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Abstract—The plummeting cost of Bluetooth tags and the ubiq-
uity of mobile devices are revolutionizing the traditional lost-
and-found service. This paper presents SecureFind, a secure and
privacy-preserving object-finding system via mobile crowdsourc-
ing. In SecureFind, a unique Bluetooth tag is attached to every
valuable object, and the owner of a lost object submits an object-
finding request to many mobile users via the SecureFind service
provider. Each mobile user involved searches his vicinity for the
lost object on behalf of the object owner who can infer the loca-
tion of his lost object based on the responses from mobile users.
SecureFind is designed to ensure strong object security such that
only the object owner can discover the location of his lost object as
well as offering location privacy to mobile users involved. The high
efficacy and efficiency of SecureFind are confirmed by extensive
simulations.

Index Terms—Crowdsourcing, security, privacy, Bluetooth tag,
RFID.

I. INTRODUCTION

HE LOSS and recovery of physical objects is a signifi-

cant issue around the world. Here an object can refer to
anything valuable such as personal assets, children, elderly with
dementia, and pets. For example, about 800,000 US children are
reported lost each year [1], 113 cell phones are lost/stolen every
minute in the US [2], and 19,000 items are lost every year by
New York subway and bus riders [2]. The predominant method
for recovering lost objects is through a lost-and-found place,
where lost objects are turned in and returned to their owners
with proper identification. Many (if not most) lost objects, how-
ever, may not be found or turned in, and the object owner may
not know which of the possibly many lost-and-found places
he should resort to. The recovery rate for lost objects is thus
very low. For instance, University of California Police reported
only 19.3% of lost items recovered [2]. In addition, the recovery
latency of this traditional method may be too long to be useful.
As an example, by the time a lost object is found and turned
in to an airport office, the object owner may have departed to a
different city or country.
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The plummeting cost and ultra-low energy consumption of
Bluetooth tags make them very promising to revolutionize the
lost-and-found service. In contrast to RFID tags, Bluetooth
tags can directly communicate with any mobile device with a
Bluetooth tag or interface within a long communication range
up to 160 ft. Besides, Bluetooth tags can be used continuously
for one year without changing the battery [3], [4] by adopting
the Bluetooth Low Energy (Bluetooth LE) technique, and they
only cost several dollars which are often negligible in compari-
son with the value of lost objects. In the lost-and-found context,
a cheap and miniature Bluetooth tag can be attached to every
valuable object and contain its owner’s identification informa-
tion. Once finding his object missing, the owner can use his
mobile device to search for the corresponding tag. If the tag
gets queried, it can report its location or sound an alert to be
located. There are growing commercial Bluetooth-based prod-
ucts for locating personal assets, such as Tile [3], BlueBee [5],
and StickNFind [4]. These attractive products, however, often
require that a lost object be sufficiently close to the search-
ing device. For example, BlueBee tags [5] and StickNFind tags
[4] support up to 160 ft and 100 ft, respectively. This inherent
range limitation makes it infeasible to recover the lost objects
far away from their owners.

A promising solution to overcoming the above range limita-
tion is via mobile crowdsourcing, which refers to the practice
of obtaining needed services or data by soliciting contribu-
tions from many mobile users. The emergence of mobile
crowdsourcing is driven by the skyrocketing growth of mobile
devices. For example, the number of mobile-connected devices
would exceed the world population in 2013 and hit 10 billion
in 2016 [6]. Ubiquitous mobile devices can jointly sense and
interact with the physical world at an unprecedented scale, thus
enabling many otherwise infeasible applications [7]-[9]. One
can imagine a service provider offering the object-finding ser-
vice. An object owner submits an object-finding request as a
tag query to the service provider, which in turn forwards the
query to selected mobile users referred to as mobile detectors
hereafter. Every detector then locally broadcasts the query. The
tag on the lost object responds to any such query, and the corre-
sponding detector finally sends the tag response and his own
location via the service provider to the object owner. Every
mobile detector can be rewarded at a fixed rate or in commensu-
rate with the object value. Although the object owner may have
to pay for the service, he can recover his valuable object with
overwhelming probability.

Crowdsourcing the lost-and-found service faces some great
challenges. First, the object in search may be of high value
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so that the mobile detector discovering it may want to keep
it instead of reporting its whereabout to the service provider.
Thus we need to alleviate the security concerns of the owners
about their lost objects. Second, mobile users may be unwill-
ing to disclose their locations which may indicate too much
personal information. Therefore, we must protect the loca-
tion privacy of mobile users to stimulate their participation
in the lost-and-found system. Last, both Bluetooth tags and
mobile devices are resource-constrained, so the object-finding
process should be very efficient in computation and communi-
cation, especially for energy-constrained mobile detectors [10].
Although some companies such as Tile [3] and BlueBee [5] are
offering the crowdsourced lost-and-found service, they ensure
neither object security nor location privacy of involved mobile
detectors.

This paper presents SecureFind, a crowdsourced object-
finding system that offers strong object security to the object
owner and also location privacy to mobile detectors. The essen-
tial idea in SecureFind is to let some mobile detectors generate
dummy tag responses which are indistinguishable from the
real tag response in the eye of the service provider and other
mobile detectors. Only the object owner can identify the real
tag response, so strong object security can be ensured. In addi-
tion, the location of each mobile detector discovering the lost
object is kept from the service provider and only disclosed to
the object owner under a dynamic pseudonym. So the location
privacy of mobile detectors can be well guaranteed.

Our contributions are mainly threefold. First, we are the first
to formulate secure and privacy-preserving object finding via
mobile crowdsourcing to the best of our knowledge. Second,
we propose two solutions to this problem. The basic scheme
provides strong object security at the cost of low efficiency.
In contrast, the advanced scheme seeks to achieve a middle
ground among object security, location privacy, and energy effi-
ciency. Finally, we thoroughly evaluate the performance of our
schemes by theoretical analysis and extensive simulations.

The rest of this paper is organized as follows. Section II
surveys the most related work. Section III outlines the sys-
tem model, the adversary model, our design objectives, and
a Framed Slotted ALOHA protocol underlying our design.
Section IV illustrates a basic scheme. Section V presents an
advanced scheme. Section VI evaluates the two schemes using
simulations. Section VII concludes this paper.

