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Abstract—Device-to-device (D2D) communications are emerg-
ing due to the explosive growth of smartphones and tablets.
Given the possible presence of attackers, a fundamental challenge
in secure D2D communications is to develop sound mobile
authentication techniques whereby mobile users can select the
most trustworthy D2D communication partners from possibly
many candidates. This paper tackles this open challenge and
proposes spatiotemporal matching as a promising enabler for
secure D2D communications. Spatiotemporal matching is built
upon the location-aware capability of D2D devices. In particular,
a mobile user could very easily maintain his spatiotemporal
profile recording his continuous whereabouts in time, and the
level of his spatiotemporal profile matching that of the other
user can be translated into the level of trust they two can have
in each other. Since spatiotemporal profiles contain very sensitive
personal information, privacy-preserving spatiotemporal match-
ing is needed to ensure that as little information as possible
about the spatiotemporal profile of either matching participant
is disclosed beyond the matching result. Towards this end, we
propose two novel privacy-preserving spatiotemporal matching
protocols, which are thoroughly analyzed and evaluated through
detailed simulation studies driven by experimental data.

Index Terms—Device-to-Device (D2D) communications, spa-
tiotemporal matching, privacy.

I. INTRODUCTION

DEVICE-TO-DEVICE (D2D) communications are emerg-
ing due to the explosive growth of smartphones and

tablets. In a typical D2D communication session, two physical-
ly proximate mobile devices can directly communicate without
involving the base station. D2D communications are widely
expected to enhance spectrum efficiency and system through-
put, enable efficient cellular traffic offloading, improve energy
efficiency and network coverage, and stimulate excitingly new
services [2], [3].

Sound mobile authentication techniques are needed for
secure and effective D2D communications. In particular, a
mobile user interested in initiating a D2D communication
session in crowded places may have many candidate D2D part-
ners to choose from, consisting of normal users and possibly
attackers. It is thus crucial for the initiating user to select the
most trustworthy candidate(s) to ensure effective and secure
D2D communications. For example, if an attacker is chosen
by mistake, the attacker can obtain sensitive information from
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the initiating user and also refuse to collaborate in the way he
initially agreed to. Such pitfalls can be largely avoided if the
initiating user only considers the candidate D2D partners who
can be reliably authenticated.

Traditional mobile authentication techniques are insufficient
for D2D communications. Specifically, one may think about
letting the initiating user seek help from the trusted base station
to select trustworthy D2D partners. This approach would
place too much burden on base stations and largely offset the
benefits of conducting D2D communications. Another plau-
sible approach is to equip every D2D user with a public-key
certificate and let the initiating user choose the neighbors with
valid public-key certificates. This approach, however, does
not permit the initiating user to further distinguish potentially
many candidates having a valid certificate.

We propose spatiotemporal matching as a promising enabler
for secure D2D communications. This technique is motivated
by the fact that almost all target D2D devices are location-
aware through cellular, WiFi, or GPS technology. A mobile
user thus can conveniently maintain his spatiotemporal profile
recording his continuous whereabouts in time, and the level
of his spatiotemporal profile matching that of another mobile
user can be translated into the level of trust they two can have
in each other. For example, if Alice and Bob discover via
spatiotemporal matching that they often go to the same coffee
shop or take the same train in the same period, it is natural
for Alice to trust Bob over another person whom she only met
once before. Spatiotemporal matching is naturally well suited
for D2D communications. In particular, if two mobile users
have very similar spatiotemporal profiles, it is much more
likely that they will stay in each other’s communication range
for longer time, leading to a longer-live D2D communication
session.

There are two critical requirements for releasing the full
potential of spatiotemporal matching. In particular, spatiotem-
poral profiles contain very sensitive personal information, and
incautiously disclosing them to the public may cause severe
consequences. For example, if an employer surreptitiously
discovers an employee’s frequent patronage of night clubs,
the employee may get unfair treatment at the workplace; if
a thief knows the routine of a target victim, he could break
in when the victim will be away for a long time. It is thus
crucial to have privacy-preserving spatiotemporal matching,
which ensures that as little information as possible about the
spatiotemporal profile of either participant is disclosed beyond
the matching result. In addition, spatiotemporal matching is
directly performed on mobile devices and thus needs to be
very efficient in both communication and computation.
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We make three main contributions in this paper. First, we
coin privacy-preserving spatiotemporal matching as a funda-
mental primitive for secure D2D communications. Second,
we present two solutions towards efficient privacy-preserving
spatiotemporal matching. The first solution is a passive ap-
proach, in which every mobile user periodically records his
locations, and a user’s spatiotemporal profile is defined as a
set of (time, location) pairs. The second solution is an active
approach, where every mobile user continuously broadcasts
cryptographic tokens and also records every token he over-
hears. The tokens a user broadcasts and receives form his
spatiotemporal profile. Third, we propose two protocols for the
privacy-preserving comparison of two arbitrary active/passive
spatiotemporal profiles. The first protocol is based on a novel
use of the Bloom filter [4] to enable either user to estimate
with tunable accuracy the number of common elements in their
spatiotemporal profiles without disclosing too much private
information to each other. The second protocol generalizes the
first protocol and enables weighted spatiotemporal matching
by allowing each user to assign different weights to different
elements in his/her profile to obtain the weighted matching
result. In addition, we thoroughly analyze both protocols
and also evaluate them via detailed simulations driven by
experimental data.

The rest of this paper is organized as follows. Section II
presents the problem formulation. Section III introduces two
approaches for creating spatiotemporal profiles. Section IV
presents two protocols for privacy-preserving spatiotemporal
matching. Section V theoretically analyzes the proposed proto-
cols. Section VI evaluates the proposed protocols by detailed
numerical and experimental results. Section VII surveys the
related work. Section VIII concludes this paper.

II. PROBLEM FORMULATION

A. Problem Statement
We consider a large geographic region such as the NYC

metropolitan area with system users as either permanent
residents or temporary visitors. Each user carries at least
one mobile device which has a WiFi/Bluetooth interface and
can acquire his realtime position via on-device positioning
software. Such assumptions on device capabilities are fairly
justifiable on most current and future mobile devices for D2D
communications. Besides, unlike traditional communications
between mobile users and the service provider [5], mobile
users want to performance secure D2D communications via
the WiFi/Bluetooth interfaces on their mobile devices. In
addition, time is divided into equal-length epochs, each rep-
resented by a globally unique epoch index of lepoch bits. We
also postulate that each mobile device, which may traverse
different time zones, can always convert its local time into the
corresponding epoch index.

Each user u’s spatiotemporal profile is defined as a set
of 2-tuples (i, locu,i), where i and locu,i denote the epoch
index and the corresponding location index, respectively. In
our protocol, locu,i comprises some physical locations closely
approximating the user’s whereabouts in epoch i. The detailed
construction of spatiotemporal profiles is postponed to Sec-
tion IV.

