second largest
eigenvalue.
Lemma 1 states that the rank of each user in iteration

approaches its true rank for sufficiently large . The proof of
Lemma 1 can be found in Appendix I-B in the supplementary
file.
In addition, Ghoshal and Barabasi [46] recently found that if

the WEC vector (Pagerank in their paper) follows power law
distribution, the gap between the th and th WEC scores
decreases with . We thus have the following lemma.
Lemma 2. [46]: If the WEC vector follows a power-law

distribution with parameter , the relative WEC gap for the
-ranked user satisfies .
The proof of Lemma 2 is straightforward according to [46]

and omitted here due to space constraints. In Section VI, we
show that the WEC vectors for real Twitter datasets indeed
follow the power-law distribution. We then have the following
theorem based on Lemma 1 and Lemma 2.
Theorem 1: For iterative credit distribution in a strongly-con-

nected weighted directed graph with the monotone-decreasing
with , if in iteration , the ranked list of users

with top- credits remain the same in subsequent iterations.
We give the proof in Appendix I-C in the supplementary file.

Theorem 1 indicates that if there are no sybil users, Alg. 1 (or
TrueTop) can generate the true top- influential non-sybil users
if , i.e., when or

iterations. This also corresponds to
the case of with 100% accuracy. Since the total edge
weights from/to the non-sybil region to/from the sybil region
are relatively very small, we can expect that the sybil region
has little impact on the influence rankings of non-sybil users.
So the accuracy of TrueTop under sybil attacks is tightly related
to how many sybil users can show up in the top- list, i.e.,
the sybil-resilience of TrueTop, as analyzed in the following
theorem.

Theorem 2: Let be the ratio of the total edge weight
from the non-sybil region to the sybil region over the total
edge weights in the non-sybil region. Assume that the attacker
wants to place as many sybils into the top- list as possible
by retaining all the credits flowing into the sybil region. The
number of sybil users in the top- list after early termination
in iterations is upper-bounded by

.
We give the proof in Appendix I-D in the supplementary file.

Accordingly, we can easily derive the lower bound for the ac-
curacy of TrueTop because there are at least
true top- non-sybil users in the final top- list. Note that since

and is usually at the scale of 1,000 and 10,000, this
upper bound is far less than , meaning that there are only neg-
ligible sybil users in the top- list.

VI. EVALUATION
In this section, we thoroughly evaluate the performance of

TrueTop. We first introduce some implementation details and
the runtime performance, followed by the datasets used in our
evaluations. Next, we verify two underlying assumptions in our
design. Finally, we evaluate the accuracy and sybil resilience of
TrueTop under various sybil attacks.

A. Implementation and Runtime Performance
TrueTop is composed of two main components: the interac-

tion graph construction and the credit distribution with early
termination. We implemented both with a total of 2000+ lines
of mixed code of Python and C++. Specifically, to efficiently
handle the large-scale interaction networks (millions of nodes
and billions of edges) in a commodity PC, we adopted the
Graphchi computing framework [47] to implement the credit
distribution of TrueTop. On our desktop with 3.4 GHz Intel-i7
3770 CPU, 16G Memory, a 7200RPM hard disk, and Ubuntu
12.04 LTS, one single iteration of credit distribution took 0.3s,
2.5s, 9.2s, and 17.1s for our four datasets in Table I with 4K,
10K, 1M and 2M nodes, respectively. For a graph with 2M
nodes, TrueTop can thus find the top-1000 influential users after
1,000 iterations within less than five hours on a commodity
PC. Since TrueTop is expected to be run by a service provider
with much more powerful computation resources, its runtime
performance should be acceptable.

B. Datasets
We crawled four representative datasets with public Twitter

APIs. The SF and TS datasets include all the active users who
have specified San Francisco Bay Area and Tucson, Arizona
in the location field of their public profiles in the crawling (or
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Fig. 2. The distribution of WEC values. (a) Sum-based; (b) entropy-based.

target) period, respectively. In addition, the Random dataset
contains a random set of active Twitter users in the target pe-
riod, and the Music dataset contains the active users who have
used the keyword “music” in their tweets in the target period.
Each dataset includes all the user IDs and also their time-in-
dexed tweets during the target period, which include original
tweets, retweets, replies, and mentions. Then we constructed
two interaction graphs for each dataset according to the process
in Section IV-B, one for sum-based edge weights and the other
for entropy-based edge weights.
Table I summarizes the basic statistics of the interaction

graphs of each dataset, which apply to both sum-based and
entropy-based edge weights. As we can see, each interaction
graph has a giant strongly connected component (GSCC)
which is far larger than the second largest SCC. Since TrueTop
measures user influence based on incoming interactions, the
top- influential users are in the GSCC with overwhelming
probability. Our subsequent evaluations are thus done on the
GSCC in each interaction graph only. We obtained very similar
evaluation results for sum-based and entropy-based interaction
graphs. Due to space limitations, we report the results for
sum-based interaction graphs in most cases.