II. RELATED WORK

Several schemes have been proposed for tracking and locat-
ing lost objects. AutoWitness [11] is a personal asset tracking
system that uses an embedded tag with inertial sensor to
estimate asset’s position change and proactively transmit tra-
jectory data to an external server via cellular link to facilitate
asset retrieval. In contrast, SecureFind depends on low-cost
Bluetooth tags without any inertial sensor or cellular com-
munication capabilities, thus more suitable for wide adoption.
Moreover, Sherlock [12] is a system designed to localize
objects with embedded RFID tags in some closed space, which
cannot be applied to find lost object in outdoor and is thus
orthogonal to SecureFind.
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Recent years have witnessed significant research on missing-
tag detection [13]-[21] and identification [22]-[24] in RFID
systems. This line of work aims to quickly detect whether
or which tags are missing in a large RFID system, while
SecureFind targets a totally different problem. In particular, a
lost tag in SecureFind is a tag lost by its owner but still in the
SecureFind service provider’s service region, and SecureFind
aims to determine which mobile detector has the lost tag in his
coverage in order to locate and retrieve the lost object without
revealing such information to either the mobile detector or ser-
vice provider. In contrast, a missing tag in [13]-[24] means a
tag taken away from the monitored area, and the goal there is to
determine if any tag is missing. Therefore, existing missing-tag
detection schemes are inapplicable to our problem.

Also related is the line of work on privacy-preserving tag
identification and authentication in RFID systems, e.g., [25]-
[30]. These schemes allow efficient identification and authenti-
cation of an RFID tag without disclosing any information that
can be used to uniquely identify the tag. All the RFID tags
belong to the same administrator, and there is no attempt to
hide the locations of the RFID tags from the administrator. In
contrast, each Bluetooth tag in SecureFind belongs to the cor-
responding object owner, and its location should be protected
from the service provider as well. Therefore, SecureFind differs
significantly from these schemes in its aim and scope.

Protecting location privacy in crowdsourcing system is also
loosely related to our work. In [31], the authors proposed a
novel privacy-preserving framework for spatial crowdsourcing,
which allows the service provider to assign spatiotemporal tasks
to crowdsourcing workers without sacrificing their location
privacy. In addition, Pournajaf et al. [32] studied the privacy-
preserving spatial task assignment in which crowdsourcing
workers obfuscate their locations using spatial cloaking tech-
nique. Although both [31] and [32] considered location privacy
of crowdsourcing workers, their problems are completely dif-
ferent from ours, and their solutions are not directly applicable.

III. PRELIMINARIES

In this section, we introduce the system model, the adversary
model, the design objectives, and a Framed Slotted ALOHA
protocol underlying our scheme design.

A. System Model

We assume a SecureFind service provider offering the object-
finding service via mobile crowdsourcing. The service provider
fulfils every object-finding request through a number of mobile
users referred to as mobile detectors hereafter. Every detector
has a mobile device such as a smartphone or tablet to com-
municate with the service provider and also nearby Bluetooth
tags. Almost all mobile devices are having the Bluetooth func-
tionality, and it has been shown in [33] that Bluetooth devices
can communicate with each other without explicitly estab-
lishing a connection. In addition, nearby mobile detectors
can communicate via WiFi-direct, Frequency Hopping, or
other available Device-to-Device (D2D) technologies which are
widely used in many other applications [33]-[36].
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An object owner refers to a person who lost a valuable object.
We assume that the lost object is attached with a Bluetooth
tag hard to remove without breaking the object and use “lost
tag” and “lost object” interchangeably henceforth. A Bluetooth
tag is a small piece of device with an on-board battery, which
can perform simple computation and communicate with nearby
mobile devices via Bluetooth. Several off-the-shelf Bluetooth
tags are currently commercially available for personal asset
tracking, such as Tile [3], StickNFind [4], and BlueBee [5] tags.
The cost of a Bluetooth tag is currently around a few dollars
[3] and is plummeting due to rapid technological advance and
growing market demand. It is thus reasonable to assume that
every high-value object will be attached with a Bluetooth tag to
enable object finding in the near future. Moreover, we assume
that every tag i has a unique ID 7 D; known only to its owner.

The object-finding service in SecureFind works as follows.
Assume that the object owner knows that his lost object is likely
in a possibly large target area, e.g., lower Manhattan. He sub-
mits to the service provider an object-finding request containing
some information about the lost tag and also the target area.
The service provider then forwards the object-finding request
to all mobile detectors in the target area, each of which in turn
locally broadcasts the request. The lost tag responds to any
object-finding request intended for it. Every detector hearing
a tag response forwards it and his own location via the server to
the object owner. Based on the tag responses, the object owner
can derive an approximate location (area) of his lost object,
e.g., by multilateral triangulation. Finally, the object owner can
go to the derived location and send a tag query in person, in
which case the lost tag can respond with its GPS location like a
SticknFind tag [4] or sound an alert like a Tile [3] or BlueBee
[5] tag. During this process, the object owner may initiate mul-
tiple requests to keep track of the dynamic locations of his lost
tag (object) which may be carried and in motion. All the system
operations are automatically executed without user involvement
through an SecureFind app installed on each mobile device.

Sound incentives must be provided to all the involved par-
ties to materialize SecureFind. The service provider can either
charge the object owner at a rate commensurate with the object
value, and it may also provide free services and profit by web
advertisement when its service goes very popular. Every mobile
detector can be rewarded either at a fixed rate or in accordance
with the object value. Such rewarding mechanisms as perks or
badges have been proved to be very successful in soliciting
mobile users for crowdsourcing applications like Foursquare.
The object owner may need to pay for the service, but he will
be able to quickly recover his lost object of high value. Here we
assume the existence of such incentive mechanisms and refer
readers to existing rich literature such as [37], [38] for incentive
design for mobile crowdsourcing.

B. Adversary Model

We assume that the service provider is honest-but-curious
(HBC) [39], which is a widely adopted assumption for rational
service providers. In particular, the service provider is trusted to
faithfully follow the protocol execution, but it may have interest
in the location of the lost object and also the locations of mobile
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detectors. In addition, the service provider does not collude with
any object owner or mobile detector.

Mobile detectors are curious and also location-sensitive. By
curious, we mean that mobile detectors try to locate the lost
object and take it away prior to the object owner’s arrival. To do
so, mobile detectors may attempt to infer whether the lost object
is in their vicinity from the information they receive during
protocol execution. By location-sensitive, we mean that mobile
detectors do not want any party (including the server) to know
their accurate locations or equivalently linking their accurate
locations to their real IDs.

How to deal with other possible attacks on SecureFind is
beyond the scope of this paper. For example, an attacker may
jam all radio transmissions, replay intercepted messages, and/or
inject bogus messages. Such denial-of-service attacks can target
any wireless/mobile system like SecureFind and can be miti-
gated by existing anti-jamming communication techniques and
message authentication.

C. Design Objectives

We have the following major design objectives.

e Correctness: The object owner should be able to obtain
an approximate location of the lost object as long as it
is within the transmission range of at least one mobile
detector.

e Object security: The location of the lost object should be
known to the object owner only. Strong object security
means that the reported data from detectors that have the
lost object in their coverage and those not are indistin-
guishable, such that no mobile detector can infer whether
the lost object is within its coverage.

e Location privacy: The mapping between the real ID and
location of every mobile detector should be kept from any
other party.

e Efficiency: The object-finding process should incur low
communication and computation overhead.