We use Alice and Bob as two exemplary mobile users
throughout the paper. Let PA = {(i, locA,i)}∞i>0 and PB =
{(i, locB,i)}∞i>0 denote the spatiotemporal profiles of Alice
and Bob, respectively. We also let PA,α→β and PB,α→β de-
note their respective spatiotemporal profiles from epochs α to
β. Assume that Alice is the initiator of a D2D communication
session and that Bob is one of the candidate D2D partners
in Alice’s proximity. Alice wants to select a trustworthy D2D
partner and needs to conduct spatiotemporal matching with
every candidate partner. Consider Bob as an example. Alice
and Bob need to compare their spatiotemporal profiles from
epochs α to β, where α and β are chosen by Alice herself. A
complete matching process involves each of them initiating an
independent protocol instance. The number of encounters with
Bob in Alice’s eye in any epoch i ∈ [α, β] equals the number
of common locations in their location indexes in epoch i, and
the number of encounters with Bob from epochs α to β in her
eye equals the sum of total encounters in every epoch from α
to β. In the similar fashion, we can define the total number
of encounters with Alice from Bob’s viewpoint from epochs
α to β. We proceed to introduce the following definition.

Definition 1: (Spatiotemporal Match) After protocol exe-
cution, a spatiotemporal match between Alice and Bob from
epochs α to β is said to occur if the total number of
encounters with Bob exceeds τA from Alice’s viewpoint, and
the total number of encounters with Alice exceeds τB from
Bob’s viewpoint, where τA and τB are personal thresholds
independently chosen by Alice and Bob, respectively.

We assume that Alice and Bob both desire strong spatiotem-
poral privacy and collaborate only when a spatiotemporal
match occurs between them. Our focus is to devise an efficient
protocol ensuring that as little information as possible about
the spatiotemporal profile of either Alice or Bob is disclosed
beyond the matching result. One may think about letting them
directly exchange and compare their spatiotemporal profiles
under pseudonyms instead of real names so that a known
spatiotemporal profile cannot be directly linked to a real
identity. Unfortunately, the knowledge of a pseudo-identity’s
spatiotemporal profile may be disastrous enough, e.g., leading
to physical chasing to unveil the corresponding real identity.
We thus need a sound solution regardless of pseudonyms.

B. Adversary Model

We assume a honest-but-curious adversary model common-
ly adopted to study privacy-preserving profile matching [6],
[7], [8] or proximity test [9], [10], [11]. With Alice and Bob
as an example, they both honestly follow the spatiotemporal
matching protocol while having great curiosity about the
other’s spatiotemporal profile.

We do not consider continuous fake-profile attacks and
denial-of-service (DoS) attacks in this paper. In the former,
either matching participant keeps using fake spatiotemporal
profiles possibly under different pseudonyms in order to ac-
cumulate more information about the other party’s spatiotem-
poral profile as time goes by, while in the latter, an attacker
aims at depleting the resources of the other party in the same
way. The only feasible countermeasure against both attacks in
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our opinion is for every party to rate-limit the total number of
matching requests he/she will accept. Further investigation on
these attacks is beyond the scope of this paper.

There might also be external eavesdroppers or physical
chasers. The former overhear the messages incurred by a
spatiotemporal matching instance and can be easily thwarted
by letting the matching participants encrypt the protocol
messages. The latter tail a victim user and thus can always
have a spatiotemporal profile resembling that of the victim
user. There is no sound technical solution to such chasing
attacks.

III. SPATIOTEMPORAL PROFILE CONSTRUCTION

In this section, we introduce two approaches for construct-
ing spatiotemporal profile, including a passive approach and
an active approach. In the passive approach, each user records
his own spatiotemporal information periodically whereby to
construct his spatiotemporal profile. In the active approach,
each mobile user continuously broadcasts epoch-specific cryp-
tographic token at an adaptive frequency and also records
every token he overhears via WiFi/Bluetooth interface. The
spatiotemporal profile of each mobile user is then constructed
from the sent and received tokens.

A. A Passive Approach

The passive approach explores the prevalent capability of
mobile devices obtaining their physical locations via hybrid
GPS, WiFi, and cellular positioning techniques. Assume that
each epoch is evenly divided into λ intervals, where λ ≥ 1
is a global parameter. In general, each user passively records
his location in the middle of each interval to tolerate synchro-
nization errors among mobile devices. Recall that any user
u’s spatiotemporal profile is defined in Section II-A as a set
of 2-tuples like (i, locu,i). We have locu,i = {pu,i[j]}λj=1,
where pu,i[j] denotes user u’s jth location in epoch i. Consider
the exemplary users Alice and Bob with profiles PA =
{i, {pA,i[j]}λj=1}∞i=1 and PB = {i, {pB,i[j]}λj=1}∞i=1, respec-
tively. Now they attempt to compare their profiles from epochs
α to β, i.e., {i, {pA,i[j]}λj=1}

β
i=α and {i, {pB,i[j]}λj=1}

β
i=α,

equivalent to the comparison of λ(β − α+ 1) location pairs.
We further assume that each physical region of interest (like

a metropolitan area) can be approximated by a square called a
level-1 cell. Then we divide the level-1 cell into four equally-
sized squares called level-2 cells, each of which is further
divided into four equally-sized squares named as level-3 cells.
This process continues until reaching level-θ cells, each having
a side length no larger than a desired threshold, and how to
determine the cell-division threshold will be discussed later.
Note that there are totally 4j−1 level-j cells for ∀j ∈ [1, θ].
Then we assign a unique cell index to the cell(s) on every
level. In particular, the index of the level-1 cell is 0, and the
indexes of the upper-left, lower-left, upper-right, and lower-
right level-2 cells are 00, 01, 02, and 03, respectively. The
same indexing rule can be applied to the cells on all levels.
The region-division rules are public information and can be
downloaded as needed. In practice, each user just needs to

have the rules related to the regions he commonly stays in or
travel to, so the related storage overhead is negligible.

To facilitate customized spatiotemporal matching, we pro-
pose an adaptive quantization technique which works by
letting each user convert his locations into cell indexes. In par-
ticular, assume that Alice and Bob negotiate a common region
of interest on which to conduct spatiotemporal matching. Since
each region corresponds to a large geographic area, disclosing
the regions of interest to each other may not be a serious
concern in practice; otherwise, Alice and Bob can apply
Private Set Intersection (PSI) [12] to negotiate the common
region, which will be very efficient given the limited possible
regions. In addition, they agree on a cell level ξ ∈ [1, θ] on
which the quantization takes place, and the impact of ξ will
be discussed shortly. Then Alice converts {i, {pA,i[j]}λj=1}

β
i=α

into PA,α→β = {{〈i, j, p̄A,i[j]〉}λj=1}
β
i=α, where p̄A,i de-

notes the index of the level-ξ cell that contains pA,i. If a
certain location is not in the negotiated region, the corre-
sponding cell index is set to some randomly chosen un-
likely cell index indicating this abnormality. Similarly, Bob
can convert his profile {i, {pB,i[j]}λj=1}

β
i=α into PB,α→β =

{{〈i, j, p̄B,i[j]〉}λj=1}
β
i=α. With adaptive quantization in place,

the number of encounters between Alice and Bob equals the
number of level-ξ cells they both came across in the same
epoch interval, or equivalently the intersection cardinality
|PA,α→β

⋂
PB,α→β |.