C. Feasibility Studies
1) WEC Value Characteristics: TrueTop bases its early ter-

mination of iterative credit distribution on two assumptions.
First, the WEC values of non-sybil nodes follow a power-law
distribution. Second, the relative WEC gap decreases as
increases. Now we verify these two assumptions.
Fig. 2 shows the log-log CCDF of the WEC values. We can

see that all the CCDF curves are close to straight lines with the
slopes from 2 to 1 for the WEC values larger than .
Since a power-law distribution with PDF
has a CCDF , the WEC values of each interaction
graph follow a power-law distribution with parameter from 2
to 3.
Fig. 3 shows the log-log scale of as a function of , where

the results are shown up to due to space constraints.
We computed the WEC values by using as the error
tolerance threshold of power iterations, which led to about 1,000
iterations. obviously decreases with an approximate slope of
1 in the log-log scale, which coincides well with the analysis

in Lemma 2.
2) Interaction Analysis: Since there is no benchmark for the

real-world sybils on Twitter, we designed an experiment to es-
timate the total edge weight from the non-sybil region to the

TABLE II
THE COMPARISON OF INCOMING-OUTGOING RATIOS BETWEEN SYBIL AND
NON-SYBIL COMMUNITIES UNDER SUM-BASED AND ENTROPY-BASED

INTERACTION GRAPHS

sybil region in order to verify that it is relatively very small. To
catch the growing intelligence of Twitter sybils, we adopted the
behavior of the emerging social bots [6], [15], [19]. Our experi-
ment run as follows. We first purchased 1000 Twitter accounts,
then divided them to mimic legitimate activities as in [15], [19],
and finally investigated how many legitimate users will follow
or interact with them. Specifically, we divided these 1000 ac-
counts into five groups of equal size, each corresponding to a
unique activity among following, tweeting, retweeting, men-
tioning, and replying. We ran the experiment for 30 days. In
each day, we let each sybil user in each group initiate 10 ac-
tivities corresponding to that group. For example, each sybil
user in the Following group followed 10 randomly-chosen new
users in each dataset every day. Except the sybil users in the
Tweeting group, the sybil users in all the other groups initiated
the corresponding activities only towards randomly chosen new
users in each dataset. We also recorded the total followings/
mentions/retweets/replies every sybil group received each day.
In addition, we chose the Random, SF, and Music datasets
as the target datasets in the first 14, middle 8, and last 8 days,
respectively.
Fig. 4 shows the incoming-outgoing (I-O) ratio of each sybil

group, which is defined as the number of total followings/men-
tions/retweets/replies each sybil group received every day over
the total number of interactions initialized from the sybil group
in the same day (i.e., 2,000). We have two observations. First,
non-sybil users are very careful about whom to interact with
and rarely interact with sybil users. Second, sybil users can
get a non-trivial number of non-sybil followers. We manually
found that most non-sybil followers are normal users out of
reciprocity, social capitalists, or even spam accounts not sus-
pended by Twitter, and this observation is in line with prior re-
sults in [20], [21]. So incoming followings are less trustworthy
for evaluating user influence than incoming replies, mentions,
and retweets.
To compute the I-O ratios of the sybil and non-sybil commu-

nities, we randomly chose 30 groups of 200 users from each
of Random, SF, and Music datasets. We then recorded the
incoming and outgoing interactions of each non-sybil group
every day in the same experimental period. The I-O ratio for
each sybil or non-sybil group is redefined as the total incoming
edge weight over the total outgoing edge weight. Table II com-
pares the average I-O ratios of the sybil and non-sybil groups for
both sum-based and entropy-based edge weights. As we can see,
non-sybil communities always havemuch higher I-O ratios (i.e.,
much more balanced incoming and outgoing interactions) than
sybil communities. Moreover, the entropy-based weight model
yields lower and higher I-O ratios than the sum-based weight
model for the sybil and non-sybil communities, respectively.
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Fig. 3. Relative WEC gap . (a) SF; (b) TS; (c) Music; (d) Random.