Note that we do not intend to guarantee the recovery of the
lost object, as it depends on whether the lost object is cov-
ered by at least one mobile detectors and further the density
of mobile detectors in the target area. When the lost object is
outside of mobile detectors’ coverage, neither SecureFind nor
any of the existing systems [3]—[5] would be able to recover the
lost object.

D. Framed Slotted ALOHA Protocol

Our schemes depend on Framed Slotted ALOHA, which is
a popular anti-collision MAC protocol adopted by many RFID
systems [17], [18], [22], [40], [41]. Since Bluetooth tag is much
more powerful than RFID tag, it is reasonable to assume that
Bluetooth tag can support Framed Slotted ALOHA with min-
imal modification. In SecureFind, Framed Slotted ALOHA is
executed between one mobile detector and a number of nearby
Bluetooth tags and works as follows. First, the mobile detec-
tor broadcasts a request with two parameters (r, f), where r
is a random number, and f is the number of time slots in
one frame where the f slots are numbered from O to f — 1.
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Upon receiving the request (r, f), each tag i responds in slot
h(ID;||r) mod f, where I D; denotes the unique ID of tag i,
and & (-) denotes a publicly known hash function. Each of the f
time slots can then be an empty slot without any tag response, a
singleton slot with a single tag response, or a collision slot with
more than one tag responses.

IV. A BASIC SCHEME

In this section, we present a basic scheme for secure and
privacy-preserving object finding. The essential idea is to let
some mobile detectors in the target area act as dummy tags to
send dummy tag responses for concealing the real tag response.
Since the mobile detectors near the lost object cannot differ-
entiate between real and dummy tag responses, the security of
the lost object can be well protected. The major design chal-
lenge here is how to let the object owner discover the mobile
detectors close to his lost object without drawing the attention
of these mobile detectors or the service provider.

We propose an iterative multi-round protocol as a solution. In
each round, each mobile detector executes the Framed Slotted
ALOHA protocol in Section III-D and forwards the execution
result to the object owner via the service provider. The object
owner then excludes some mobile detectors who are unlikely
near his lost object according to their execution results. The
protocol completes when no more mobile detectors can be
excluded. Finally, the object owner retrieves the locations of
the remaining mobile detectors from the service provider using
some specific cryptographic technique and then infers the loca-
tion of his lost object. Our scheme ensures that neither the
service provider nor the remaining mobile detectors can learn
the location of the lost object.

A. Scheme Description

The service provider divides its service region into multiple
physical zones, and every mobile detector reports the index of
the zone in which it resides when it decides to participate in
object finding and whenever it moves into a new zone. The
choice of zone size represents the tradeoff between the over-
head and location privacy of mobile detectors. On the one hand,
a large zone size can alleviate the mobile detectors’ concerns
about their location privacy to stimulate their participation, but
some mobile detectors outside of the target area will partic-
ipate in object finding and thus incur higher communication
and computation overhead. On the other hand, a small zone
size enables more accurate selection of mobile detectors but
allows the service provider to infer mobile detectors’ locations
and thus jeopardize their location privacy. To strike a good bal-
ance, we suggest to divide the service area based on cellular
tower’s coverage, which does not reveal any additional informa-
tion beyond what cellular service providers already know about
mobile detectors’ locations.

To initiate lost-object finding, the object owner submits an
object-finding request (H (ﬁ)l [r), r, PK) and the target area to
the service provider, where ID denotes the ID of the lost tag, r
is arandom seed, H (-) denotes a publicly known cryptographic
hash function, and PK is the object owner’s public key. We
can also replace PK with a public-key certificate to prevent the
service provider from changing PK to its own choice.
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Upon receiving the request, the service provider finds the set
of candidate zones that enclose the target area and forwards the
request to all the mobile detectors in the candidate zones. Each
mobile detector can determine whether to participate in the
object-finding task according to the sensitivity of his spatiotem-
poral presence. For example, if a mobile user is present near
hospital during working hours, he can choose not to participate
in the object-finding task even if the location alone is not sensi-
tive. Each participating mobile detector then locally broadcasts
a tag query (H (I/b||r), r). Here we assume a suitable MAC
protocol to resolve potential collisions among mobile detectors;
e.g., each mobile detector can wait for some random time before
sending the tag query. Every tag seeing such a tag query can
check whether it is the intended tag by comparing the hash over
its ID and r with the received one, and only the lost tag gets
prepared to respond. In addition, each mobile detector returns
his location encrypted with PK to the service provider so that
the service provider cannot figure out his accurate location. The
service provider temporarily buffers these encrypted locations.

The object owner then initiates a polling phase consisting
of multiple rounds. Consider round x > 1 as an example. The
object owner sends a polling request (ry, f) via the service
provider to each mobile detector, where f denotes the frame
length as a fixed system parameter, and r, is a fresh ran-
dom seed. Every detector i then locally broadcasts (r., f).
Every other detector hearing the polling request from detector
i chooses himself as a dummy tag with probability ¢, which
is a tunable system parameter given by the service provider.
Each dummy tag j also generates a random pseudonym /D).
Let J,,; denote a set of tags comprising all the dummy tags
near detector i and also the lost tag if it hears the polling
request from detector i as well. Let A (-), ..., hg(-) be k pub-
licly known hash functions, where k is a system parameter.
Every tag j € T, ; computes k slots to reply, where the ath slot
is computed as s‘}“x = hq(IDjl||lry) mod f forall a €[, k].
During the execution of Framed Slotted ALOHA, every tag j
sends a one-bit short response in each of its kX computed slots.
In the end of round x, detector i obtains a bit vector V; , =
(vix[Ol, ..., vix[f — 11), where v; x[y] =0 if slot y is an
empty slot and v; [ y] = 1 otherwise. Note that here we do not
differentiate between singleton and collision slots, which would
require each tag to reply a long multi-bit response and thus incur
higher communication overhead. Then detector i sends its bit
vector V; , to the object owner via the service provider.