B. An Active Approach

In the active approach, each mobile user continuously
broadcasts an epoch-specific cryptographic token at an adap-
tive frequency and also records every token he overhears via
WiFi-direct, Bluetooth, Frequency Hopping, or other available
Device-to-Device (D2D) technologies widely used in many
applications [13], [11], [14], [15]. For example, the tokens can
be exchanged via WiFi/Bluetooth interfaces without requiring
the involved parties to explicitly establish any WiFi/Bluetooth
connection [14].

Assume that every user u has a unique identifier IDu and
also a secret key ku. Let H(·) denote any good cryptographic
hash function. The token he broadcasts in epoch i is computed
as tu,i = H(ku, i, IDu) truncated to a given length. User u
needs to broadcast tokenu,i at a personally-chosen frequency
to make sure that it can be overheard by sufficient users he
encounters, and how to determine this token frequency will
be discussed shortly. In addition, user u should use a different
pseudonym in every epoch for broadcasting tokens; otherwise,
a powerful adversary would be able to associate the tokens he
sends in different epochs with him, thus breaching his location
privacy.

User u also receives tokens from other users through
his WiFi and/or Bluetooth interfaces and only records any
token once that he may receive multiple times. Let Ru,i =
{ru,i,j}

nu,i
j=1 denote the set of nu,i tokens user u receives from

others he encounters in epoch i. Any token inRu,i can serve as
the proof that user u was in the WiFi or Bluetooth transmission
range of the token sender. User u’s whereabouts in epoch i
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can thus be implicitly determined by his physical proximity
to other mobile users from which he has received tokens.

We define two types of spatiotemporal profiles for the
active approach, including initiator profile and receiver pro-
file. Recall that user u’s spatiotemporal profile is defined in
Section II-A as a set of 2-tuples (i, locu,i). The initiator and
receiver profiles of user u are defined as Iu = {(i, tu,i)}∞i=1

and Ru = {{(i, ru,i,j)}
nu,i
j=1}∞i=1.

Continue the example of Alice and Bob. An encounter
with Bob (or Alice) occurs in epoch i from Alice’s (or
Bob’s) viewpoint if tA,i ∈ RB,i (or tB,i ∈ RA,i). Suppose
they attempt to compare their profiles from epochs α to β
to determine the number of their encounters. Let mA,α→β
and mB,α→β denote the number of encounters with Bob
in Alice’s view and with Alice in Bob’s view, respectively.
We have mA,α→β = |IA,α→β

⋂
RB,α→β | and mB,α→β =

|IB,α→β
⋂
RA,α→β |, where Iu,α→β = {(i, tu,i)}βi=α and

Ru,α→β = {{(i, ru,i,j)}
nu,i
j=1}

β
i=α for u = A or B.

C. Discussion

We now discuss some factors that may affect the spa-
tiotemporal profile construction and thus the spatiotemporal
matching result. In particular, the passive approach may be
affected by the following three factors.

• Recording frequency: Each user records his location in
the middle of each interval in each epoch of fixed length.
The fewer intervals in each epoch, the lower the recording
frequency, and the more likely for false negatives to
occur, in which case a protocol initiator considers the
responder a mismatch who actually encountered him
multiple times and just did not record the encounter
locations due to the low recording frequency. In contrast,
the higher the recording frequency, the less likely for false
negatives to occur, and the longer every location index in
every epoch which will lead to larger computation and
communication overhead.

• Quantization granularity: The granularity of spatiotem-
poral matching can be controlled by choosing a proper
quantization level ξ ∈ [1, θ]. A larger ξ can lead to finer-
grained matching at the sacrifice of spatiotemporal pri-
vacy and matching efficiency, while a smaller ξ can lead
to better spatiotemporal privacy at the cost of coarser-
grained matching and longer spatiotemporal matching
time.

• Imperfect quantization: Our quantization process may
cause some ambiguity. For example, if the recorded
locations of Alice and Bob in the same interval are near
the upper-left and lower-right corners of the same level-
ξ cell, they will be quantized to the same level-ξ index
and thus translated into one encounter. In contrast, if the
two locations are in adjacent level-ξ cells and close to
each other along the cell boundary, they, however, will
be quantized to different level-ξ indexes and translated
into a non-encounter.

Similarly, the active approach may be affected by the
following two factors.

• Token broadcasting frequency: The more frequently a
user broadcasts an epoch-specific token, the more users
he encounters can receive the token, and the less likely for
false negatives to occur, in which case a protocol initiator
deems the responder a mismatch who actually encoun-
tered him many times and just did not receive sufficient
tokens from him in the matching epochs due to channel
errors, missing the time points for token transmissions,
etc. In contrast, the less frequently a token is broadcasted
in one epoch, the less energy the user consumes at the
cost of higher false-negative rates. The user can adopt an
adaptive method by letting a user dynamically adjust his
broadcasting frequency proportional to his moving speed
which can be readily inferred based on the accelerometer
increasingly available on mobile devices. The intuition is
that the users encountered by a high-speed (or low-speed)
user may quickly (slowly) move out of his WiFi/Blue-
tooth transmission range, so he can increase (or decrease)
the token frequency accordingly.

• Uniqueness of each user’s broadcasted tokens: The cor-
rectness of our protocols depends on {tA,i}βi=α (or
{tB,i}βi=α) being all unique in our previous example.
Recall that the token any user u (i.e., tu,i) broadcasts
in epoch i equals H(ku, i, IDu) truncated to a given
length. Due to the randomness of the hash output, it is
likely that the tokens user u sent in adjacent epochs might
be the same. A simple remedy is to let user u keep a
FIFO queue of size equal to the longest matching epoch-
interval he may be interested in. The queue records all the
recently used tokens. Consider epoch i as an example. If
the truncated H(ku, i, IDu) is in the queue, user u tries
H(ku, i, IDu, 1), H(ku, i, IDu, 2), . . . , until finding a
token not in the queue, which will be used as tu,i and
inserted into the queue.

IV. PRIVACY-PRESERVING SPATIOTEMPORAL MATCHING

In this section, we present two novel privacy-preserving
spatiotemporal matching protocols.

From the discussion of Section III, we can see that the
problem of privacy-preserving spatiotemporal matching boils
down to the problem of enabling two users (e.g., Alice and
Bob) to learn the cardinality of the intersection of their
spatiotemporal profiles represented by two sets ΨA and ΨB ,
respectively, while disclosing as little additional information
as possible beyond the matching result. In particular, if the
passive approach is adopted to construct the spatiotemporal
profile, we have ΨA = PA,α→β and ΨB = PB,α→β .
Similarly, under the active approach, we have ΨA = IA,α→β
and ΨB = RA,α→β if Alice’s point of view is considered, and
ΨB = IB,α→β and ΨB = RB,α→β if Alice’s point of view
is considered.