Fig. 4. Incoming-outgoing ratios for sybil groups, where the same legend is used in all the figures. (a) Following; (b) tweeting; (c) retweeting; (d) mentioning;
(e) replying.

TABLE III
THE IMPACT OF DIFFERENT DESIGN OPTIONS ON TRUETOP PERFORMANCE

We thus expect that the entropy-based weight model can lead
to better sybil resilience than the sum-based model (as shown in
Table III).

D. Accuracy and Sybil Resilience Studies
1) Evaluation Methodologies: Since large-scale real exper-

iments on Twitter inevitably violate the Twitter ToS, we resort
to synthetic simulations to evaluate the accuracy and sybil re-
silience of TrueTop. We used all the four datasets and obtained
quite consistent results. Below we show the evaluation results
for the SF dataset only due to space constraints.
We modelled the strength of sybil attacks on Twitter by a pa-

rameter , which refers to the ratio of the total edge weight in the
non-sybil region over that from the non-sybil region to the sybil
region. The default value of , denoted by , is obtained from
our datasets as follows. Assume that the network is composed of
a non-sybil region with twitterers and a sybil region with
twitterers. According to our experiments, we found that about
0.98 of the users in the SF dataset have been suspended, so
we set . Moreover, assume that each non-sybil
user initiates one interaction (i.e., retweeting, mentioning, or re-
plying) to each of the other users, leading to
outgoing interactions. According to Table II, the average I-O
ratio of the non-sybil community for the sum-based interaction
network is . Therefore, the
non-sybil users can receive about

incoming and outgoing interactions. Similarly, the sybil users
issue totally interactions to the non-sybil region and re-
ceive about interactions from non-sybil users. We
thus have the following approximation

(4)

We used the following method to simulate the sybil region,
which has been adopted in [23], [28]. Given the interaction
graph constructed from the SF dataset, we can expect that the
majority of the 104,000 users are non-sybil users, but we cannot
tell which users are sybil or non-sybil users. So we manually at-
tached to the original interaction graph a sybil region which is a
complete digraph of 500 sybil users and ran TrueTop over this
augmented interaction graph. We assume the worst-case sce-
nario in which the attacker aims to retain all the credits flowing
into the sybil region, so there is no interaction from the sybil re-
gion to the non-sybil region. We then added random links of
weight one from the non-sybil region to the sybil region, which
is equivalent to assuming that there are accidental one-time
interactions from non-sybil users to sybil users. varied from
10 to 200 in our experiments. Since the total edge weight of the
original interaction graph is about , we effectively simulated
the parameter from to . To simplify the presen-
tation, we equate with and call it the attack strength as well
hereafter.
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Fig. 5. TrueTop performance under different attack strengths. (a) Random at-
tack; (b) community attack.

We considered three strategies for the attacker to add the
links. In the random attack, the attacker randomly selects
users in the non-sybil region and adds a link of weight one from
each to a randomly chosen user in the sybil region. In the com-
munity attack, the attacker performs a breadth-first search from
a random user in the non-sybil region until users are found,
and it adds a link from each discovered user to a random user
in the sybil region. In the seed attack, we fixed 10 seed users
in the non-sybil region and assumed that the attacker knows all
of them. The attacker performed a breadth-first search from the
10 seed users and randomly chose users closest to any of
the 10 seed users. It finally adds a link of weight one from each
of them to a random user in the sybil region. Obviously, the
seed attack corresponds to the strongest attack. We conducted
50 experiments for each attack and report the average result
below. In addition, we chose 100 verified users as seed users
in all simulations.
Now we introduce some metrics to measure the accuracy and

sybil resilience. Recall that , , and denote the TrueTop
output, the true top- influential users in the non-sybil region,
and all the sybil users, respectively. We obtained by running
power iteration over the non-sybil region only with the error
tolerance . We measure the accuracy of TrueTop by
comparing and via the following two types of errors.
• Type-I error: , where is the distance be-
tween and and computed according to Eq. (3). The
metric measures the average rank offset of from .

• Type-II error: . This metric measures how
many true top- users are missed by TrueTop.