Assuming that there are totally C mobile detectors in the tar-
get area, the object owner receives C bit vectors {V;, x}l.C:1 in
round x. He then checks if any mobile detector can be excluded,
which is certainly not in the transmission range of his lost
tag. To do so, the object owner maintains a candidate detec-
tor set. Let C, be the candidate detector set at the beginning of
round x, where C; = {1, ..., C}. For each detector i € C,, the
object owner checks if at least one of the bit positions (or slots)
{hgy (ID||rx) mod f}k_1 in V; x is zero (or empty), where ID
is the ID of his lost tag. If so, the lost tag is certainly not around
detector i, and no dummy tag replied in that slot either. So
detector i can be safely removed from C,. The object owner
terminates the polling phase if the number of candidate detec-
tors drops to one or remains unchanged after t > 2 polling
rounds, where t is a system parameter. The latter case occurs
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when the lost tag lies in the coverage of multiple detectors.
Also note that the candidate detector set remains confidential
to the object owner, and all the C mobile detectors need to
broadcast the polling request and process the responses in each
round of the polling phase even if some of them may have been
confidentially excluded by the object owner.

Once the polling phase is over, the object owner retrieves
the encrypted locations of the remaining candidate detectors
from the service provider. Finally, he can derive an approxi-
mate range for his lost object based on the decrypted detector
locations. We can see that the service provider will know which
mobile detectors are not excluded. Since the service provider
knows the physical zone each mobile detector resides (instead
of his real location), it can deduce that the lost object is in
one of the physical zones of the remaining detectors. There
are two ways to alleviate this security concern. First, the object
owner can request the encrypted locations of ¢ > 1 detectors
that include both the remaining detectors and some excluded
detectors to confuse the service provider. Second, the object
owner can execute an efficient Private-Information-Retrieval
protocol [42] to retrieve the encrypted locations of the remain-
ing candidate detectors without revealing whose locations are
retrieved.

B. Performance Analysis
Now we analyze the performance of the basic scheme.

Correctness. The basic scheme can guarantee that the object
owner obtains an approximate location for his lost object as
long as it is within the transmission range of at least one mobile
detector. Assume that there are totally N mobile users in a
region of area S. Also suppose that the number of mobile
detectors in any subregion of area s, denoted by X(s), fol-
lows a homogeneous spatial Poisson process with intensity
N/S: Pr(X(s) =k) = M{ﬂ Let R denote the trans-
mission range of the lost tag and also mobile detectors. It is
easy to see that the basic scheme is correct with probability
1 —Pr(X(mR?) =0) = 1 — e "NR/S,

In addition, the basic scheme may incur false positives,
which occur when the lost object is not close to any mobile
detector (i.e., the given target area is wrong), but some dummy
tags happen to respond just like the lost tag in each round of the
polling phase. The object owner thus will be misled to wrong
locations. We can estimate the false-positive probability as fol-
lows. Consider any of the C detectors in the target area, say
detector i, which has on average ¢ = | N R?>/S| other mobile
detectors in his transmission range and does not have the lost
tag ID there. Since each mobile detector acts as a dummy tag
with probability ¢, there are totally c¢ dummy tags in detec-
tor i’s coverage. Recall that the lost tag needs to respond in
slots {57,): = hq(IDj||ry) mod f}’;{=1 in round x if hearing a
polling request. Assume that the output of every hash function
is uniformly distributed in [0, f — 1]. Then the average number
of distinct slots the lost tag needs to respond is given by

—Xk:lx@ (1)
I‘L_ fk'

=1
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As said, each dummy tag also responds in up to k slots uni-
formly distributed in [1, f]. The probability that no dummy
tag responds in a particular slot of the lost tag is given by
(1 — 1/f)%4¢. For detector i to stay in the object owner’s can-
didate detector set in round x, at least one dummy tag needs to
respond in each of the p distinct slots, which occurs with prob-
ability pone = (1 — (1 — 1/f)*4¢)". Assume that the polling
phase terminates in ¢ rounds. For the false positive to occur,
at least one detector needs to survive all the ¢ rounds, which
occurs with probability 1 — (1 — p! )€.

Object Security. The basic scheme offers strong object secu-
rity. In particular, the information the service provider can
obtain during object finding includes the initial object-finding
request (H (I’b||r), r, PK), the polling results in each round,
and from which candidate detectors the object owner requested
the location. Since the service provider knows neither ID of
the lost tag nor the random pseudonym of each dummy tag,
he cannot directly infer which detectors have the lost tag in
their coverage from the polling results besides knowing that
one of the detectors for which the object owner requested the
locations does.

Can the service provider do better? To make quantitative
analysis possible, we assume that the average number of tags
in each detector’s communication range are the same, e.g.,
cq. Under this assumption, the detector with the lost tag in
its coverage may observe slightly more non-empty slots than
those without during the polling phase. In particular, each
detector covering the lost tag, called a real detector here-
after, observes a non-empty slot in each slot with probability
p1=1—(—1/f)€+Dk whereas each detector not cover-
ing the lost tag, called a fake detector hereafter, does so with
probability pj =1—(1— 1/f)¢4k. Although this is only a
rough estimate because the number of dummy tags around each
mobile detector are most likely different, the service provider
may still try to gain some information from the polling results
by ranking all the detectors according to the numbers of bit ones
in their reported vectors. More specifically, the higher the rank
of a detector (i.e., the more bit ones in reported vectors), the
more likely the detector is a real one, and vice versa.

Now we analyze the probability distribution of the real detec-
tor’s rank. Consider a real detector i and a fake detector j
in round x as an example. Denote by b; and b; the numbers
of bit-one positions in their reported vectors V; y and Vj ,,
respectively. Let u = min( f, (cq + 1)k) and v’ = min(f, cqk).
The probability that detector i has more bit-one positions than
detector j is given by

pm = Pr(bi = bj)

= Pr(bi = 2) - Pr(b; =2z)

z=0
u  u
=YY Pr(bi=2)-Pr(b; =2)
z=1z7'=z
u u u ) u )
=22 (Z/>pi a —m)“—Z’(Z)p’?(l e
z=1z7=z
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For simplicity, assume that there is only one real detector.
The p.d.f. of real detector’s rank is then given by

Pr(rank = r) = (C B 1>p,r,11(1 — ). 3)

r—1
We can see from Egs. (2) and (3) that if the number of dummy
tags (i.e., cq) is large, pi is very close to p}. This means that
the real detector will be ranked in the middle of all the detec-
tors with high probability, and the object security can thus be
guaranteed.
In addition, neither true or fake mobile detectors can distin-
guish the responses from the lost tag and from dummy tags and
thus cannot determine whether the lost tag is in its vicinity.

Location Privacy. The basic scheme offers location privacy to
mobile detectors. Specifically, each mobile detector can report
a physical zone encompassing his location instead of his real
location to the service provider to participate in SecureFind.
Therefore, the service provider cannot get the accurate loca-
tion of any detector. Even if the location of every responding
detector is disclosed to the object owner, we can hide the real
ID of the detector from the object owner by letting the service
provider replace the real ID with a dynamic pseudonym. Since
the object owner does not collude with the service provider
per our adversary model, the location privacy of every mobile
detector is well preserved.