A. A Bloom-filter-based Privacy-Preserving Spatiotemporal
Matching Protocol

Our first spatiotemporal matching protocol is motivated by
the observation that an accurate estimation of the number of
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encounters may suffice in practice and involves a novel use of
the Bloom filter [4].

A Bloom filter [4] is a space-efficient probabilistic data
structure [16], [17], [11] for set-membership testing. Assume
that a w-bit Bloom filter is used for a data set {si}di=1, which
has every bit initialized to 0. Let {ha(·)}ka=1 denote k different
hash functions, each with output in [1, w]. Every element si
is added into the Bloom filter by setting all bits at positions
{ha(si)}ka=1 to 1. To check the membership of an arbitrary
element e in the given data set, we can simply verify whether
all the bits at positions {ha(e)}ka=1 have been set. If not, e
is certainly not in the data set; otherwise, it is in the data set
with some probability jointly determined by d,w, and k.

Our protocol involves Alice and Bob each using a different
set of hash functions to construct a Bloom filter based on
his/her spatiotemporal profile. In particular, let H denote a
large and public pool of hash functions with each indexed by
a unique identifier. Assume that Alice and Bob are to find out
|ΨA∩ΨB |. Without loss of generality, let ΨA = {a1, . . . , anA}
and ΨB = {b1, . . . , bnB}, where nA = nB if the passive
approach is adopted and nA 6= nB otherwise. The following
operations are done in sequence for Alice to obtain an esti-
mated m̂A about mA = |ΨA ∩ΨB |, where mA represents the
number of encounters with Bob in Alice’s view.

1. Alice sends a spatiotemporal matching request with nA
to Bob.

2. If nA > nB , Bob adds nA − nB dummy elements that
are definitely not in ΨA to obtain his new spatiotemporal
profile Ψ′B . Bob then randomly chooses k hash functions
from H with indexes denoted by HB and then inserts
each element in his profile Ψ̃B into a w-bit Bloom
filter (denoted by BFB) with different l < k functions
randomly selected from HB and k − l random hash
functions outside H. Finally, Bob returns nB , HB , and
BFB to Alice.

3. If nB > nA, Alice adds nB −nA dummy elements that
are definitely not in ΨB to obtain his new spatiotemporal
profile Ψ′A.

4. Alice constructs a w-bit Bloom filter (denoted by BFA)
based on the hash functions specified in HB and her
profile Ψ′A. Then she counts the number of common bit-
0 positions in BFA and BFB (denoted by n0) whereby
to compute

m̂A =
2kn− w(lnw − lnn0)

l
, (1)

where n = max(nA, nB). The correctness and accuracy
of this estimation will be analyzed in Section V-B.

Likewise, Bob can initiate a spatiotemporal matching process
to estimate the number of encounters with Alice m̂B from his
point of view. Finally, they can jointly determine whether there
is a successful spatiotemporal matching after independently
comparing m̂A (or m̂B) with the personal threshold τA (or
τB).

We have some important remarks to make. First, since
Alice and Bob use some common hash functions in HB
to construct their respective Bloom filter, the same elements
in their spatiotemporal profiles (if any) are likely to set

the same bit positions. So we can estimate the number of
common elements via the number of common bit-0 and/or bit-
1 positions. Second, the reason for Bob using k − l random
hash functions unknown to Alice for each element is to
prevent Alice from estimating Bob’s spatiotemporal presence
by simple Bloom set-membership tests. In particular, if Bob
uses the same k hash functions in HB to generate BFB , Alice
can easily test whether some possible element is in BFB ,
which is equivalent to breaching Bob’s spatiotemporal privacy.
This set-membership test is less critical to the active approach
because the adversary does not know the user’s secret keys and
can only randomly guess the broadcasted tokens. However, it
is critical to the passive approach in which all the possible
pairs of epoch and cell indexes are known to the adversary as
well. The choice of k and l will be detailed in Section V-B.
Finally, the construction of many different hash functions for
implementing the Bloom filter is also very important. One
common method is to seed a cryptographic hash function
such as SHA-2 with the indexes of hash functions we want.
There are also some more efficient realizations of many hash
functions specifically for the Bloom filter [18], [19].

B. A Weighted Privacy-Preserving Spatiotemporal Matching
Protocol

We now generalize the above protocol to support weighted
privacy-preserving spatiotemporal matching, which is defined
as follows.

Definition 2: (Weighted Spatiotemporal Match) Assume
that Alice and Bob each assign different weights for encounter
at different locations and times. A weighted spatiotemporal
match between Alice and Bob is said to occur if the weight-
ed sum of encounters with Bob exceeds τA from Alice’s
viewpoint, and the weighted sum of encounters with Alice
exceeds τB from Bob’s viewpoint, where τA and τB are
personal thresholds independently chosen by Alice and Bob,
respectively.

More specifically, consider Alice and Bob with spatiotem-
poral profiles ΨA = {a1, . . . , anA} and ΨB = {b1, . . . , bnB},
respectively. Assume that Alice assigns a weight wA,i for
possible encounter corresponding to element ai in ΨA for
each i ∈ [1, nA], and that Bob assigns a weight wB,j for
possible encounter corresponding to element bj in ΨB for each
j ∈ [1, nB ]. The weighted count of encounters with Bob from
Alice’s viewpoint is computed as

mA =

nA∑
i=1

ci (2)

where

ci =

{
wA,i if ai ∈ ΨB ,

0 otherwise,

and the weighted count of encounters with Alice from Bob’s
viewpoint can be computed accordingly.

We observe that weighted spatiotemporal matching can
be converted into spatiotemporal matching between two spa-
tiotemporal profiles constructed from weight sets. Specifically,
assume that that wA,i ∈ {1, . . . ,w} for all i ∈ [1, nA],
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where w is a publicly known parameter. Alice can construct
a new spatiotemporal profile Ψ′A from her original profiles
ΨA and weight set WA = {wa,i}nAi=1 as follow. For each
element ai ∈ ΨA with weight assignment wA,i, Alice converts
ai into wA,i different elements ai||1, ai||2, . . ., ai||wA,i.
As a result, Alice obtains her new spatiotemporal profile
Ψ′A = {{ai||j}

wA,i
j=1 }

nA
i=1. On the other hand, Bob can construct

a new spatiotemporal profile ΨB in a different way. For each
element bi ∈ ΨB with weight wB,i ∈ WB , Bob converts bi
into w different elements bi||1, bi||2, . . ., bi||w to obtain a new
spatiotemporal profile Ψ′B = {{bi||j}wj=1}

nB
i=1. It follows that

mA = |Ψ′A ∩Ψ′B | .

Assume Alice and Bob have their respective spatiotemporal
profiles ΨA and ΨB via either the passive or active approaches.
The following operations are done in sequence to allow Alice
to obtain an estimated m̂A about mA = |Ψ′A ∩Ψ′B |.

1. Alice creates a new spatiotemporal profile Ψ′A =
{{ai||j}

wA,i
j=1 }

nA
i=1.

2. Alice sends a weighted spatiotemporal matching request
with wA =

∑nA
i=1 wA,i to Bob.

3. Bob creates a new spatiotemporal profile Ψ′B =
{{bi||j}wj=1}

nB
i=1, and calculates wB = nBw.