The sybil resilience of TrueTop is inversely proportional to
. After iterative credit distribution in TrueTop

terminates, assumes that totally credits are retained in the
sybil region. Let denote the credits of the top-
influential users in the non-sybil region in a non-decreasing
order. Also assume that the attacker tries to maximize by
arbitrarily manipulating the topology of the sybil region such
that the credits can flow into a few sybil users. We can derive

as follows:
if ,
else.

2) Basic Results: Fig. 5 shows the performance of TrueTop
under different attack strengths in random and community at-
tacks. In this experiment, we set and . As
the attack strength increases from 10 to 200, the type-I error

Fig. 6. TrueTop performance for different s. (a) Random attack; (b) commu-
nity attack.

Fig. 7. TrueTop performance under different s. (a) Random attack; (b) com-
munity attack.

is flat with less than one, and the type-II error is below two,
both showing the high accuracy of TrueTop under different at-
tack strengths.Moreover, the number of top-100 sybil users, i.e.,

, slowly increases as increases, which is as expected.
, however, stays below four for both attacks. In addition,

larger is likely to increase the number of iterations and thus
make the top- list more accurate. So we can see that the type-II
error overall decreases with increasing .
Fig. 6 shows the performance of TrueTop under different s

in random and community attacks. In this experiment, we set the
and .We also normalized by . Although
slowly increases with due to more iterations, it is al-

ways less than 6%. In addition, both type-I and type-II errors are
always less than two, indicating the high accuracy of TrueTop.
Fig. 7 shows the performance of TrueTop under different s

in random and community attacks. In this experiment, we set
and . As expected, the larger the error

tolerance , the larger both type-I and type-II errors. In con-
trast, decreases with increasing due to fewer iterations
towards credit distribution termination.
Fig. 8 shows the performance of TrueTop under seed attacks

for both sum-based and entropy-based edge weights. In this ex-
periment, we set and . In addition, we randomly
selected users from immediate successors of 10
random seed users, from which links of weight one were
added to the sybil region. We can have three observations from
Fig. 8. First, TrueTop is still very accurate as both type-I and
type-II errors are always less than 2. Second, seed attacks can
yield more sybil users in the top- list than both random and
community attacks. Finally, entropy-based edge weights enable
stronger sybil resilience than sum-based edge weights, as the
former can dramatically increase the total edge weight in the
non-sybil region in contrast to the total edge weight from the
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Fig. 8. Impact of seed attacks with different weight models. (a) Sum-based;
(b) entropy-based.

non-sybil region to the sybil region. An effective defense against
the seed attack is deferred to Fig. 11.
Table III shows the impact of design choices on the TrueTop

performance. In this set of experiments, we set ,
, from 10 to 200, and for the seed attack.
We compared the basic and reverse-WEC methods for seed se-
lection, sum-based and entropy-based methods for determining
edge weights, and also 10 versus 100 seed users. For simplicity,
we added up the type-I errors, type-II errors, and values
under different attack strengths for each design choice, respec-
tively. For each pair of design choices, we subtracted the sum
of the second choice from that of the first one for the type-I
error, type-II error, and , respectively. Since most results
in Table III are positive, it is clear that the second choice in each
pair can achieve higher accuracy and sybil resilience in most
cases. Specifically, as expected, the entropy-based weightmodel
yields better sybil resilience performance than the sum-based
model.
3) Comparison With Other Methods: We compare our algo-

rithm with the following methods.
1) Kred [17]. Since Kred has publish its influence score algo-

rithm on http://kred.com/rules, we select it as the bench-
mark mechanism. Kred only computes the influence score
by how many interactions a user have received in the past
1,000 days. During our 90-days experiment, we let each of
the 500 sybils retweet each other sybil once per day. There-
fore, each sybil receives 44,910 interactions from the sybils
in the end. We will see that this conservative attack is suf-
ficient for filling the top- list with mostly sybils.

2) Pagerank [48]. One may think about using the Pagerank
value of each user in the interaction graph to evaluate his
influence. Modified power iteration with non-zero reset
probability is commonly used to compute Pagerank values.
We set the reset probability to 0.15.

3) WEC by power iteration. This method corresponds to
TrueTop without early termination.