Efficiency. To analyze the communication overhead of the
basic scheme, we first derive the expected number ¢ of polling
rounds. For any mobile detector not covering the lost tag, the
object owner excludes it from the candidate detector set with
probability

pe=1=pome=1-(1-1—1/pf)"

where p is given in Eq. (1). So the object owner can exclude p.
fraction of the remaining candidate detectors after each polling
round. Assume that the number of candidate detectors drops to
one after 7 rounds. Then we have Cpl = 1 and thus

1
t= llogpe EJ .

Each mobile detector sends its encrypted location to the ser-
vice provider at the beginning, and he also broadcasts a polling
request and sends a f-bit vector to the service provider in each
polling round. In addition, since each tag needs to reply k one-
bit responses in each round, the total communication overhead
incurred by tag responses is about cktC bits. Moreover, the
object owner sends one object-finding request and ¢ polling
messages. Finally, the object owner retrieves A encrypted detec-
tor locations from the service provider.

As for the computation overhead, each tag (dummy or lost)
needs k efficient hash operations in each polling round, lead-
ing to cktC hash operations in total. Moreover, each mobile
detector performs one public-key encryption, and the object
owner needs to carry out one public-key decryption for each
non-excluded mobile detector. The most expensive public-key
encryptions and decryptions can be done very efficiently on

“)
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current mobile devices. For example, for the standard Elliptic
Curve Integrated Encryption Scheme (ECIES), one point mul-
tiplication and two point multiplications are needed for one
decryption and one encryption, respectively, and a point mul-
tiplication takes less than 7.3 ms on an Android Galaxy Nexus
smartphone [43].

V. AN ADVANCED SCHEME: SELECTED POLLING

The basic scheme provides strong object security. However,
in each polling round, each mobile detector needs to send an
f-bit vector to the service provider which incurs large commu-
nication overhead and low efficiency. In this section, we present
an advanced scheme to strike a middle ground between object
security and system efficiency.

A. Basic Idea

The advanced scheme stems from an observation about the
basic scheme. Specifically, the response from every detector
in each polling round is an f-bit vector. The object owner
excludes some candidate detectors in each round x by checking
the bit values at k positions {53{,); = hq(IDjl|ry) mod f}';:l,
which we refer to as real positions. There are at most k real
positions because some modular hash values may be the same.
Accordingly, we refer to the rest no less than f — k bit posi-
tions as dummy positions. The dummy positions can effectively
hide the real positions so that the detector with the lost object
in its coverage cannot tell. The efficiency can be improved if
fewer dummy positions are used in each polling round, and
the accompanying cost is that real positions will have a higher
chance of exposure.

The advanced scheme implements the above thinking by
letting the object owner selectively poll fewer than f bit posi-
tions in each round, among which the fraction of real positions
is adjusted based on the results in previous polling rounds.
Intuitively, the more real positions polled in each round, the
fewer polling rounds needed to locate the lost tag, the lower the
communication and computation overhead, the higher chance
of exposing the lost tag, and vice versa. The challenge is how
to characterize the exposure of the lost tag and then properly
adjust the fraction of real positions.

What is the impact of polling fewer dummy positions on
object security? Consider an arbitrary mobile detector, say i.
If detector i has the lost tag in his coverage, he is more likely
to observe more non-empty slots than other detectors not cover-
ing the lost tag. More specifically, assume that the object owner
queries w out of f bit positions, which consists of y > 1 real
positions and w — y dummy positions. Recall that each detector
on average has ¢ = | R?N /S| other detectors in his coverage,
each acting as a dummy tag with probability ¢. If detector i
covers the lost tag, the probability that a randomly queried bit
position having a one (or equivalently the corresponding slot is
busy) can be estimated as

p=(1-a-ypt) =Lt

= 1= -1/ +(1— 1/f)“f"£ NG
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If the lost tag is outside detector i’s coverage, the above prob-
ability is p} = 1 — (1 — 1/f)°% Tt is easy to see that p| < p;
for y > 1. As we normally have y/w > k/f, the gap between
p1 and p} becomes more noticeable in the advanced scheme,
leading to lower object security. In addition, the larger y, the
more quickly the object owner ruling out the candidate detec-
tors not covering the lost object, the fewer polling rounds
needed, the larger the probability gap, the lower object security,
and vice versa.

To strike a balance between object security and system effi-
ciency, we let the object owner maximize the number of real
positions in each polling round as long as the polling result
(i.e., the w-bit vector) observed by the detector covering the lost
object is statistically indistinguishable from the one observed
by a detector not covering the lost tag. More specifically, let the
null hypothesis be that the w-bit vector obtained by a detector
is generated from the binomial distribution B(w, p’l), i.e., the
theoretical distribution. We can then test the hypothesis using
Pearson’s chi-squared test [44] with the test statistics given by

2 _ (pob = pD* | (L= pop) = (1= p)>?
X' = 7 7 (6)
Py (I=pp

where pop is the observed frequency of bit ones, and p| =
1 — (1 —1/f)c4¥ is the theoretical frequency. Finally, we can
compute a p-value from x? using the chi-squared distribution
for one degree of freedom, which gives us the probability of
observing such difference if the w-bit vector is generated from

B(w, py).

B. Scheme Description

The pre-polling phase of the advanced scheme is exactly the
same as that of the basic scheme, so we do not repeat it here for
lack of space.

As in the basic scheme, the polling phase in the advanced
scheme also consists of multiple rounds. Consider round x >
1 as an example. The object owner sends a polling request
(re, fydx.0, ..., dy.e—1) viathe service provider to each mobile
detector, where f denotes the frame length as a fixed system
parameter, r, is a fresh random seed, and 0 <d, o < d, 1 <
<o <dyw_1 < f —1 are the w bit positions that the object
owner intends to poll in round x. These w bit positions include
yx real and w — y, dummy positions, and how to choose them
will be discussed shortly. Every detector i then locally broad-
casts (ry, f,dy 0, ..., dy »—1). Every other detector hearing the
polling request from detector i chooses himself as a dummy tag
with probability ¢ which is a system parameter. Let T ; denote
the set of tags comprising all the dummy tags near detector i
and also the lost tag if it is covered by detector i. The Framed
Slotted ALOHA protocol is still used to collect tag responses.
Every tag j € T, ; computes k candidate slots to reply, where
the «th slot is computed as S‘;’x = hq(IDjllry) mod f.Then
for each dy y,y € [0, w — 1], tag j checks if dy , = S?J for
some «. If so, tag j knows that it should reply a one-bit response
in slot y and keeps silent otherwise. In the end of round x, detec-
tor i obtains a w-bit vector W; , = (w; ([0], ..., w; [0 — 1]),
where w; [y] = 0 if slot y is an empty slot and w; ,[y] =1
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otherwise. Then detector i sends W; y to the object owner via
the service provider.