4. If wA > wB , Bob adds wA − wB dummy elements
that are definitely not in Ψ′A to Ψ′B to obtain his new
spatiotemporal profile Ψ′′B . Bob then randomly chooses
k hash functions from H with indexes denoted by HB
and then inserts each element in his profile Ψ′′B into a
w-bit Bloom filter BFB with different l < k functions
randomly selected from HB and k − l random hash
functions outside H. Finally, Bob returns wB , HB , and
BFB to Alice.

5. If wB > wA, Alice adds wB − wA dummy elements
that are definitely not in Ψ′B to Ψ′A to obtain her new
spatiotemporal profile Ψ′′A.

6. Alice constructs a w-bit Bloom filter BFA using the hash
functions specified in HB and her profile Ψ′′A. Then she
counts the number of common bit-0 positions in BFA
and BFB (denoted by n0) whereby to compute

m̂A =
2kn− w(lnw − lnn0)

l
, (3)

where n = max(wA, wB).

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed
protocols.

A. Performance Metrics

We use the following metrics to evaluate our protocols.
1) Accuracy: The following standard (ε, δ) guarantee is

used to measure the accuracy of the protocol output,

Pr[(1− ε)m ≤ m̂ ≤ (1 + ε)m] > 1− δ, (4)

where m is the actual number of common elements (or
encounters) in , and m̂ is the estimation of m output by a
spatiotemporal matching protocol.

2) Privacy: We quantify spatiotemporal privacy by the
Shannon entropy, a commonly used measure of uncertainty.

We take Bob as an example to analyze the his spa-
tiotemporal privacy under the passive approach. Recall that
Bob’s quantized spatiotemporal profile from epochs α to β is
ΨB = PB,α→β = {{i, j, p̄B,i[j]}λj=1}

β
i=α, where p̄B,i denotes

a level-ξ cell index. The only information Alice knows about
PB,α→β before protocol execution includes the parameters
α, β, and λ. Since there are total N = 4ξ−1 level-ξ cell
indexes, each of them is equally likely to be p̄B,i[j] from
Alice’s viewpoint. There are thus total Nλ(β−α+1) candidate
quantized profiles for PB,α→β with equal probability from
Alice’s viewpoint. So the maximum spatiotemporal privacy of
Bob with regard to Alice (i.e., the maximum uncertainty of
his spatiotemporal profile to Alice) in bits can be computed
as

E∗ = log2N
λ(β−α+1) = 2λ(β − α+ 1)(ξ − 1). (5)

To make the analysis of the spatiotemporal privacy of Bob
under the active approach tractable and comparable with the
passive approach, we make the following assumptions. We
assume that during each epoch, Alice and Bob each wander in
one level-ξ cell as in the passive approach and that Alice keeps
broadcasting a unique token at sufficiently high frequency such
that Bob always receives Alice’s token if they are in the same
cell. In addition, we ignore the case in which Bob receives
Alice’s token while they are in two different cells, e.g., they
are close two the boundary of two adjacent cells. Similar
to the analysis of the passive approach, since there are total
N = 4ξ−1 level-ξ cells, each of them is equally likely to be
the cell Bob resides from Alice’s viewpoint. There are total
nNA candidate quantized profiles with equal probability from
Alice’s viewpoint. So the maximum spatiotemporal privacy of
Bob with regard to Alice in bits (i.e., the maximum uncertainty
of his spatiotemporal profile to Alice) can be computed as

E∗ = log2N
nB = 2nB(ξ − 1). (6)

After the execution of either protocol, Alice can know more
information about the probability of each candidate profile be-
ing Bob’s profile whereby to reduce the entropy or uncertainty,
which we will analyze shortly. The maximum spatiotemporal
privacy of Alice with regard to Bob can be analyzed in a
similar fashion and thus omitted here.

3) Overhead: We will measure the communication and
computation overhead of the spatiotemporal matching protocol
using the number of hash computations and the number of
bits transferred between two users during protocol execution,
respectively.

B. Analysis of the Spatiotemporal Matching Protocol

1) Accuracy Analysis: We have the following theorem re-
garding the accuracy of the privacy-preserving spatiotemporal
matching protocol.

Theorem 1: Given the number of common bit-0 positions
n0 in the w-bit Bloom filters BFA and BFB constructed
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in the spatiotemporal matching protocol, Alice can estimate
|ΨA

⋂
ΨB | as

m̂ =
2nk − w(lnw − lnn0)

l
, (7)

where n = max(nA, nB). Assuming that εm ≥ 1, m̂ is an
(ε, δ) estimation of m if

δ ≥
w(e

2nk
w − (1 + 2nk

w ))

l2ε2m2
. (8)

We give the proof of Theorem 1 in Appendix A.
2) Privacy Analysis: For the passive approach, the privacy

analysis of the spatiotemporal matching protocol is given by
the following theorem.

Theorem 2: Assuming that Bob constructs a w-bit Bloom
filter BFB from his level-ξ quantized profile ΨB =
{{i, j, p̄B,i[j]}λj=1}

β
i=α using l functions from HB and k − l

functions unknown to Alice. After transmitting BFB and HB
to Alice, his remaining privacy of ΨB against Alice is given
by

E = λ(α+ β − 1)E[i, j] , (9)

where

E[i, j] =

N∑
x=1

(
N

x

)
P x(1− P )N−x log2 x,

P =

k∑
i=l

(
k

i

)
pi(1− p)k−i ,

p = 1− e−
λ(α+β−1)k

w .

(10)

We give the proof of Theorem 2 in Appendix B.
The following theorem is about the privacy of the spatiotem-

poral matching protocol under the active approach.
Theorem 3: Assuming that Bob constructs a w-bit Bloom

filter BFB from Ψ′B using l functions from HB and k − l
functions unknown to Alice. After transmitting BFB and HB
to Alice, his remaining privacy of ΨB against Alice is

E =

nA∑
x=0

(
nA
x

)
P x(1− P )nA−x log2N

nB−x , (11)

where ΨA and ΨB are the spatiotemporal profiles of Alice
and Bob, respectively,

P =

k∑
i=l

(
k

i

)
pi(1− p)k−i ,

p = 1− e−nkw .

(12)

We give the proof of Theorem 3 in Appendix C.
3) Overhead Analysis: The spatiotemporal matching pro-

tocol involves Alice and Bob each performing kn hash oper-
ations, where n = max(nA, nB), which is very efficient. The
communication overhead mainly comes from the transmission
of one Bloom filter and is of w bits.

C. Analysis of Weighted Spatiotemporal Matching Protocol
1) Accuracy Analysis: The accuracy of the weighted spa-

tiotemporal matching protocol is guaranteed by the following
theorem.