Fig. 9 compares the number of top-100 sybils of TrueTopwith
those of Kred, Pagerank and WEC by power iteration. As we
can see, TrueTop allows less than 4 sybil users in the top-100
list under both random and community attacks. By comparison,
the sybils in Kred can easily occupy 99 positions of the top-100
list. We also expect they will occupy all the top-100 positions
if more interactions between the sybils were conducted. This is
because the sybils can obtain unlimited incoming interactions
from other sybils. Under WEC with power iteration, sybil users

Fig. 9. Comparing TrueTop with Kred, Pagerank and WEC with power it-
eration under the random and community attacks. (a) Under random attacks;
(b) under community attacks.

Fig. 10. TrueTop and WEC under seed attacks.

can occupy a significant portion in the top-100 list, as a lot more
credits flow into and stay in the sybil region when power iter-
ation terminates in contrast to TrueTop. In addition, Pagerank
leads to more top-100 sybil users than TrueTop and is less sensi-
tive to the attack strength thanWECwith power iteration. How-
ever, if we increase the number of sybil users from 500 to 1,000
without changing the attack strength, the top-100 sybil users
under Pagerank will increase. This is because the more sybil
users, the higher probability that credit distribution jumps to
the sybil region due to resetting operations, the higher Pagerank
values of some sybil users. So Pagerank is not sybil-resilient
either, which is consistent with [49]. In contrast, both TrueTop
and WEC with power iteration are insensitive to the size of the
sybil region.
Since WEC with power iteration is equivalent to seed-based

iterative credit distribution without early termination, we also
compare it with TrueTop with regard to the resilience to the
seed attack. Note that Pagerank is not vulnerable to the seed
attack because it does not use any seed user. Fig. 10 compares
the top-100 sybil users of the two methods under the seed at-
tack, where the number of immediate successors of the 10 victim
seed users varies from to 10,000 for the fixed attack
strength . As we can see, both methods yield more
top-100 sybil users as increases under sum-based and also
entropy-based edge weights. This result is quite intuitive: the
smaller , the fewer nodes sharing the initial credits from the
seed users, the more credits flowing into the sybil region over
the links, and vice versa.
An effective defense again the seed attack is to select more

seed users and/or choose the verified users with more immediate
successors as seed users. The efficacy of this defense is shown in
Fig. 11. In this experiment, we assume that the attacker picked
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Fig. 11. Defense against the seed attack.

up 10 random seed users and then randomly selected imme-
diate successors of them for adding the links to the sybil
region. We varied the number of seeds from 10 to 800 for each
value of . As we can see, we can dramatically improve the re-
silience of TrueTop to the seed attack by increasing both the
number of seed users and the number of immediate successors
of the seed users.
4) Remarks: We have three remarks on the performance

evaluation above. First, our evaluation results demonstrate
the lower-bound performance of TrueTop. Specifically, we
adopted a very strong attacker model by assuming that the
attacker withholds all the credits flowing into the sybil region
by having zero interaction to the non-sybil region. In practice,
sybil users often try to initiate interactions with non-sybil users
for other purposes such as spamming and phishing than merely
aiming to gain high influence scores. Therefore, we can expect
fewer credits to stay in the sybil region than under our attacker
model such that TrueTop shall have higher accuracy and sybil
resilience in more practical settings. Second, we admit that our
evaluations are not complete given so many design choices
for TrueTop as shown in Table III and many possible attack
strategies. We have only shown some important results here as
the examples and expect similar results for other design choices
and attack strategies. Finally, we modelled the sybil behavior
in accordance with prior work [6], [15], [19]. There are more
advanced sybil attacks such as astroturfing [33] which could
attract more legitimate interactions from non-sybil users. Un-
fortunately, there is no efficient way to simulate such advanced
sybil attacks on a large scale. Instead, we use high attack
strength to model them in the experiment. As expected,
TrueTop performs worse for higher but still shows better
performance in contrast to other methods. The performance of
TrueTop will certainly degrade if the sybils could completely
mimic the behavior of legitimate users, but manipulating the
sybils to behave so intelligently will involve huge adversarial
effort. TrueTop can thus significantly raise the bar for attacks
on influence measurement.

VII. CONCLUSION

Influential users are vital to accelerate large-scale informa-
tion dissemination and acquisition on Twitter. In this paper, we
presented TrueTop, the first sybil-resilient system to measure
the influence of Twitter users to the best of our knowledge. Our
theoretical studies and also performance evaluations confirmed
the high accuracy and sybil resilience of TrueTop.
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