Given totally C mobile detectors in the target area, the object
owner receives {W; x}l.C: | in round x. As in the basic scheme,
he maintains a set of candidate detectors which initially con-
tain all the C detectors. After receiving {W; x}iczl, the object
owner eliminates all the detectors from the candidate set C,
with each having at least one zero at the y, real positions in his
polling result. The polling phase stops when the number of can-
didate detectors drops to one or remains unchanged after t > 2
rounds, where 7 is a system parameter.

After the polling phase, the object owner retrieves the
encrypted locations of A > 1 detectors that include both the
remaining detectors and some excluded detectors from the ser-
vice provider. Finally, he can derive an approximate range for
his lost object based on the decrypted detector locations as in
the basic scheme.

C. Choosing Polling Positions

Now we discuss how to choose the wy polling positions
{dx,j}(;:& in each round x.

The first step is to determine y,, the number of real positions
in round x. We propose to derive y, based on the C polling
results received in all previous rounds such that the expected
polling results in round x are statistically indistinguishable from
the results generated from the theoretical binomial distribu-
tion B(w, p/l). In particular, recall that Cy denotes the set of
remaining candidate detectors at the beginning of round x. Let
bj x—1 be the number of bit ones in W; ,_; foralli € Cy, where
we set bio=[(1—(1— 1/)¢*)w]. As discussed, the prob-
ability of any bit position in W; , being one for any detector
i € C; not covering the lost object can be derived as p; | =
1 — (1 — 1/f)9%. Then the object owner tries to find yx,i for
each detector i € C,, the largest number of real positions can
be polled in round x, if detector i covers the lost tag. To do so,
the object owner initially set y, ; = 0. According to Eq. (5), the
probability of any bit position in W; , being one if detector i
covers the lost tag is

pra= (1= (1= 17tk CTnt g Pod,
w w

He then computes the expected fraction of bit ones in
2w
statistics XZ, and finally the p-value (denoted by pyar ;). If
Dval,i > Pthre, Where pure is the threshold chosen by the object
owner, he increases y,; by one and repeats the above pro-
cess until find the largest possible y, ; < k. Finally, he chooses
yx as the minimum among {y;|i € C,}. After determining y,,
the object owner then constructs qy o, . . . , qx,»—1 by randomly
choosing y, real positions from {s‘}"x}lgt:l and w — y dummy

positions. The above process is summarized in Algorithm 1.

Wi x—1l|Wix as pob = , the corresponding test

D. Performance Analysis

The advanced scheme is correct with the same overwhelm-
ing probability and offers the same level of location privacy to
mobile detectors as the basic scheme.
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Algorithm 1. Computing y, for round x

input : Bit vectors {b; y_1|i € C}, frame length f,
p-value threshold pihre
output: y,: the number of real positions in round x
Yy <— min(k, o);
foreach i € C, do
Yai < 0, pyai <— 1;
pil <— 1= (1 =1/f)“k,
while Pval,i > Pthre do o
Pit «— (1= (1 = 1/f)ck). 221
Ai +bi xX—

pop «— LTI

2 _ ob—pi)® | ((A=pop)—(1—pi.1)*.
X = Pil + (I=pi,1) >

Update pya; according to X2 based on chi-square

distribution;

if pvali > pihre then

|_Vx,i «— it 1

else
L Lyx,i < yxi— L;

if y,i < yx then
L Vx <— Vx,is
return yy;

+ &,

Object Security. Similar to that in the basic scheme, the service
provider may rank the detectors based on the number of bit ones
in their reported vectors. Since we normally have y /o > k/f,
the gap between p; and p| is more noticeable in the advanced
scheme than that in the basic scheme. We thus expect that the
advanced scheme offers lower object security than the basic
scheme does. Since the number of real positions queried in
each polling round is jointly determined by the previous polling
results and pure, We have not been able to derive the rank dis-
tribution of the real detector. Instead, we evaluate the object
security of the advanced scheme in Section VL.

Efficiency. The communication overhead of the advanced
scheme depends on the number of polling rounds. Each mobile
detector sends its encrypted location to the service provider at
the beginning, and he also broadcasts a polling request and
sends a w-bit vector to the service provider in each polling
round. In addition, each tag needs to reply kw/f one-bit
responses on average in each round, so the total communica-
tion overhead incurred by tag response is about ckwtC/f bits.
Moreover, the object owner sends one object-finding request
and ¢ polling messages. Finally, the object owner retrieves A
encrypted detector locations from the service provider.

As for the computation overhead, each tag (dummy or lost)
needs k efficient hash operations in each polling round, lead-
ing to cktC hash operations in total. Because the number of
polled real positions in the advanced scheme is smaller than
that in the basic scheme, the number of polling rounds is also
larger in the advanced scheme, resulting in more hash opera-
tions and thus larger tag computation overhead. Moreover, each
mobile detector performs one public-key encryption, and the
object owner needs to carry out one public-key decryption for
each non-excluded mobile detector. As said, such public-key
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TABLE 1
DEFAULT SIMULATION SETTINGS
Para. | Value | Meaning
C 10000 | The number of mobile detectors
q 0.9 The probability of acting as dummy tag
f 300 The frame length in Frame Slotted ALOHA
k 10 The number of hash functions
w 15 The number of polled positions

encryptions and decryptions can be efficiently done on modern
mobile devices.

Again, since the number of polling rounds is jointly deter-
mined by the previous polling results and pue, We have not
been able to derive a closed-form result for the communication
and computation overhead of the advanced scheme, which is
evaluated via simulations in Section VI.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the proposed schemes via exten-
sive simulations.

A. Simulation Setting

We consider a square region with a side length of 4,000m, in
which 10,000 mobile detectors are distributed uniformly, or 625
mobile detectors per square kilometer. Such density is approx-
imately one sixth of the population density of the downtown
area of Austin, TX [45] or one tenth of that of Portland, OR
[46]. We assume that each mobile detector acts as a dummy tag
with probability g = 0.9, which is a tunable system parameter.
We set the transmission ranges of both mobile detectors and the
lost tag 100m, which is the lower bound of the transmission
range of Bluetooth Low Energy technique [47]. In addition, we
assume that the number of hash functions is 10, and the frame
length in Frame Slotted ALOHA is 300. The two parameters
can be adjusted to ensure that the ratio between the number
of bit-one positions and the frame length is not too close to
zero or one. The number of polled positions w is set to be 15.
Larger w incurs higher communication overhead but less rounds
to find the object. Other simulation parameters are summarized
in Table I unless stated otherwise.