Theorem 4: Given the number of common bit-0 positions n0
in the w-bit Bloom filters BFA and BFB constructed from Ψ′′A
and Ψ′′B , respectively, in the weighted spatiotemporal match-
ing protocol, Alice can estimate the result of the weighted
spatiotemporal matching as

m̂ =
2kn− w(lnw − lnn0)

l
, (13)

where n = max(wA, wB)n. Assuming that εm ≥ 1, m̂ is an
(ε, δ) estimation of m if

δ ≥
w(e

2kn
w − (1 + 2kn

w ))

l2ε2m2
. (14)

The proof of Theorem 4 is similar to that of Theorem 1 and
is thus omitted here.

2) Privacy Analysis: The privacy guarantee of weighted
spatiotemporal matching protocol under the passive approach
is given as follows.

Theorem 5: Let BFB denote a w-bit Bloom filter Bob
constructs on his converted spatiotemporal profile Ψ′′B from
epoch α to β using l functions from HB and k − l functions
unknown to Alice. After transmitting BFB and HB to Alice,
his remaining privacy of Ψ′′B against Alice is

E = λ(α+ β − 1)E[i, j] , (15)

where

E[i, j] =

N∑
x=1

(
N

x

)
P xw(1− Pw)N−x log2 x,

P =

k∑
i=l

(
k

i

)
pi(1− p)k−i ,

p = 1− e−nkw ,

n = max(wA, wB) .

(16)

We give the proof of Theorem 5 in Appendix D.
The privacy guarantee of weighted spatiotemporal matching

protocol under the active approach is given by the following
theorem.

Theorem 6: Let BFB denote a w-bit Bloom filter Bob
constructs on his converted spatiotemporal profile Ψ′′B using
l functions from HB and k − l functions unknown to Alice.
Assume we adopt level-ξ quantized After transmitting BFB
and HB to Alice, his remaining privacy of Ψ′′B against Alice
is

E =

nA∑
x=0

(
nA
x

)
P xw(1− Pw)nA−x log2N

nB−x , (17)

where nA and nB are the sizes of spatiotemporal profiles of
Alice and Bob before conversion, respectively,

P =

k∑
i=l

(
k

i

)
pi(1− p)k−i ,

p = 1− e−nkw ,

n = max(wA, wB) .

(18)

We give the proof of Theorem 6 in Appendix E.
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3) Overhead Analysis: Similar to the spatiotemporal
matching protocol, the weighted spatiotemporal matching
protocol involves Alice and Bob each performing kn hash
operations, where n = max(wA, wB). The communication
overhead mainly comes from the transmission of one Bloom
filter and is of w bits.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the two proposed protocols using
simulations.

A. Simulation Settings

In the preliminary version of this paper [1], we have shown
that our protocol incurs significantly lower computation and
communication overhead than traditional PSI-CA protocols
[20], [12] based on computationally expensive public-key
operations. Our simulation studies here will focus on the
impact of various parameters on the accuracy and privacy of
the spatiotemporal matching protocols.

We assume that the quantization is done on the level ξ = 6,
i.e., N = 4ξ−1 = 1024. In addition, our experiments are on a
Dell desktop with 2.67 GHz CPU, 9 GB RAM, and Windows 7
64-bit Professional, the evaluation program is written in Java,
and every data point represents the average of 1000 runs. As
discussed, a complete spatiotemporal matching involves Alice
and Bob each initiating one protocol execution, but we only
show the results for one protocol execution for simplicity. In
addition, we set δ to 0.02, and ε is the relative error.

B. Simulation Results

Fig. 1(a) compares the estimated number of encounters m̂
with the actual number of encounters m, when k = 20, l = 16,
n = 1000, and w = 40000. We can see that the estimator in
Eq. (3) is always biased. The reason is that traditional analysis
about the w-bit Bloom filter assumes that every bit position
is set to bit-1 for any of n elements with equal probability
1/w. In practice, however, the probability that one position is
set to bit-1 is not independent of other positions: when one
position is set to bit-1, it slightly reduces the probability that
other positions are set to bit-1 [16], [21], [22]. Therefore, the
actual number of bit-1 positions n1 in the Bloom filter is a
little smaller than that obtained via theoretical analysis, and
the actual number of bit-0 positions n0 in the Bloom filter is
a little larger than that obtained via theoretical analysis. Since
m̂ = 2kn−w(lnw−lnn0)

l , we can expect m̂ to be larger than the
true value m.

We resolve the biased estimation by letting m̂ =
2kn̂−w(lnw−lnn0)

l , where n̂ = ln(nA0/w)
k ln(1−1/w) , nA0 is the number

of bit-0 positions in BFA. Fig. 1(b) shows that this new
estimator is almost unbiased and matches well with m. The
reason is that using estimated number of elements n̂ instead
of the real number of elements n = λ(β − α + 1) takes into
account the above difference between observed and theoretical
numbers of bit-0 and bit-1 positions. So we will use this mod-
ified estimator hereafter whose effectiveness will be further
evidenced.

0 200 400 600 800 1000
0

200

400

600

800

1000

Actual number of encounters

E
st

im
at

ed
 n

um
be

r 
of

 e
nc

ou
nt

er
s

 

 

Ideal Line
Est. based on common bit−0

(a) Effect of n

0 200 400 600 800 1000
0

200

400

600

800

1000

Actual number of encounters

E
st

im
at

ed
 n

um
be

r 
of

 e
nc

ou
nt

er
s

 

 

Ideal Line
Est. based on common bit−0

(b) Effect of n̂

Fig. 1. The estimation accuracy of the advanced protocol.

Fig. 2 shows the impact of l (the number of common
hash functions Bob chooses to insert each of his elements)
on the performance of advanced protocol, when n = 1000,
m = 500, and k = 20. We can see from Fig. 2(a) that the
more common hash functions (i.e., larger l), the smaller the
variance of the relative error |m̂A − m|/m (i.e., the more
accurate the estimation). The reason is that the more common
hash functions, the more common bit-0 positions in BFA and
BFB , leading to fewer possible Bloom filters for Alice and
Bob, and the smaller estimation error variance, because the
estimation error mainly comes from the uncertainty of BFA
and BFB . In addition, the more common hash functions Alice
and Bob share, the lower the probability that a random location
index having corresponding bits set to bit-1 by at least l out of
k hash functions, and thus the lower remaining entropy left for
Bob’s location profile after Alice testing all possible location
indexes. It is thus of no surprise to see that Bob’s remaining
privacy against Alice decreases with both l and w.

Fig. 3 shows the impact of n (the number of location indexes
of each user) on the performance of advanced protocol, when
k = 20, w = 40000, and m = n/2. We can see that as
n increases, the relative error becomes larger. The reason
is that when the Bloom-filter length w is fixed, the more
elements inserted, the fewer common bit-0 positions in BFA
and BFB , the more possible Bloom filters for Alice and Bob,
which leads to higher estimation variance. In contrast, Bob’s
remaining privacy increases as n increases because the fewer
bits-0 positions in BFA, the higher the probability of a random
location index having corresponding bits set to bit-1 by at least
l out of k known hash functions, and the higher remaining
entropy for Bob’s location profile from Alice’s point of view
after testing all possible location indexes.

Fig. 4 shows the impact of w (the Bloom-filter length) on the
performance of advanced protocol, when k = 20, n = 1000,
and m = 500. We can see that the relative error decreases as
w increases. This is because when the number of elements n
is fixed, increase in w leads to more common bit-0 positions.
The more common bit-0 positions, the fewer possible Bloom
filters for Alice and Bob, and thus the smaller estimation error
variance. In addition, Bob’s remaining privacy against Alice
decreases as w increases. The reason is that the longer the
Bloom filter, the lower the probability that a random location
index having corresponding bits set to bit-1 by at least l out of
k known hash functions, and thus the lower remaining entropy
left for Bob’s location profile after Alice testing all possible
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Fig. 2. The impact of l, the number of common hash functions.
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Fig. 3. The impact of n, the cardinality of profiles.

location indexes.
Fig. 5 shows the impact of k (the total number of hash

functions for Bloom filter construction) on the performance
of advanced protocol, when n = 1000, m = 500, and the
ratios l/k and nk/w are both fixed. It is obvious that the
relative error decreases as k increases. The reason is that when
k increases, l and w also increase proportionally with fixed
l/k and nk/w. Recall that the variance of the m̂ is inversely
proportional to w/l2 for fixed ρ (cf. Eq. (27)). As l increases,
the variance of estimation error decreases. In addition, Bob’s
remaining privacy against Alice decreases as k increases. The
reason is that the probability that at least l bit positions
have been set decreases as k increases, which leads to lower
remaining entropy.

From the above figures, a general conclusion we can draw is
that there is an inherent tradeoff between matching accuracy
and spatiotemporal privacy: the more accuracy Alice wants,
the lower spatiotemporal privacy Bob can enjoy, and vice
versa.

VII. RELATED WORK

In this section, we discuss work in several areas which is
most germane to our work in this paper.

There is some work on encounter-based matching [23], [24].
Manweiler et al. [23] discussed the privacy concerns for some
missed-connection sites, which allows anonymous users to
rediscover strangers that they ever encountered. In their follow-
on work [24], they proposed to let mobile users exchange
spatiotemporal credentials when encountering each other and
later attempt to discover each other via a third-party server
which acts as a rendezvous point for the users. In contrast, our
protocols focus on a more general problem and are completely
distributed without requiring mobile users to interact with a
third-party server in most scenarios.
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Fig. 4. The impact of w, the length of the Bloom filter.
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Fig. 5. The impact of k, the total number of hash functions.

Existing proposals for private matching can be generally
classified into two categories. The first category such as
[6], [25], [7], [25], [26], [27], [28], [29] assumes that each
participant’s personal profile consists of multiple attributes
chosen from a public set of attributes [26], which can be
various interests [7], disease symptoms [25], or friends [6] in
different contexts. Private matching is then converted into Pri-
vate Set Intersection (PSI) [30], [31], Private Set Intersection
Cardinality (PSI-CA) [20], [12], or their variations, whereby
two mutually mistrusting parties, each holding a private data
set, jointly compute some function over the two sets without
leaking any additional information to either party. The second
category such as [32], [8], [33], [34], [35], [36] assumes that
user profile can be modeled as a multi-dimensional vector,
where each element is an integer indicating the priority level,
knowledge level [35], or interest level [34] of users on the
corresponding attribute. Private matching is then converted
into the secure computation of various functions over two
vectors. Our work belongs to the first category but does not
rely on computationally expensive PSI-CA.

Private proximity testing aims at testing the physical prox-
imity of two users at some discrete time points in a privacy-
preserving fashion. In [9], private proximity test is reduced to
private equality test based on some location tags often sent by
third parties, and the sketches of GSM location tags [10] are
for efficient private proximity test. In contrast, our protocols
evaluate the proximity of two users for any desired continuous
time period. Moreover, our most efficient protocol does not
involve expensive cryptographic operations unlike [9], [10].

VIII. CONCLUSION

In this paper, we have motivated and formulated privacy-
preserving spatiotemporal matching as a fundamental primitive
for supporting secure D2D communications. We presented
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a novel privacy-preserving spatiotemporal matching proto-
col and a novel weighted privacy-preserving spatiotemporal
matching protocol based on a novel use of the Bloom filter.
Detailed performance analysis and evaluation confirmed the
high efficacy and efficiency of our solutions.

APPENDIX A
PROOF OF THEOREM 1

Proof: For each bit position of either Bloom filter, the
probability that it is set to bit-1 by a common element with l
common hash functions is given by

p = 1− (1− 1

w
)ml ≈ 1− e−mlw . (19)

The probability that it is set to bit-1 in all the other cases is
given by

q = 1− (1− 1

w
)nk−ml ≈ 1− e−

nk−ml
w . (20)

Therefore, the probability that a position is bit-0 in both BFA
and BFB (i.e., common bit-0 position) is given by

P0 = (1− p)(1− q)2 = e−
ml
w e−

2(nk−ml)
w . (21)

Since Alice can count the number of common bit-0 positions
n0 in BFA and BFB , the following equation can be established

P0 = e−
ml
w e−

2(nk−ml)
w =

n0
w
. (22)

Solving this equation, we have

m̂ =
2nk − w(lnw − lnn0)

l
. (23)

Next, we derive the variance. We cast the problem into RFID
tag estimation and refer to the results in [37]. The RFID system
with t tags divides a time period into f slots and let each RFID
tag randomly select one of f slots to respond. One slot may be
responded by zero, one, or multiple tags. The expected number
of zero-response slots is nearly fe−t/f . Knowing the number
of zero-response slots, the system administrator can estimate
the number of present RFID tags. Our estimation method
based on the Bloom filter is similar to RFID tag estimation
if we consider common bit-1 positions and common bit-0
positions as multiple-response and zero-response slots in the
RFID system, respectively. The expected number of common
bit-0 positions of BFA and BFB is nearly we−(2nk−ml)/w.
Knowing the number of common bit-0 positions, we can
estimate the intersection size m.

Let ρ = 2nk−ml
w . According to Theorem 1 in [37], we have

n0 ∼ N (µ, σ2), where

µ = w(1− 1

w
)2nk−ml = we−ρ , (24)

σ2 = we−ρ(1− (1 + ρ)e−ρ) . (25)

We can view µ as a function of the true number of common
elements, denoted by µ(m). Since µ(m) is monotonic contin-
uous functions of m, it has a unique inverse, denoted by g(),
i.e., g(µ(m)) = m. Let 2nk −ml → ∞ and w → ∞, while
maintaining 2nk−ml

w = ρ. Since g(µ(m)) = m, differentiating
this equation with respect to m, we get g′(µ(m))µ′(m) = 1.

it follows that g′(µ(m)) = 1
µ′(m) . According to Theorem 6 in

[37], the variance of common bit-0 estimation of m is given
by

δ0 = σ2(m)[g′(µ(m))]2 =
σ2(m)

[µ′(m)]2
. (26)

Since µ = we−
2nk−ml

w and σ2 = we−ρ(1 − (1 + ρ)e−ρ).
Differentiating µ(m) with respect to m, we can obtain
dµ(m)
dm = le−ρ. Therefore we have

δ0 =
we−ρ(1− (1 + ρ)e−ρ)

l2e−2ρ
=
w(eρ − (1 + ρ))

l2
. (27)

In addition, since dδ0
dρ = w

l2 (eρ − 1) > 0, we know that δ0
is monotonic increasing with ρ. Since 0 ≤ m ≤ n, we have
n(2k−l)

w ≤ ρ ≤ 2nk
w . Therefore when ρ = 2nk

w , we have

δ0max =
w(e

2nk
w − (1 + 2nk

w ))

l2
. (28)

We thus have m̂ ∼ N (m, δ0). According to the Chebyshev’s
inequality, we have

Pr(|m̂−m| ≤ εm) ≥ 1− δ0
ε2m2

≥ 1− δ . (29)

Therefore, m̂ is an (ε, δ) estimation of m if

δ ≥ δ0max

ε2m2

=
w(e

2nk
w − (1 + 2nk

w ))

l2ε2m2
.