Since both the basic and the advanced schemes can offer
mobile detectors’ location privacy and also ensure that the lost
object is recoverable almost for sure in all our simulations,
our subsequent evaluation focuses on object security, commu-
nication overhead, and computation overhead. We assume that
the following strategy is adopted by the service provider. On
receiving the polling results from all the detectors, the service
provider runs the Pearson’s chi-squared test as the owner does
in the advanced scheme and computes a p-value for each detec-
tor. The service provider then ranks all the detectors based on
their p-values. The lower the p-value of a detector, the more
likely that the lost tag is in his coverage. We then use the relative
rank of the detector covering the lost tag to measure the security
of the lost object. If the lost tag is covered by multiple detec-
tors, we use the highest rank available. Note that this strategy is
a generalization of ranking collectors according to the numbers
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of bit-one positions discussed in Section IV-B, as it additionally
considers the possible different numbers of dummy tags around
each collector.

B. Simulation Results

Impact of pupee. Figs. 1(a) to 1(d) show the object
security in terms of the real detector’s normalized rank,
tag-communication overhead, tag-computation overhead in
the number of hash computations performed, and detector-
communication overhead of the basic and advanced schemes,
respectively. Since the basic scheme is not affected by pinre
(the p-value threshold), its performance is plotted for refer-
ence only. We can see from Fig. 1(a) that as pgyre increases
from O to 0.3, the real detector’s normalized rank under the
advanced scheme increases from around 0.1 to 0.4. This is
anticipated, as the higher pyye, the fewer real positions polled in
each polling round, the smaller the gap between p; and pj, the
lower the rank of the real detector, the higher object security,
and vice versa. In addition, we can see from Figs. 1(b) to 1(d)
that the tag-communication overhead, tag-computation over-
head, and detector-communication overhead of the advanced
scheme all increase as pure increases. The reason is that higher
Pihre leads to fewer real positions polled in each round and thus
more polling rounds needed to locate the lost object. Moreover,
the advanced scheme incurs higher tag-computation overhead
than the basic scheme, as the advanced scheme requires more
polling rounds than the basic scheme and thus each tag to
perform more hash computations. Finally, Figs. 1(b) and 1(d)
show that the advanced scheme incurs lower tag- and detector-
communication overhead than the basic scheme. This is of
no surprise because much fewer bits are transmitted from
each detector to the service provider in each round under the
advanced scheme.

Impact of k. Figs. 2(a) to 2(d) compare the basic and
advanced schemes when k (the number of hash functions)

w
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varies from 2 to 20. We can see from Fig. 2(a) that the real
collector’s normalized rank fluctuates as k increases under both
schemes. The reason is that the increase in k leads to higher
p1 for the real detector as well as higher p| for fake collectors,
which nevertheless has little impact on the gap between p; and
p}- In addition, Figs. 2(b) shows that the tag-communication
overhead of both schemes increases with k. The reason is that
the larger k is, the more slots every tag needs to respond in each
polling round, which leads to higher tag-communication over-
head. In addition, the advanced scheme incurs much lower com-
munication overhead than the basic scheme, which is expected.
Moreover, we can see from Fig. 2(c) that the tag-computation
overhead of both schemes increases as k increases and that the
advanced scheme incurs higher computation overhead. The rea-
son is that the larger k is, the more hash computations each tag
needs to perform in each polling round. In addition, since we
generally have y < k in the advanced scheme, it requires more
rounds to locate the lost tag, while every tag needs to perform k
hash computations in each round.

Impacts of f. Figs. 3(a) to 3(d) show the object secu-
rity in terms of the real detector’s normalized rank, tag-
communication overhead, tag-computation overhead in the
number of hash computations performed, and detector-
communication overhead of the basic and advanced schemes,
respectively. Similar to k£, f has very limited impact on the nor-
malized rank of the real detector. In addition, we can see from
Fig. 3(b) and Fig. 3(c) that the tag-communication and tag-
computation overhead of both schemes decrease as f increases.
The reason is that the larger f, the fewer polling rounds needed
to locate the lost tag, the lower tag-communication and tag-
computation overhead for both schemes, and vice versa. In
addition, the advanced scheme incurs lower tag-communication
overhead but higher tag-computation overhead. Moreover, we
can see from Fig. 3(d) that the detector-communication over-
head of the advanced scheme decreases as f increases. The
reason is that in each polling round, each detector needs to
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Fig. 5. Impacts of C and non-uniform detector distribution.

transmit a w-bit vector which is not affected by f. Fewer
polling rounds thus lead to lower detector-communication over-
head. In contrast, the detector-communication overhead of the
basic scheme remains stable as f increases. The reason is that
the detector-communication overhead of the basic scheme is the
product of the number of polling rounds and the frame length.
Since the increase in f leads to the decrease in the number
of polling rounds, the detector-communication overhead of the
basic scheme is relatively stable.

Impacts of w. Figs. 4(a) to 4(d) show the impact of w on the
advanced scheme, where the performance of the basic scheme
is plotted for reference only. We can see from Fig. 4(a) that
o has very limited impact on the object security. In addition,
we can see from Figs. 4(b) to 4(d) that the tag-communication
and detector-communication overhead both increase and the
tag-computation overhead decreases as w increases.

Impact of mobile detector density. As we mentioned in
Section III-C, SecureFind can find the lost object only if it is
within the transmission range of at least one mobile detector,
which is affected by the density of mobile detectors. Fig. 5(a)
shows the impact of C on the probability that the lost object is
within the transmission range of at least one mobile detector,

(b) Normalized rank

C percentile of high density cell

(c) Probability of recovery under non-uniform dis-
tribution

i.e., the probability that the lost object can be recovered. As we
can see, the probability of the lost object being found increases
as the number of mobile detectors increases, which is expected.
In particular, as the number of mobile detectors increases from
2000 to 12000, i.e., the mobile detector density increases from
125 to 750 per square kilometer, the probability of the lost
object being found increases from 35% to 90%. We would like
to stress that the density of mobile detectors affects only the
probability of the lost object being found but not the correctness
of SecureFind.

We also evaluated the impact of non-uniform distribution of
mobile detectors. In particular, we divided the whole region into
100 equal-size square cells. The mobile detector density in each
cell is either 20 per cell or 100 per cell, which correspond to low
and high density, respectively. Fig. 5(c) shows the probability
of the lost object being recovered with the ratio of high density
cells from O to 1. We can see that the probability of the lost
object being recovered increases from 35% to 90% as the ratio
of high density cells increases, which is expected.

Fig. 5(b) shows the impact of C on the object security in
terms of the real detector’s normalized rank in the basic and
advanced schemes, respectively, given that the lost object is
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within the transmission range of at least one mobile detector.
We can see that the rank is relatively insensitive to the change in
C or mobile detector density, and both the basic and advanced
schemes can offer high object security.