(30)

APPENDIX B
PROOF OF THEOREM 2

Proof: In the passive approach, since Alice and Bob’s
spatiotemporal profiles have the same size, we have Ψ′A = ΨA

and Ψ′B = ΨB . Bob’s privacy disclosure is caused by
transmitting BFB and the indexes HB of k hash functions to
Alice. In particular, Alice can exploit BFB and the knowledge
that Bob inserts every element in PB,α→β using l random
hash functions from HB and k − l unknown hash functions
to deduce some information about PB,α→β . Consider an
arbitrary element 〈i, j, p̄B,i[j]〉 as an example. For each of
the N possible cell indexes, say cID, Alice can test whether
it is a viable candidate for the unknown p̄B,i[j] by using all
the k hash functions in HB to compute the k corresponding
positions for the resulting element 〈i, j, cID〉. If there are at
least l out of k corresponding positions set to bit-1 in BFB , we
have cID = p̄B,i[j] with probability P ; otherwise, we must
have cID 6= p̄B,i[j].

We now estimate P . After inserting all the λ(α + β − 1)
elements in PB,α→β into BFB , the expected number of bit-
1 positions is w(1 − (1 − 1

w )λ(α+β−1)k). For a random hash
function applied to cID, the probability of the corresponding
bit position having been set to bit-1 is

p = 1− (1− 1

w
)λ(α+β−1)k ≈ 1− e−

λ(α+β−1)k
w . (31)

The probability that at least l corresponding bit positions
corresponding to cID have been set to bit-1 is then given
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by

P =

k∑
i=l

(
k

i

)
pi(1− p)k−i . (32)

Let Xi,j denote the number of valid candidate cell indexes
for p̄B,i[j]. The remaining entropy for interval i in epoch j
is then log2Xi,j . Since Xi,j is randomly distributed in [1, N ]
(N = 4ξ−1), we have the mean remaining entropy for interval
i in epoch j as

E[i, j] =

N∑
x=1

Pr(Xi,j = x) log2 x

=

N∑
x=1

(
N

x

)
P x(1− P )N−x log2 x .

(33)

Assuming that the λ(β−α+1) intervals are independent from
each other, the total remaining entropy is given by

E =

β∑
i=α

λ∑
j=1

E[i, j] = λ(α+ β − 1)E[i, j] . (34)

APPENDIX C
PROOF OF THEOREM 3

Proof: Assume that Alice and Bob conduct spatiotem-
poral profile matching with profiles ΨA = IA,α→β and
ΨB = RA,α→β , respectively. For every element in Alice’s
spatiotemporal profile, Alice can test whether it is a viable
candidate in Bob’s spatiotemporal profile by using all the
k hash functions in HB to compute the k corresponding
positions for the resulting element. If there are at least l out
of k corresponding positions set to bit-1 in BFB , we have the
conclusion that Bob and Alice were at the the same location
at the same time with probability P .

Let n = max(nA, nB), where nA = |ΨA| and nB = |ΨB |.
Similar to Theorem 2, the probability that at least l corre-
sponding bit positions have been set to bit-1 is then given by

P =

k∑
i=l

(
k

i

)
pi(1− p)k−i , (35)

where
p = 1− (1− 1

w
)nk ≈ 1− e−nkw . (36)

Let X denote the number of tokens which might be in
Bob’s spatiotemporal profile. The remaining entropy for Bob’s
spatiotemporal profile is given by

E =

nA∑
x=0

Pr(X = x) log2N
nB−x

=

nA∑
x=0

(
nA
x

)
P x(1− P )nA−x log2N

nB−x .

(37)

APPENDIX D
PROOF OF THEOREM 5

Proof: Recall that Bob converts each of the elements in
his profile to w new elements. For each of the N possible cell
indexes, say cID, Alice wants to test whether its converted w
elements cID||1, cID||2, . . . , cID||w are in Bob’s new profile
Ψ′′B . Let n = max(wA, wB). For each element cID||i, 1 ≤
i ≤ w, if there are at least l out of k corresponding positions
set to bit-1 in BFB , cID||i is considered in Bob’s new profile
Ψ′′B with probability P , where

P =

k∑
i=l

(
k

i

)
pi(1− p)k−i , (38)

p = 1− (1− 1

w
)nk ≈ 1− e−nkw . (39)

For any cID, it is considered in Bob’s unconverted profile
ΨB only if each of the w elements has at least l corresponding
bit-1 positions, and the probability is Pw.

Let Xi,j denote the number of candidate cell indexes. The
remaining entropy for interval i in epoch j is then log2Xi,j .
Since Xi,j is randomly distributed in [1, N ] (N = 4ξ−1), we
have the mean remaining entropy for interval i in epoch j as

E[i, j] =

N∑
x=1

Pr(Xi,j = x) log2 x

=

N∑
x=1

(
N

x

)
P xw(1− Pw)N−x log2 x .

(40)

Assuming that the λ(β−α+1) intervals are independent from
each other, the total remaining entropy is given by

E =

β∑
i=α

λ∑
j=1

E[i, j] = λ(α+ β − 1)E[i, j] . (41)

APPENDIX E
PROOF OF THEOREM 6

Proof: Consider an arbitrary element in Alice’s profile
ΨA as an example. Alice can convert it to w elements as
what Bob does. For each of the elements in Alice’s profile
ΨA, Alice wants to know whether it is a viable candidate in
Bob’s profile ΨB by testing whether each of its w converted
elements results in at least l corresponding bit-1 positions.
Let n = max(wA, wB). Similar to Theorem 5, the probability
that each of the w elements has at least l corresponding bit-
1 positions is Pw, where P is the probability that at least l
corresponding bit positions have been set to bit-1 and is then
given by

P =

k∑
i=l

(
k

i

)
pi(1− p)k−i , (42)

p = 1− (1− 1

w
)nk ≈ 1− e−nkw . (43)
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Let X denote the number of candidate elements in Bob’s
profile ΨB . The mean remaining entropy of Bob’s profile is

E =

nA∑
x=0

Pr(X = x) log2N
nB−x

=

nA∑
x=0

(
nA
x

)
P xw(1− Pw)nA−x log2N

nB−x .

(44)
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