Energy consumption. We measured the latency and the
energy consumption of hash operation and Bluetooth trans-
mission (i.e., the two major operations in SecureFind) on two
Nexus 7 tablets with Android 4.3. Our experiments show that
7,500,000 hash operations take 75s and consume 61.25 J of
energy on Nexus 7 tablet. This indicates that one hash opera-
tion takes 0.01 ms and consumes 8.17 x 107 J on average. We
measured that the transmission rate of Bluetooth Low Energy
is approximately 109 ~ 113 KB/s, which consumes energy at
a rate of 202 ~ 223 mW. This means that transmitting one bit
consumes approximately 2.24 ~ 2.49 x 1077 J of energy.

Based on our measurement results, we further estimate the
energy consumption of mobile detector and dummy tag during
one object-finding operation. We assume the parameter set-
tings in Table I where f = 300, k = 10, w = 15, and p = 0.3.
Consider the simulation results shown in Fig. 1 as an exam-
ple. It takes 2.56 rounds on average to find the lost object by
adopting the basic scheme. In the basic scheme, each mobile
detector needs to transmit 2.56 x 300 = 768 bits to the service
provider, incurring 7.68 x 1073 J of energy!. In addition, each
dummy tag needs to perform on average 2.56 x 10 = 25.6 hash
operations and transmit 2.56 x 10 = 25.6 bits, which incur
2.1 x 107* J and 5.7 ~ 6.4 x 107° J of energy, respectively.
For the advanced scheme, it takes 10 rounds on average to find
the lost object, during which each mobile detector needs to
transmit 10 x 15 = 150 bits to the service provider and incur
1.5 x 1073 J of energy consumption. Moreover, each dummy
tag needs to perform on average 10 x 10 = 100 hash opera-
tions and transmit 10 x 0.5 = 5 bits, which incur 8.17 x 10~4J
and 1.12 ~ 1.25 x 1079 J of energy consumption, respectively.
In general, a typical smartphone’s battery stores approximately
15, 000 ~ 20,000 J of energy [49]. Therefore, the operations
of SecureFind have negligible impact on a mobile device’s
battery life.

C. Discussion

Our above evaluations have shown that both the basic and
the advanced schemes can enable object finding while ensur-
ing the security of the lost object and also the location privacy
of the mobile users participating in object finding. Now we
discuss some additional factors that may impact SecureFind’s
performance.

Impact of insufficient dummy tags. SecureFind relies on
mobile detectors serving as dummy tags to offer object secu-
rity. If there are insufficient detectors around the lost object to
serve as dummy tags, the mobile detector that receives response
from the lost object may be able to infer that the lost object is
nearby and the object security cannot be guaranteed. However,
this is only possible if the malicious mobile detector can distin-
guish whether the response he receives is indeed from the lost

'According to [48], the energy consumption of LTE upload link is 1 x
1073 Jbit.
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object or dummy tag. Even if there is no dummy tag near the
lost object, as long as there are normal people around, a mali-
cious mobile detector would be unable to to tell whether the
response is from the lost object, as it is extremely difficult to
tell whether any particular person nearby is serving as mobile
detector and dummy tag.

In the most extreme case when there is no people around, the
malicious detector can determine that the lost object is nearby.
We note that in such cases neither SecureFind nor any existing
Bluetooth-tag-based scheme such as Tile [3], BlueBee [5], and
StickNFind [4] is capable of recovering the lost object, as there
lacks honest mobile detector (including the object owner him-
self) that has the lost object in the transmission range. Since
the owner has already lost the object, it makes no difference
between the object being recovered by some malicious mobile
detector or unknown person. Therefore, SecureFind can help
the object owner recover the lost object if the mobile detec-
tor density is not extremely low and does not cause any extra
damage to the object owner otherwise.

Impact of detector mobility. During the object finding pro-
cess, some mobile detectors and dummy tags may move into or
out of the transmission range of the lost object due to mobile
detector’s mobility, which may affect the object-finding result
in different ways. First, some dummy tags may move into or
out of the transmission ranges of the mobile detectors that col-
lect polling result. For any mobile detector that collects polling
result, the increase (or decrease) in the number of surround
dummy tags will result in the increase (or decrease) in the num-
ber of bit-one positions in bit vector at each round, which makes
it less (or more) likely for the object owner to filter out fake
detectors at the end of object-finding process and thus more
(or fewer) false positives. Second, an initially real detector may
move out of the transmission range of the lost object before
the end of the object-finding process, making the object owner
unable to find the lost object via this particular detector. Third,
an initially fake detector may move into the transmission range
of the lost object before the end of the object-finding process.
If the detector is not ruled out by the polling results before the
movement, this fake detector becomes a real detector and would
help the owner find the lost object.

We expect that the above events happen rarely in practice
due to the low latency of the polling phase in both the basic
and the advanced schemes. In particular, each slot takes 321 us
in Slotted ALOHA according to [21]. Under the parameter set-
tings in Table I, each polling round needs 96.3 ms and 4.8 ms for
the basic and advanced schemes, respectively. Take the simula-
tion results shown in Fig. 1 as an example, it takes about 250 ms
and 48 ms to finish all polling rounds for the basic and advanced
schemes, respectively. Since our simulation results show that a
single object-finding process takes less than one second in most
cases, we expect detector mobility has very limited impact on
SecureFind’s performance.

VII. CONCLUSION

This paper presented the design, analysis, and evaluation
of SecureFind, the first secure and privacy-preserving crowd-
sourced object-finding system. In particular, we first introduced
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a basic scheme which provides strong object security at the cost
of system efficiency, and then presented an advanced scheme
to strike a good balance between object security and system
efficiency. Detailed simulations confirmed that SecureFind can
enable very fast and efficient object finding while ensuring the
security of the lost object and also the location privacy of the
mobile users participating in object finding.

There are still many open challenges to tackle. For example,
in our current design, all the mobile detectors in the target area
specified by the object owner need to participate in object find-
ing. Since some of them may have overlapping coverage, there
may be significant room for reducing the communication and
computation overhead. One possible solution is to let the ser-
vice provider select the minimum number of mobile detectors
that can jointly cover the target area. This solution, however,
requires the service provider to know more accurate locations of
mobile detectors. Such tradeoff between system efficiency and
location privacy deserves careful investigation. In addition, our
current design assumes that mobile detectors are honest-but-
curious. There may be dishonest mobile detectors who report
fake search results to earn reward without actually performing
the object search. How to catch and then punish such dishon-
est mobile detectors is nontrivial and may conflict with the
location-privacy requirement of mobile detectors. We hope that
this paper can stimulate further interest in crowdsourced object
finding and other exciting mobile crowdsourcing applications.
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